The Predicted-Updates Dynamic Model

Quanquan C. Liu quanquan.liu@yale.edu

Vaidehi Srinivas

vaidehi@u.northwestern.edu

Yale Northwestern University

Dynamic Algorithms

 Updates to the dataset (e.g. graph) occurs where elements are added and deleted from the dataset

Edge insertions/deletions arrive sequentially

Maintain graph property after each update



Minimize Update Time

- Want: minimize the update time between updates
 - Amortized or worst-case (often a gap)

Sublinear Runtime: strive for poly(log n)

Minimize Update Time

- Want: minimize the update time between updates
 - Amortized or worst-case (often a gap)
- Sometimes need to do preprocessing
 - Small polynomial in the input graph

Sublinear Runtime: strive for poly(log n)

Minimize Update Time

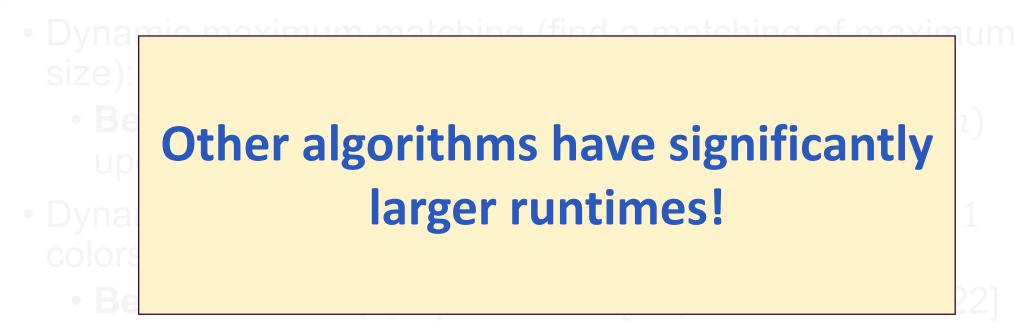
- Want: minimize the update time between updates
 - Amortized or worst-case (often a gap)
- Sometimes need to do preprocessing
 - Small polynomial in the input graph
- Sometimes have queries (e.g. connectivity queries)

Sublinear Runtime: strive for poly(log n)

- Dynamic maximum matching (find a matching of maximum size):
 - **Best known:** $(1.973 + \varepsilon)$ -approximation in poly(log *n*) update time [BKSW SODA '23]

- Dynamic maximum matching (find a matching of maximum size):
 - **Best known:** $(1.973 + \varepsilon)$ -approximation in poly $(\log n)$ update time [BKSW SODA '23]
- Dynamic $(\Delta + 1)$ -coloring (find a valid coloring with $\Delta + 1$ colors):
 - Best known: O(1) update time [HP, BGKLS TALG '22]

- Dynamic maximum matching (find a matching of maximum size):
 - **Best known:** $(1.973 + \varepsilon)$ -approximation in poly $(\log n)$ update time [BKSW SODA '23]
- Dynamic $(\Delta + 1)$ -coloring (find a valid coloring with $\Delta + 1$ colors):
 - **Best known:** O(1) update time [HP, BGKLS TALG '22]
- Approximate Densest Subgraph:
 - Best known: poly(log n) update time [SW STOC '20, CCHHQRS SODA '24]



Approximate Densest Subgraph:

 Best known: poly(log n) update time [SW STOC '20, CCHHQRS SODA '24]

 Gaps in runtime between different types of dynamic algorithms

- Gaps in runtime between different types of dynamic algorithms
- Offline vs. Fully Dynamic
 - Receive all of the updates at once, process them together

- Gaps in runtime between different types of dynamic algorithms
- Offline vs. Fully Dynamic
 - Receive all of the updates at once, process them together
- Incremental/Decremental vs. Fully Dynamic
 - Incremental/decremental algorithms:
 - Only edge insertions/deletions, respectively

- Gaps in runtime between different types of dynamic algorithms
- Offline vs. Fully Dynamic
 - Receive all of the updates at once, process them together
- Incremental/Decremental vs. Fully Dynamic
 - Incremental/decremental algorithms:
 - Only edge insertions/deletions, respectively
- Sometimes large gap in runtimes
 - Polynomial or exponential gaps in runtimes

[L, Srinivas COLT '24] Types of Dynamic Algorithms

	Best Fully Dynamic Be		est Offline/Partially Dynamic		
Planar Digraph APSP	$\widetilde{O}\left(n^{2/3} ight)$	[FR06, Kle05]	$\widetilde{O}(\sqrt{n})$	[DGWN22]	
Triconnectivity	$O(n^{2/3})$	[GIS99]	$\widetilde{O}\left(1 ight)$	[HR20, PSS17]	
k-Edge Connectivity	$n^{o(1)}$	[JS22]	$\widetilde{O}(1)$	$[CDK^+21]$	
APSP	$egin{array}{c} \left(rac{256}{k^2} ight)^{4/k} ext{-} ext{Approx} \ \widetilde{O}\left(n^k ight) ext{ update} \ \widetilde{O}(n^{k/8}) ext{ query} \end{array}$	[FGNS23]	$(2r-1)^k ext{-} ext{Approx}\ \widetilde{O}\left(m^{1/(k+1)}n^{k/r} ight)$	$[CGH^+20]$	
AP Maxflow/Mincut	$O(\log(n) \log \log n)$ -Approx $\widetilde{O}\left(n^{2/3+o(1)} ight)$	$[CGH^+20]$	$O\left(\log^{8k}(n) ight) ext{-} ext{Approx.}$ $\widetilde{O}\left(n^{2/(k+1)} ight)$	[Gor19, GHS19]	
MCF	$(1 + \varepsilon)$ -Approx $\widetilde{O}(1)$ update $\widetilde{O}(n)$ query	[CGH+20]	$O(\log^{8k}(n)) ext{-}\operatorname{Approx.}$ $\widetilde{O}\left(n^{2/(k+1)} ight)$ update $\widetilde{O}(P^2)$ query	[Gor19, GHS19]	
	$2^{O(\log^{5/6}(n))}$ -Approx $2^{O(\log^{5/6}(n))}$ update		$egin{array}{c} O\left(\log^{8k}(n) ight) ext{-}\mathrm{Approx} \ \widetilde{O}\left(n^{2/(k+1)} ight) \end{array}$		
Uniform Sparsest Cut	$\begin{array}{c c} O(\log^{1/6}(n)) \text{ query} \\ \hline 1/4\text{-Approx} \end{array}$	[GRST21]	0(1) query 0.3178-Approx	[Gor19, GHS19]	
Submodular Max	$\widetilde{O}(k^2)$	$[\mathrm{DFL}^+23]$	$\widetilde{O}\left(\mathrm{poly}(k)\right)$	$[\mathrm{FLN}^+22]$	

