
Inapproximability of	the	Standard	Pebble	
Game	and	Hard	to	Pebble	Graphs

ERIK	D. 	DEMAINE AND	QUANQUAN C.	LIU



Pebble	Games
Games	played	on	DAGs	by	placing,	removing	and	sliding	pebbles

Originally	used	to	model	memory	used	in	computation	(i.e.	register	allocation)

Care	about	bounded	indegreeDAGs	(usually	bounded	indegree-2	graphs) in	practical	sense

Using	standard	pebble	game	𝑶(𝒏/ 𝐥𝐨𝐠𝒏)	space	can	be	used	to	compute	DAG	with	𝒏 nodes	(i.e.	
𝐷𝑇𝐼𝑀𝐸 𝑛 ⊆ 𝐷𝑆𝑃𝐴𝐶𝐸 5

6785 )	[Hopcroft,	Paul,	Valient 77]

Now:	various	applications	in	proof	complexity	and	resolution,	cryptography—proofs	of	work	and	
space	using	time/space	tradeoffs



Minimizing	Space	Used	in	Computation
A	natural	question:	what	is	the	minimum	amount	of	space	necessary	to	perform	a	computation?

Many	different	types	of	pebble	games	used	to	model	space	usage	in	many	different	settings
◦ Reversible	Pebble	Game:	used	to	model	 reversible	computation
◦ Black-White	Pebble	Game:	used	to	model	non-deterministic	 computation
◦ Red-Blue	Pebble	Game:	used	 to	study	I/O	Complexity

All	such	games	are	PSPACE-complete	to	find	minimum	number	of	pebbles	to	pebble	DAG.		
[Gilbert,	Lengauer,	Tarjan 79],	[Chan,	Lauria,	Nordstrom, Vinyals 15],	[Hertel,	Pitassi 10],	[Liu	17]
◦ Notably,	result	in	[HP10]	is	for	unbounded	 indegree (and	also	very	large	indegree)	 so	less	useful	in	the	
practical	sense

◦ Open	question	whether	bounded	 indegree black-white	is	PSPACE-complete



Approximating	Minimum	Number	of	
Pebbles	Needed	to	Pebble	DAG
The	only	approximation	result	for	minimizing	number	of	pebbles	necessary	to	pebble	a	DAG	was	
given	by	[CLNV15]
◦ They	proved	 it	is	PSPACE-hard	to	approximate	the	minimum	number	 of	pebbles	necessary	to	pebble	a	
DAG	to	within	any	constant	additive	term	for	both	 the	standard	and	reversible	pebble	games

We	strengthen	this	result	for	the	standard	pebble	game	to	PSPACE-hard	to	approximate	to	an	
additive	term	of	𝑛

9
:	;< for	all	𝜖 > 0

Use	different	approach	from	that	presented	in	[CLNV15]	instead	using	an	approach	based	on	the	
construction	in	[GLT79]

Reduce	from	PSPACE-complete	problem	Quantified	Boolean	Formula	(QBF)



Standard	Pebble	Game
Standard	pebble	game	(often	called	black	pebble	game)	played	by	placing	and	sliding	black	
pebbles	on	DAG

Pebbles	can	be	moved	according	to	a	specific	set	of	moves:
◦ A	pebble	can	be	placed	on	any	source	node
◦ A	pebble	can	be	removed	from	any	node
◦ A	pebble	can	be	placed	on	any	non-source	node	 if	and	only	 if	all	direct	predecessors	of	the	node	are	
pebbled

◦ A	pebble	can	be	slid	from	a	predecessor	of	a	node	 to	the	node	if	and	only	if	all	direct	predecessors	of	
the	node	are	pebbled



Terminology
Pebbling	space	cost	is	the	minimum	number	of	pebbles	necessary	to	pebble	DAG

Pebbling	time	cost	given	𝑘 pebbles	is	the	minimum	number	of	moves	necessary	to	pebble	DAG	
using	𝒌 pebbles

Given	QBF	instance	𝐵 = 𝑄E𝑥E⋯𝑄H𝑥H𝐹:
◦ 𝑢 is	the	number	of	number	 of	variables	and	corresponding	 quantifiers
◦ 𝑐 is	the	number	of	clauses	in	𝐹