[L, Srinivas COLT '24] Types of Dynamic Algorithms

		Best Fully Dynamic	Best	t Offline/Partially	Dynamic			
	Planar Digraph APSP	$\widetilde{O}\left(n^{2/3} ight)$	[FR06, Kle05]	$\widetilde{O}(\sqrt{n})$	[D	GWN22]		
Triconnectivity		$O(n^{2/3})$	GIS99	$\tilde{O}(1)$		HR20, PSS17		
k-E	Edge Connectivity	$n^{O(1)}$	JS22	$\tilde{O}(1$) CDKLLPSV		SV21	
	APSP	$\widetilde{O}\left(n^k ight) ext{ update} \ \widetilde{O}(n^{k/8}) ext{ query}$	[FGNS23]	$\widetilde{O}\left(m^{1/(k+1)}n^{k/r} ight)$	[0	$CGH^+20]$		
	AP Maxflow/Mincut	$O(\log(n)\log\log n) ext{-}\operatorname{Approx} \ \widetilde{O}\left(n^{2/3+o(1)} ight)$	$[CGH^+20]$	$O\left(\log^{8k}(n) ight)$ -Approx. $\widetilde{O}\left(n^{2/(k+1)} ight)$		19, GHS19]		
		$(1+arepsilon) ext{-Approx} \ \widetilde{O}(1) ext{ update}$		$O(\log^{8k}(n)) ext{-}\operatorname{Approx.} \ \widetilde{O}\left(n^{2/(k+1)} ight) ext{ update}$				
-	MCF	$\widetilde{O}(n)$ query	[CGH ⁺ 20]	$\widetilde{O}(P^2)$ query	[Gor	19, GHS19]		
		$2^{O(\log^{5/6}(n))}$ -Approx $2^{O(\log^{5/6}(n))}$ update		$egin{array}{l} O\left(\log^{8k}(n) ight) ext{-}\mathrm{Approx}\ \widetilde{O}\left(n^{2/(k+1)} ight) \end{array}$				
	Uniform Sparsest Cut	$O(\log^{1/6}(n))$ query	[GRST21]	O(1) query	[Gor	19, GHS19]		
	Submodular Max	$\widetilde{O}(k^2)$	$[\mathrm{DFL}^+23]$	$egin{array}{l} 0.3178 ext{-}\mathrm{Approx}\ \widetilde{O}\left(\mathrm{poly}(k) ight) \end{array}$	[]	FLN ⁺ 22]		

TTIC Workshop on Learning-Augmented Algorithms 2024

[L, Srinivas COLT '24] Types of Dynamic Algorithms

		Best Fully Dynamic	Best	Offline/Partially	Dynamic		
	Planar Digraph APSP	$\widetilde{O}\left(n^{2/3} ight)$	[FR06, Kle05]	$\widetilde{O}(\sqrt{n})$	[D0	GWN22]	
Triconnectivity		$O(n^{2/3})$	GIS99	$\tilde{O}(1)$)	HR20, PSS1	
k-I	Edge Connectivity	$n^{O(1)}$	JS22	$\tilde{O}(1)$)	CDKLLPSV21	
I	APSP	$\widetilde{O}\left(n^k ight)$ update $\widetilde{O}(n^{k/8})$ query	[FGNS23]	$(2r-1)^k$ -Approx $\widetilde{O}\left(m^{1/(k+1)}n^{k/r} ight)$	[C	$GH^+20]$	
	AP Maxflow/Mincut	$O(\log(n) \log \log n)$ -Approx $\widetilde{O}\left(n^{2/3+o(1)} ight)$	$[CGH^+20]$	$O\left(\log^{8k}(n)\right)$ -Approx. $\widetilde{O}\left(n^{2/(k+1)}\right)$	[Gor]	19, GHS19]	
	ŀ	How do we	close	the gap	?	HS19]	
	Uniform Sparsest Cut	$O(\log^{1/6}(n))$ query	[GRST21]	O(1) query	[Gor]	[9, GHS19]	
Submodular Max		$1/4$ -Approx $\widetilde{O}(k^2)$	$[\mathrm{DFL}^+23]$	$0.3178 ext{-}\operatorname{Approx} \widetilde{O} \left(\operatorname{poly}(k) ight)$	٦	$LN^+22]$	

• Can we use predictions to bridge the gap?

- Can we use predictions to bridge the gap?
 - Yes!

- Can we use predictions to bridge the gap?
 - Yes!
- Predictions on the edge updates [L-Srinivas COLT '24]

- Can we use predictions to bridge the gap?
 - Yes!
- Predictions on the edge updates [L-Srinivas COLT '24]
 - For each edge update, give prediction on when update occurs

- Can we use predictions to bridge the gap?
 - Yes!
- Predictions on the edge updates [L-Srinivas COLT '24]
 - For each edge update, give prediction on when update occurs
 - Assume one edge insertion/deletion occurs at a time, give prediction on the time of the edge insertion/deletion, *T* total update times

- Can we use predictions to bridge the gap?
 - Yes!
- Predictions on the edge updates [L-Srinivas COLT '24]
 - For each edge update, give prediction on when update occurs
 - Assume one edge insertion/deletion occurs at a time, give prediction on the time of the edge insertion/deletion, *T* total update times
- Runtime in terms of L_1 -error between predictions and real times

• Runtime in terms of L_1 -error between predictions and real

- Runtime in terms of L_1 -error between predictions and real
 - p vector of predicted timestamps
 - r vector of real timestamps
 - L_1 error: $||\mathbf{p} \mathbf{r}||_1$

- Runtime in terms of L_1 -error between predictions and real
 - p vector of predicted timestamps
 - r vector of real timestamps
 - L_1 error: $||\mathbf{p} \mathbf{r}||_1$

Runtime same as partially dynamic with total

$$\widetilde{O}\left(\left(\left|\left|p - r\right|\right|_{1} + T\right) \cdot update\right)$$

time for *T* updates
[L-Srinivas COLT '24]

- Runtime in terms of L_1 -error between predictions and real
 - p vector of predicted timestamps
 - r vector of real timestamps
 - L_1 error: $||\mathbf{p} \mathbf{r}||_1$

update is worst-case update time of incremental/decremental algorithm

Runtime same as partially dynamic with total

$$\widetilde{O}\left(\left(\left|\left|p - r\right|\right|_{1} + T\right) \cdot update\right)$$

time for *T* updates
[L-Srinivas COLT '24]

- [McCauley-Moseley-Niaparast-Singh NeurIPS '23, ICML '24]:
 - Incremental/online list labeling, topological ordering, and cycle detection

- [McCauley-Moseley-Niaparast-Singh NeurIPS '23, ICML '24]:
 - Incremental/online list labeling, topological ordering, and cycle detection
- [Peng-Rubinstein SOSA '23]:
 - Incremental to fully dynamic transformation given deletion order

- [McCauley-Moseley-Niaparast-Singh NeurIPS '23, ICML '24]:
 - Incremental/online list labeling, topological ordering, and cycle detection
- [Peng-Rubinstein SOSA '23]:
 - Incremental to fully dynamic transformation given deletion order
- [van den Brand-Forster-Nazari-Polak SODA '24]:
 - Incremental to fully dynamic transformation when given predictions of deletion order and other models

- [McCauley-Moseley-Niaparast-Singh NeurIPS '23, ICML '24]:
 - Incremental/online list labeling, topological ordering, and cycle detection
- [Peng-Rubinstein SOSA '23]:
 - Incremental to fully dynamic transformation given deletion order
- [van den Brand-Forster-Nazari-Polak SODA '24]:
 - Incremental to fully dynamic transformation when given predictions of deletion order and other models
- [Henzinger-Saha-Seybold-Ye ITCS '24]:
 - Various lower bounds for different models of learning-augmented dynamic algorithms

Consistency

 If the predictions are high quality, then algorithm performs much better than worst-case algorithm

Consistency

Match the offline, incremental, decremental runtimes up to poly(log T) factors

 If the predictions are high quality, then algorithm performs much better than worst-case algorithm

Match the offline, incremental, decremental runtimes up to poly(log T) factors

- If the predictions are high quality, then algorithm performs much better than worst-case algorithm
- Competitiveness

Consistency

 If the predictions are low quality, then algorithm does not perform any worse than worst-case algorithm

Match the offline, incremental, decremental runtimes up to poly(log T) factors

- If the predictions are high quality, then algorithm performs much better than worst-case algorithm
- Competitiveness

Consistency

 If the predictions are low quality, then algorithm does not perform any worse than worst-case algorithm

Match the best-known fully dynamic

Match the offline, incremental, decremental runtimes up to poly(log T) factors

- If the predictions are high quality, then algorithm performs much better than worst-case algorithm
- Competitiveness
 - If the predictions are low quality, then algorithm does not perform any worse than worst-case algorithm

Robustness

Consistency

Match the best-known fully dynamic

 Performance of algorithm degrades gracefully as function of prediction error

Match the offline, incremental, decremental runtimes up to poly(log T) factors

- If the predictions are high quality, then algorithm performs much better than worst-case algorithm
- Competitiveness
 - If the predictions are low quality, then algorithm does not perform any worse than worst-case algorithm

Robustness

Consistency

Match the best-known fully dynamic

Performance of algorithm degrades gracefully as function of prediction error

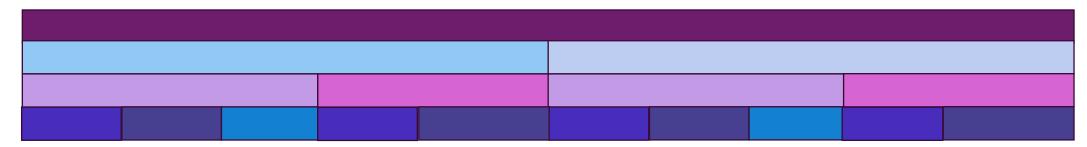
Degrades as a linear function of the L₁ error

Offline to Fully Dynamic Transformation

• Transforms an offline dynamic divide-and-conquer algorithm to fully dynamic algorithm

Offline to Fully Dynamic Transformation

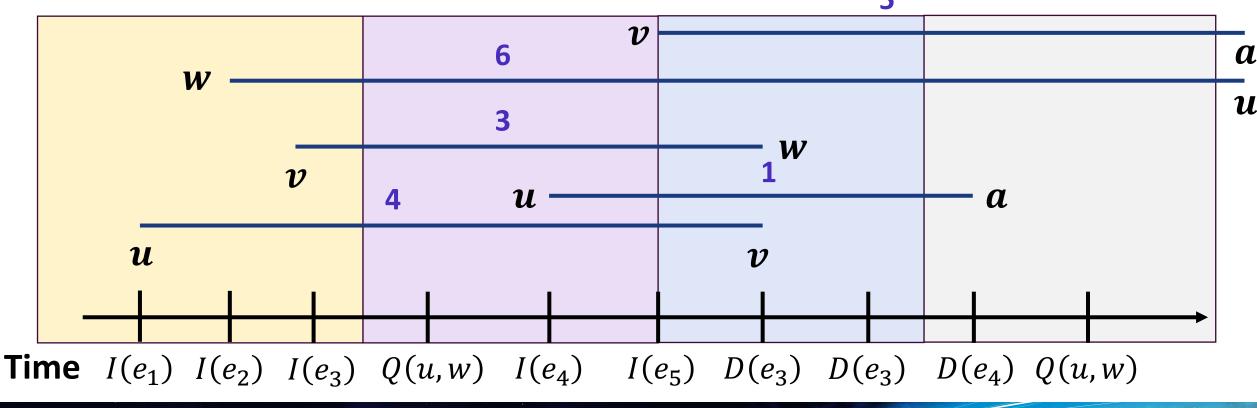
• Transforms an offline dynamic divide-and-conquer algorithm to fully dynamic algorithm