	𝐾 is	the	width	of	each	literal	in	each	variable



PSPACE-hardness	Reduction
Gap-reduction	from	Quantified	Boolean	Formula	(QBF)

QBF:	given	formula	𝐵 = 𝑄E𝑥E⋯𝑄H𝑥H𝐹 can	a	setting	of	all	existential	variables	make	𝐹 true	for	
all	truth	settings	of	universal	variables

Given	a	QBF	instance	𝐵 construct	DAG	𝐺 such	that:
◦ 𝐺 can	be	pebbled	 using	3𝐾𝑢 + 4𝐾 + 1 pebbles	if	and	only	if	𝐵 is	a	true	instance	
◦ Otherwise	3𝐾𝑢 + 5𝐾 pebbles	are	necessary	to	pebble	𝐺

We	construct	the	following	gadgets:
◦ Variable	gadgets
◦ Clause	gadgets
◦ Quantifier	blocks



Important	Subgraphs
Pyramid	graphs	ΠU were	proven	to	require	ℎ pebbles	to	pebble	the	apex	where	ℎ is	the	height	
of	the	pyramid	[GLT79]

ℎ = 4 4	pebbles	are	necessary	to	
pebble	𝑎

𝑎



Important	Subgraphs
Road	graphs	are	graphs	that	require	𝑤 + 𝑂 	− 1 pebbles	to	pebble	a	set	of	𝑂 ⊆ {𝑜E,⋯ , 𝑜^}
outputs	where	𝑤 is	the	width	of	the	road	graph

In	our	constructions,	𝑤 = 𝐾

5	pebbles	are	necessary	to	
pebble	𝑜E and	𝑜` persistently	
with	pebbles	



Normal	and	Regular	Strategies
A	normal	strategy	[GLT79]:
◦ Once	a	pebble	has	been	placed	on	a	pyramid,	no	pebbles	are	placed	on	nodes	outside	of	the	pyramid	
until	the	apex	pebbled

◦ All	other	pebbles	are	removed	from	the	pyramid	
◦ No	unnecessary	pebble	placements	anywhere	(frugal)

A	regular	strategy:
◦ Once	a	pebble	has	been	placed	on	a	road	graph,	no	pebbles	are	placed	on	nodes	outside	of	 the	road	
graph	until	all	desired	outputs	pebbled	

◦ All	other	pebbles	are	removed	from	the	road	graph.

Any	strategy	can	be	transformed	into	a	normal	and	regular	strategy.



Variable	Gadgets
Variable	gadgets	are	used	to	represent	the	variables	in	𝐵

There	exists	a	gadget	for	each	literal

Each	literal	can	be	set	in	the	true	or	false	configuration

There	are	three	possible	valid	configurations	of	the	variable	gadgets	(made	of	road	graphs)

𝑥a = 𝑇𝑟𝑢𝑒;	𝑥a = 𝐹𝑎𝑙𝑠𝑒	(true) 𝑥a = 𝐹𝑎𝑙𝑠𝑒;	𝑥a = 𝑇𝑟𝑢𝑒 (false) 𝑥a = 𝐹𝑎𝑙𝑠𝑒;	𝑥a = 𝐹𝑎𝑙𝑠𝑒 (double	false)	



Clause	Gadgets
Checks	whether	setting	of	variables	satisfies	CNF	formula	𝐹

Constructed	with	pyramid	whose	bottom	nodes	connected	to	the	three	literals	that	are	present	
in	the	clause

Requires	4𝐾 + 1 pebbles	if	at	least	one	literal	true

Otherwise,	requires	5𝐾 pebbles	to	pebble	an	unsatisfied	clause



Clause	Gadget	(Satisfied)

𝑝h

𝑝h;E

Can	be	pebbled	using	13	
pebbles



𝑝h

𝑝h;E

Can	be	pebbled	using	13	
pebbles

Clause	Gadget	(Satisfied)



𝑝h

𝑝h;E

Can	be	pebbled	using	13	
pebbles

Clause	Gadget	(Satisfied)



𝑝h

𝑝h;E

Can	be	pebbled	using	13	
pebbles

Clause	Gadget	(Satisfied)