Time $I(e_1)$ $I(e_2)$ $I(e_3)$ Q(u,w) $I(e_4)$ $I(e_5)$ $D(e_3)$ $D(e_3)$ $D(e_4)$ Q(u,w)

Solution for each update obtained from divide-andconquer over update timestamps

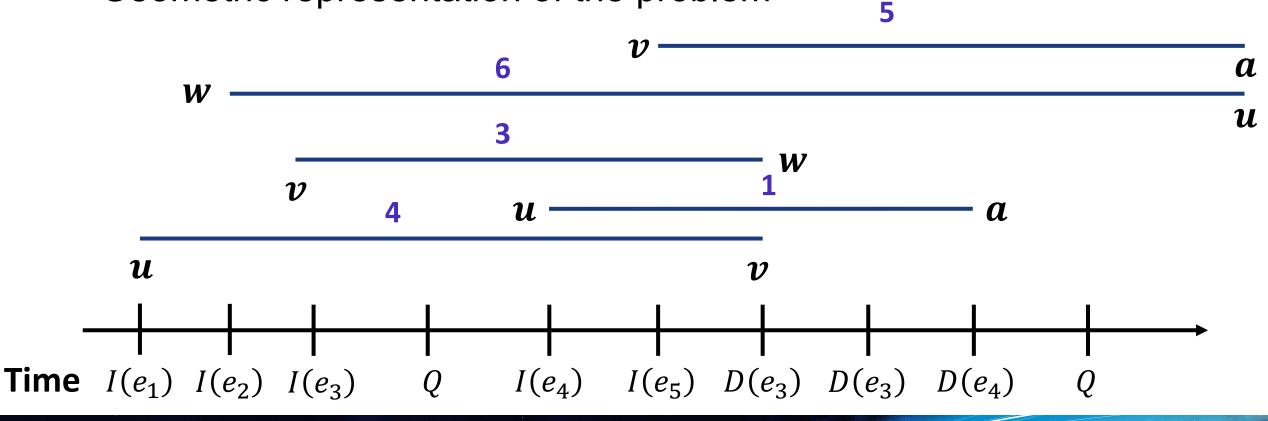
- Geometric representation of the problem
- Divide-and-conquer: process each subproblem



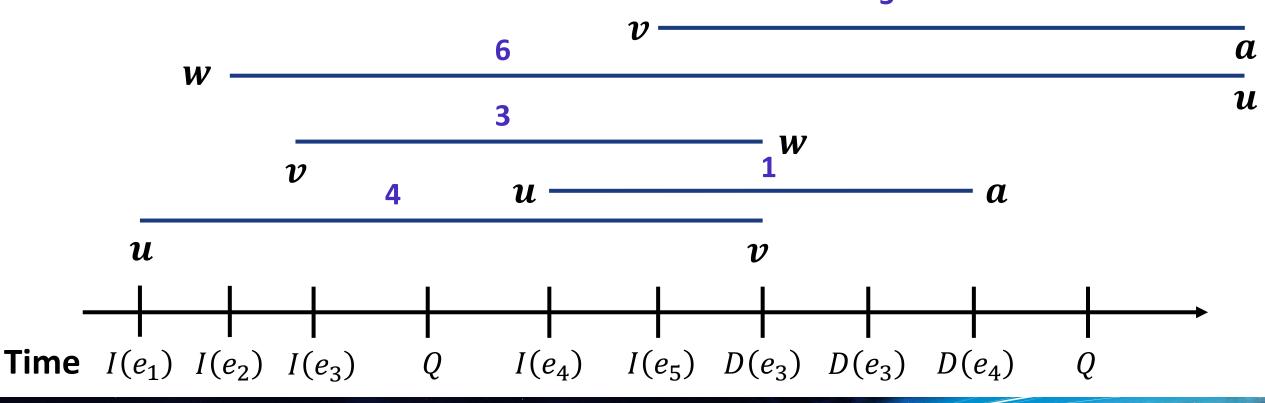
 We will use the offline dynamic minimum spanning tree algorithm of Eppstein '92

- We will use the offline dynamic minimum spanning tree algorithm of Eppstein '92
- Geometric representation of the problem

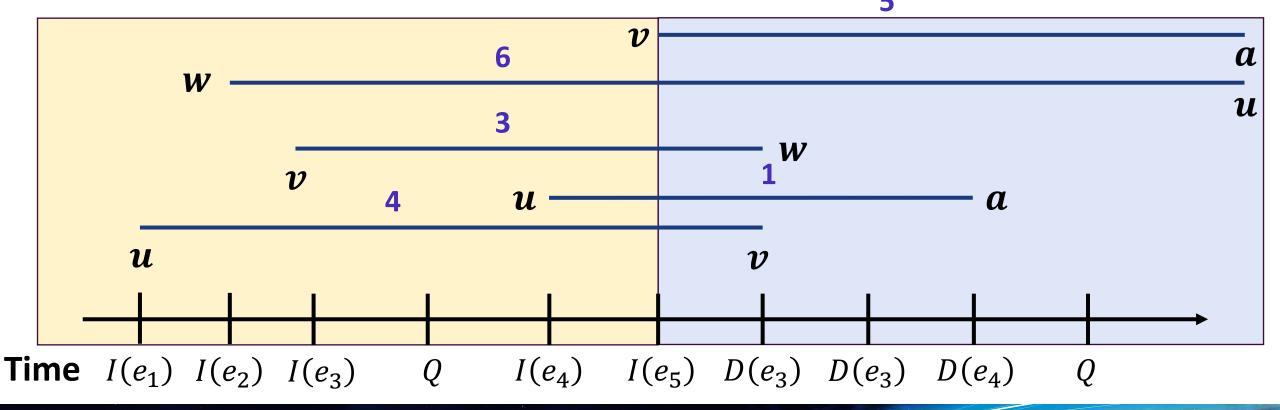
- We will use the offline dynamic minimum spanning tree algorithm of Eppstein '92
- Geometric representation of the problem



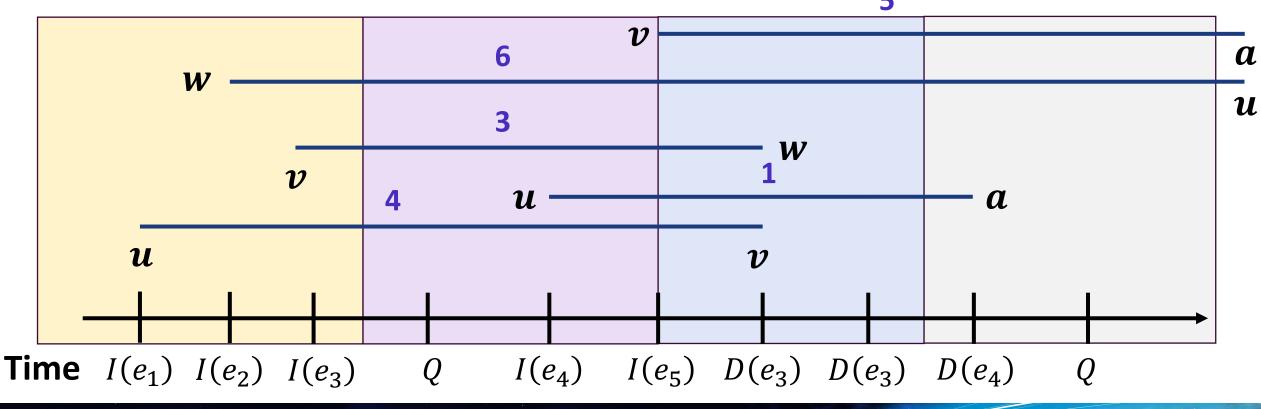
- Geometric representation of the problem
- Divide-and-conquer: process each subproblem



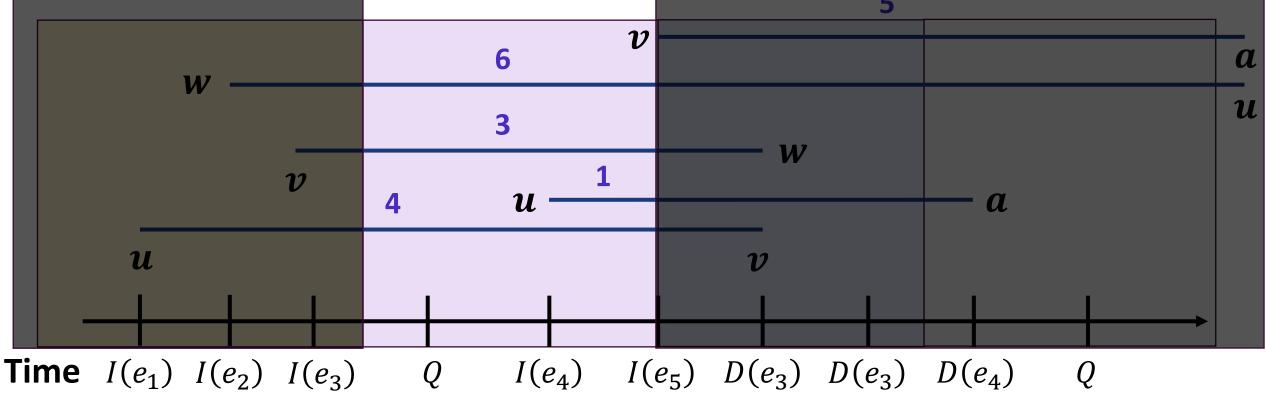
- Geometric representation of the problem
- Divide-and-conquer: process each subproblem



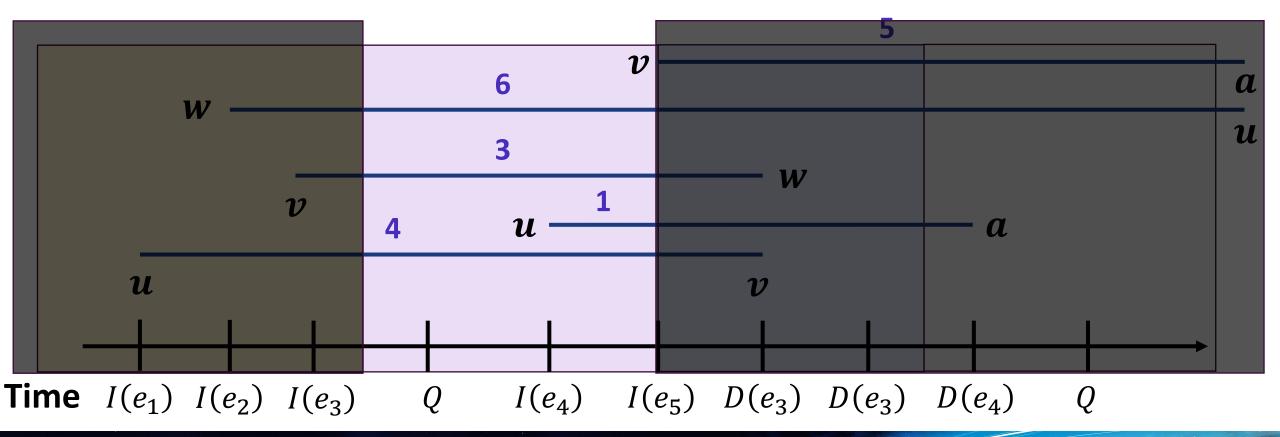
- Geometric representation of the problem
- Divide-and-conquer: process each subproblem