𝑝h

𝑝h;E

Can	be	pebbled	using	13	
pebbles

Clause	Gadget	(Satisfied)



𝑝h

𝑝h;E

Can	be	pebbled	using	13	
pebbles

Clause	Gadget	(Satisfied)



Clause	Gadget	(Unsatisfied)

𝑝h

𝑝h;E

Must	be	pebbled	 using	
15	pebbles



𝑝h

𝑝h;E

Clause	Gadget	(Unsatisfied)
Must	be	pebbled	 using	
15	pebbles



𝑝h

𝑝h;E

Clause	Gadget	(Unsatisfied)
Must	be	pebbled	 using	
15	pebbles



𝑝h

𝑝h;E

Clause	Gadget	(Unsatisfied)
Must	be	pebbled	 using	
15	pebbles



𝑝h

𝑝h;E

Clause	Gadget	(Unsatisfied)
Must	be	pebbled	 using	
15	pebbles



Quantifier	Blocks
Quantifier	blocks	used	to	make	sure	clause	gadgets	are	evaluated	when	all	universal	variables	
are	set	to	either:	
◦ Both	the	True and	the	False	configurations
◦ Double	False	configuration

And	when	existential	variables	are	set	in	a	valid	configuration

All	quantifier	blocks	contain	the	variable	gadget	of	the	variable	it	quantifies

Universal	quantifier	blocks	are	pebbled	twice	if	𝑥a is	first	set	to	true	and	then	false	or	once	if	𝑥a
is	set	to	double	false	

Existential	quantifier	blocks	are	pebbled	only	once	regardless	of	the	configuration	of	literals