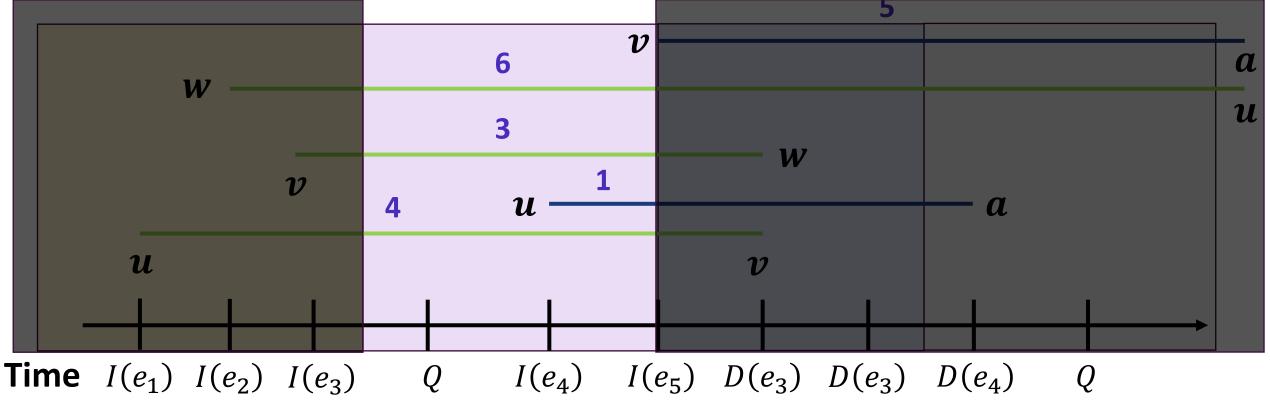
- Geometric representation of the problem
- Divide-and-conquer: process each subproblem



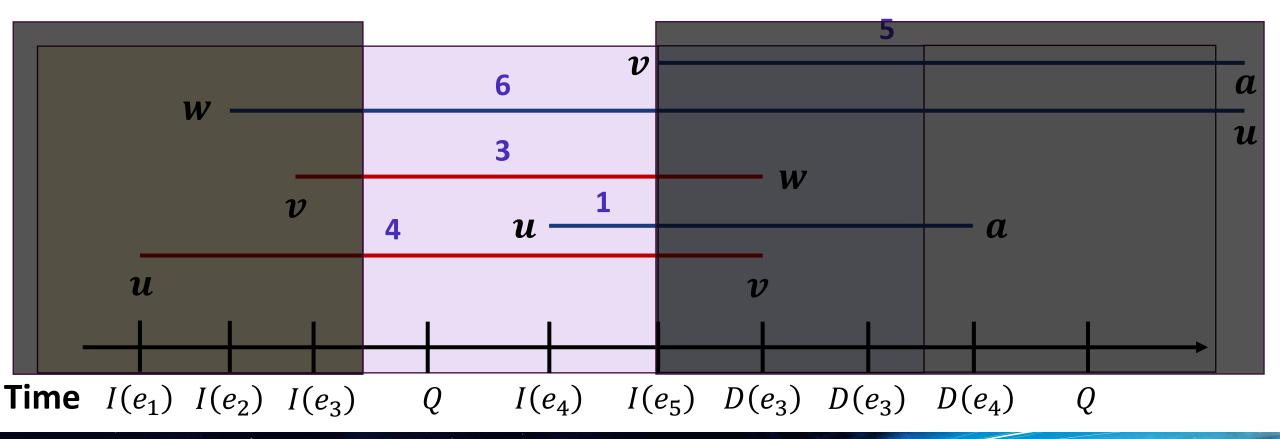
First, consider all permanent edges (edges that go across the subproblem)



- First, consider all permanent edges (edges that go across the subproblem)
- Run any linear time MST algorithm on all considered edges



Run any linear time MST algorithm on all considered edges

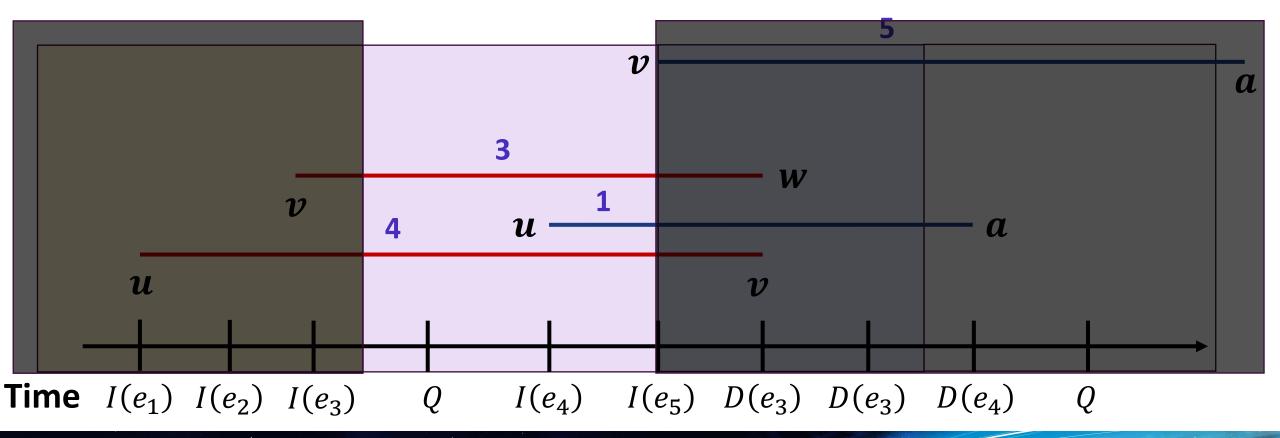


TTIC Workshop on Learning-Augmented Algorithms 2024

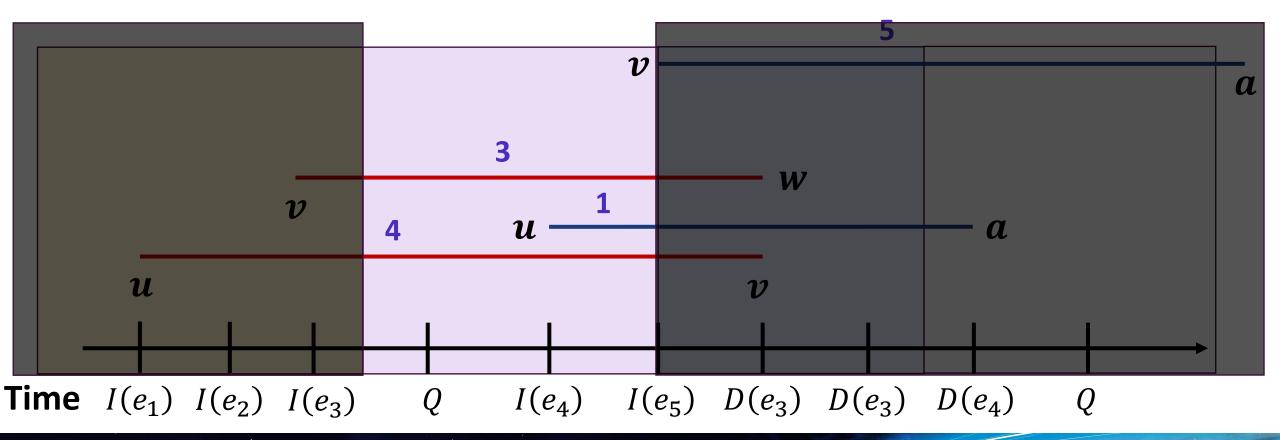
- Run any linear time MST algorithm on all considered edges
- Red edges are in the MST