Last	clause	connected	to	last	quantifier	block



𝑥a = 𝐹𝑎𝑙𝑠𝑒;	𝑥a = 𝑇𝑟𝑢𝑒	Universal	Quantifier	Block

Pyramids	are	used	to	make	sure	
certain	nodes	are	pebbled	
before	others	



𝑥a = 𝐹𝑎𝑙𝑠𝑒;	𝑥a = 𝑇𝑟𝑢𝑒	Universal	Quantifier	Block

Pyramids	are	used	to	make	sure	
certain	nodes	are	pebbled	
before	others	



𝑥a = 𝐹𝑎𝑙𝑠𝑒;	𝑥a = 𝑇𝑟𝑢𝑒	Universal	Quantifier	Block



𝑥a = 𝐹𝑎𝑙𝑠𝑒;	𝑥a = 𝑇𝑟𝑢𝑒	Universal	Quantifier	Block



𝑥a = 𝐹𝑎𝑙𝑠𝑒;	𝑥a = 𝑇𝑟𝑢𝑒	Universal	Quantifier	Block



𝑥a = 𝐹𝑎𝑙𝑠𝑒;	𝑥a = 𝑇𝑟𝑢𝑒	Universal	Quantifier	Block



𝑥a = 𝐹𝑎𝑙𝑠𝑒;	𝑥a = 𝑇𝑟𝑢𝑒	Universal	Quantifier	Block



𝑥a = 𝐹𝑎𝑙𝑠𝑒;	𝑥a = 𝑇𝑟𝑢𝑒	Universal	Quantifier	Block



𝑥a = 𝐹𝑎𝑙𝑠𝑒;	𝑥a = 𝑇𝑟𝑢𝑒	Universal	Quantifier	Block



𝑥a = 𝐹𝑎𝑙𝑠𝑒;	𝑥a = 𝑇𝑟𝑢𝑒	Universal	Quantifier	Block



𝑥a = 𝑇𝑟𝑢𝑒;	𝑥a = 𝐹𝑎𝑙𝑠𝑒	Universal	Quantifier	Block



𝑥a = 𝑇𝑟𝑢𝑒;	𝑥a = 𝐹𝑎𝑙𝑠𝑒	Universal	Quantifier	Block



𝑥a = 𝑇𝑟𝑢𝑒;	𝑥a = 𝐹𝑎𝑙𝑠𝑒	Universal	Quantifier	Block



𝑥a = 𝑇𝑟𝑢𝑒;	𝑥a = 𝐹𝑎𝑙𝑠𝑒	Universal	Quantifier	Block



𝑥a = 𝑇𝑟𝑢𝑒;	𝑥a = 𝐹𝑎𝑙𝑠𝑒	Universal	Quantifier	Block



𝑥a = 𝑇𝑟𝑢𝑒;	𝑥a = 𝐹𝑎𝑙𝑠𝑒	Universal	Quantifier	Block



𝑥a = 𝑇𝑟𝑢𝑒;	𝑥a = 𝐹𝑎𝑙𝑠𝑒	Universal	Quantifier	Block



𝑥a = 𝑇𝑟𝑢𝑒;	𝑥a = 𝐹𝑎𝑙𝑠𝑒	Universal	Quantifier	Block



𝑥a = 𝐹𝑎𝑙𝑠𝑒;	𝑥a = 𝐹𝑎𝑙𝑠𝑒	Universal	Quantifier	Block



𝑥a = 𝐹𝑎𝑙𝑠𝑒;	𝑥a = 𝐹𝑎𝑙𝑠𝑒	Universal	Quantifier	Block



𝑥a = 𝐹𝑎𝑙𝑠𝑒;	𝑥a = 𝐹𝑎𝑙𝑠𝑒	Universal	Quantifier	Block



𝑥a = 𝐹𝑎𝑙𝑠𝑒;	𝑥a = 𝐹𝑎𝑙𝑠𝑒	Universal	Quantifier	Block



𝑥a = 𝐹𝑎𝑙𝑠𝑒;	𝑥a = 𝐹𝑎𝑙𝑠𝑒	Universal	Quantifier	Block



𝑥a = 𝐹𝑎𝑙𝑠𝑒;	𝑥a = 𝐹𝑎𝑙𝑠𝑒	Universal	Quantifier	Block



𝑥a = 𝐹𝑎𝑙𝑠𝑒;	𝑥a = 𝐹𝑎𝑙𝑠𝑒	Universal	Quantifier	Block



𝑥a = 𝐹𝑎𝑙𝑠𝑒;	𝑥a = 𝐹𝑎𝑙𝑠𝑒	Universal	Quantifier	Block



𝑥a = 𝐹𝑎𝑙𝑠𝑒;	𝑥a = 𝐹𝑎𝑙𝑠𝑒	Universal	Quantifier	Block



𝑥a = 𝐹𝑎𝑙𝑠𝑒;	𝑥a = 𝐹𝑎𝑙𝑠𝑒	Universal	Quantifier	Block



𝑥a = 𝐹𝑎𝑙𝑠𝑒;	𝑥a = 𝐹𝑎𝑙𝑠𝑒	Universal	Quantifier	Block



𝑥a = 𝑇𝑟𝑢𝑒;	𝑥a = 𝐹𝑎𝑙𝑠𝑒	Existential	Quantifier	Block



𝑥a = 𝑇𝑟𝑢𝑒;	𝑥a = 𝐹𝑎𝑙𝑠𝑒	Existential	Quantifier	Block



𝑥a = 𝑇𝑟𝑢𝑒;	𝑥a = 𝐹𝑎𝑙𝑠𝑒	Existential	Quantifier	Block



𝑥a = 𝑇𝑟𝑢𝑒;	𝑥a = 𝐹𝑎𝑙𝑠𝑒	Existential	Quantifier	Block



𝑥a = 𝑇𝑟𝑢𝑒;	𝑥a = 𝐹𝑎𝑙𝑠𝑒	Existential	Quantifier	Block



𝑥a = 𝑇𝑟𝑢𝑒;	𝑥a = 𝐹𝑎𝑙𝑠𝑒	Existential	Quantifier	Block



𝑥a = 𝑇𝑟𝑢𝑒;	𝑥a = 𝐹𝑎𝑙𝑠𝑒	Existential	Quantifier	Block



Entire	Construction
First	clause	can	be	
pebbled	 regardless	of	
whether	it	is	true	or	false.



Entire	Construction
Duplicate	first	clause	(not	
shown	here)



Entire	Construction
First	pebble	quantifier	
gadgets	by	assigning	
truth	values	to	literals



Entire	Construction
Then	pebble	clause	
gadgets



Entire	Construction
Then	pebble	unpebbled
portions	 of	quantifier	
gadgets



Entire	Construction
Finally	pebble	 target	
node



PSPACE-hard	 to	Approximate	to	Additive	𝑛
9
:;<

for	𝜖 > 0
True	instances	𝐵 create	𝐺 that	requires	4𝐾𝑢 + 4𝐾 + 1 pebbles

False	instances	𝐵 create	𝐺 that	requires	4𝐾𝑢 + 5𝐾 pebbles

Gap	reduction	with	a	gap	of	𝐾 − 1 pebbles

Total	number	of	nodes	in	the	graph	is	𝑛 = 𝑂(𝐾i 𝑢i + 𝑐 )

When	𝐾 → ∞,	𝐾 ≈ 𝑛
9
:,	otherwise	𝐾 = 𝑂 𝑛

9
:

Therefore,	it	is	hard	to	approximate	the	number	of	pebbles	required	to	pebble	any	DAG	to	an	
additive	term	𝑛

9
:;< for	all	𝜖 > 0



Hard	to	Pebble	Graphs
The	maximum	time	cost	necessary	to	pebble	any	DAG	is	𝑂 𝑛m where	𝑘 is	the	minimum	space	
cost

[AdRNV17] presented	an	independent	explicit	construction	that	require	Ω(𝑛m)moves	to	pebble	

We	introduce	an	independent	construction that	have	the	following	differences	from	the	graph	
construction	provided	by	[AdRNV17]:
◦ Steep	tradeoff	between	exponential	in	𝑘 and	linear	cost	in	moves:	useful	 for	proofs	of	secure	erasure	
(PoSE)	and	proofs	of	space

◦ Tradeoff	also	holds	 for	some	set	of	nonconstant 𝑘



Hard	to	Pebble	Graphs
𝑘 = 5 pebbles	are	necessary	
to	pebble	 this	DAG



Hard	to	Pebble	Graphs
𝑘 = 5 pebbles	are	necessary	
to	pebble	 this	DAG



Hard	to	Pebble	Graphs
𝑘 = 5 pebbles	are	necessary	
to	pebble	 this	DAG



Hard	to	Pebble	Graphs
𝑘 = 5 pebbles	are	necessary	
to	pebble	 this	DAG



Hard	to	Pebble	Graphs
𝑘 = 5 pebbles	are	necessary	
to	pebble	 this	DAG



Hard	to	Pebble	Graphs
𝑘 = 5 pebbles	are	necessary	
to	pebble	 this	DAG



Hard	to	Pebble	Graphs
𝑘 = 5 pebbles	are	necessary	
to	pebble	 this	DAG



Hard	to	Pebble	Graphs
In	both	the	standard	and	black-white	pebble	games:

	 𝑇 𝑙 = 5;m
`m 𝑇 𝑙 − 1 + 𝑙 5;m

`m where

𝑇 1 =
𝑛 − 𝑘
𝑘

Solving	this	recurrence	gives:

	 𝑇 𝑘 = Ω(𝑛m) where	𝑘 is	constant	for	both	standard	and	black-white	games



Hard	to	Pebble	Graphs
For	max	indegree-2	graphs,	we	can	replace	all	indegree greater	than	2	nodes	by	paths	of	
pyramids	or	binary	trees	(see	[DL17]	for	full	description):

◦ Standard	Pebble	Game:	𝑇 𝑘 = Ω 5;mo

mo

m
when	𝑘 < 5

`

◦ Black-White	Pebble	Game:	𝑇 𝑘 = Ω 5;`oqrs

mo

m
when	𝑘 = 𝑜(log𝑛)

When	𝑘 is	constant	𝑇 𝑘 = Ω(𝑛m)moves	are	necessary	to	pebble	any	member	of	this	family



Open	Questions
Using	techniques	presented,	can	we	prove	PSPACE-hardness	of	approximation	for	non-constant	
additive	terms	for	the	reversible	and	black-white	pebble	games?

Multiplicative	hardness	of	approximation?

What	is	the	exact	pebbling	cost	of	pyramids	in	the	black-white	pebble	game?	

Using	ideas	from	construction,	can	we	construct	hard	to	pebble	graphs	for	entire	range	of	0 <
𝑘 ≤ 5

678 5 with	steep	tradeoff?