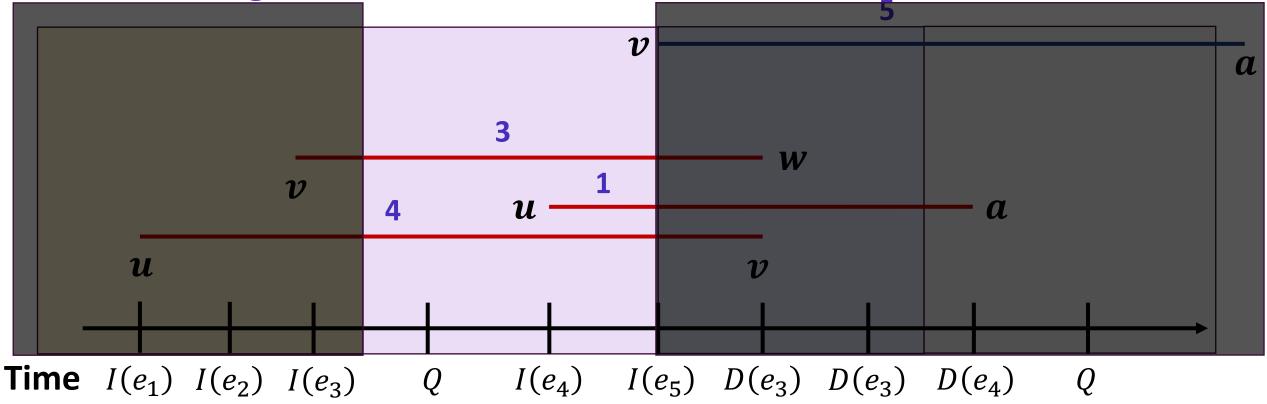
- Run any linear time MST algorithm on all considered edges
- Red edges are in the MST; Delete permanent edges not red



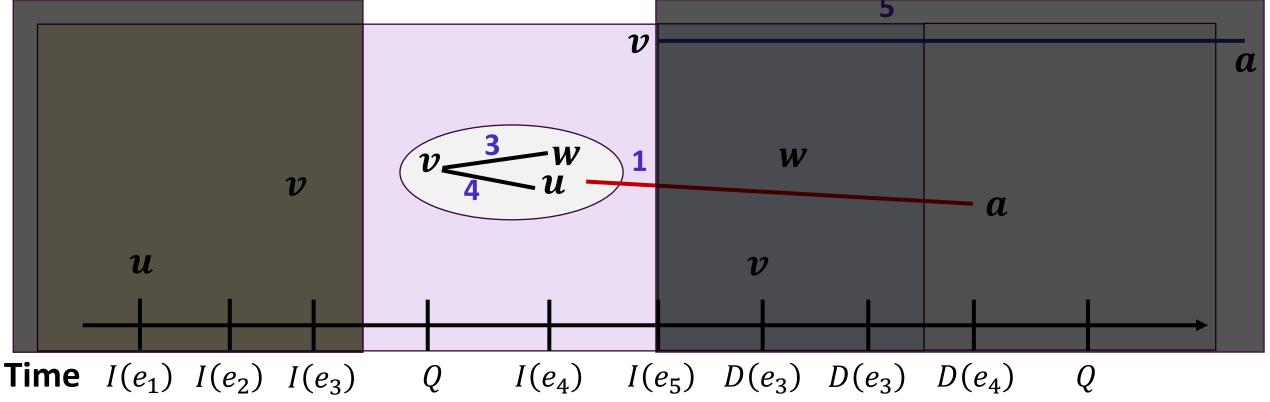
- Red edges are in the MST; Delete permanent edges not red
- Now consider all edges in subproblem



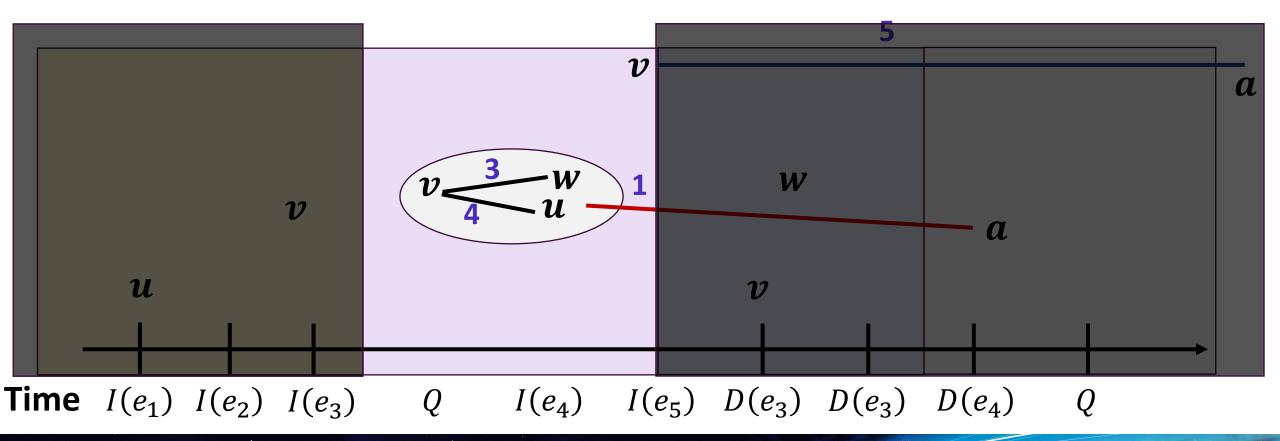
- Red edges are in the MST; Delete permanent edges not red
- Now consider all edges in subproblem. Run any linear time MST algorithm



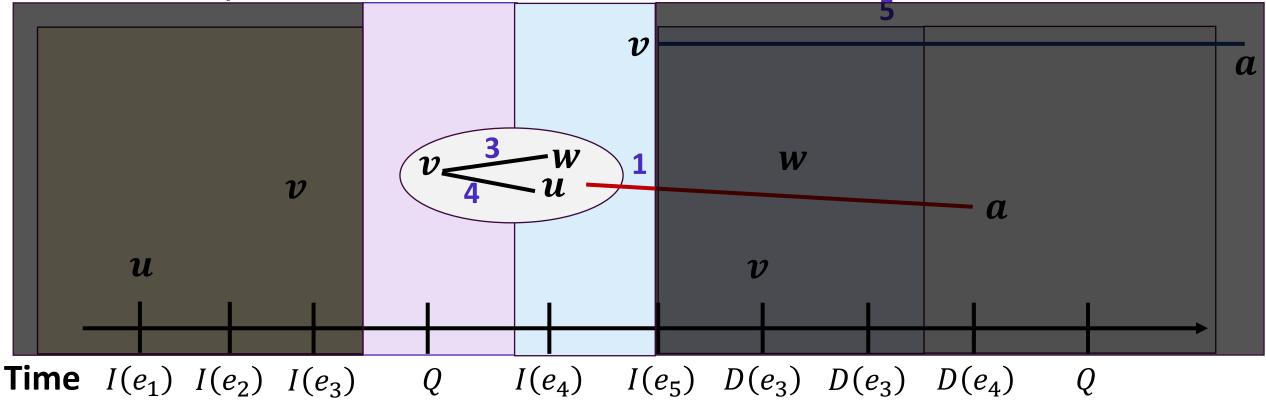
- Now consider all edges in subproblem. Run any linear time MST algorithm
- "Contract" any permanent edges in the MST; link-cut tree



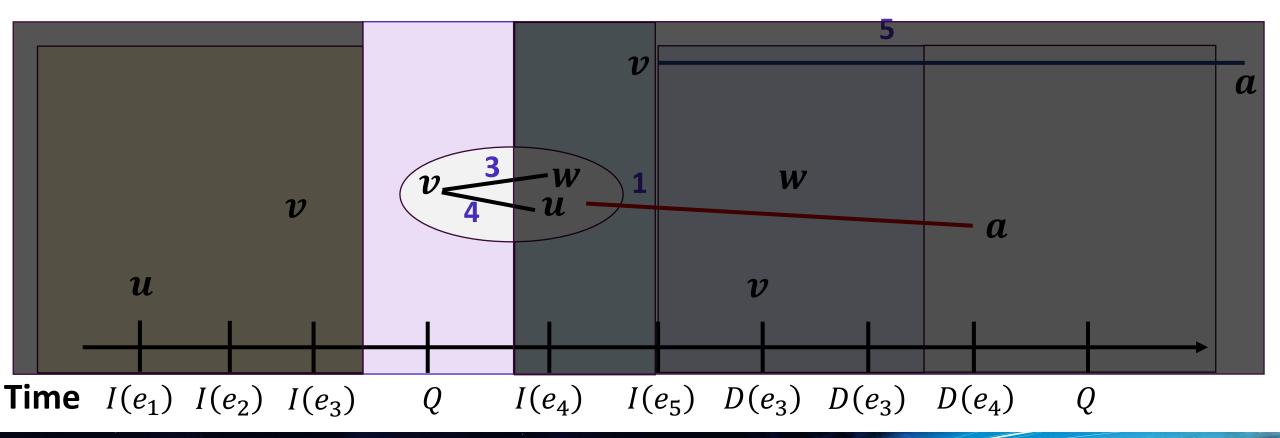
 Pass data structure to next smaller subproblem (persistence)



- Pass data structure to next smaller subproblem (persistence)
- Consider non-contracted and not deleted edges permanent in subproblem



 Queries: consider tree at the smallest subproblem containing the query Q



• Assume link-cut tree and persistence such that each subproblem with *T* total permanent and non-permanent edges takes $\tilde{O}(T)$ time

- Assume link-cut tree and persistence such that each subproblem with *T* total permanent and non-permanent edges takes $\tilde{O}(T)$ time
- First, consider permanent edges, what happens to them?

- Assume link-cut tree and persistence such that each subproblem with *T* total permanent and non-permanent edges takes $\tilde{O}(T)$ time
- First, consider permanent edges, what happens to them?
 - They are either deleted

- Assume link-cut tree and persistence such that each subproblem with *T* total permanent and non-permanent edges takes $\tilde{O}(T)$ time
- First, consider permanent edges, what happens to them?
 - They are either deleted, contracted,

- Assume link-cut tree and persistence such that each subproblem with *T* total permanent and non-permanent edges takes $\tilde{O}(T)$ time
- First, consider permanent edges, what happens to them?
 - They are either deleted, contracted, or neither

- Assume link-cut tree and persistence such that each subproblem with *T* total permanent and non-permanent edges takes $\tilde{O}(T)$ time
- First, consider permanent edges, what happens to them?
 - They are either deleted, contracted, or neither
 - Deleted and contracted edges charged to previous level

- Assume link-cut tree and persistence such that each subproblem with *T* total permanent and non-permanent edges takes $\tilde{O}(T)$ time
- First, consider permanent edges, what happens to them?
 - They are either deleted, contracted, or neither
 - Deleted and contracted edges charged to previous level
 - Each permanent edge not deleted charged to unique current level non-permanent edge

- Assume link-cut tree and persistence such that each subproblem with *T* total permanent and non-permanent edges takes $\tilde{O}(T)$ time
- First, consider permanent edges, what happens to them?
 - They are either deleted, contracted, or neither
 - Deleted and contracted edges charged to previous level
 - Each permanent edge not deleted charged to unique current level non-permanent edge
- Thus, 3*T* charges in each subproblem with *T* updates

- Assume link-cut tree and persistence such that each subproblem with *T* total permanent and non-permanent edges takes $\tilde{O}(T)$ time
- First, consider permanent edges, what happens to them?
 - They are either deleted, contracted, or neither
 - Deleted and contracted edges charged to previous level
 - Each permanent edge not deleted charged to unique current level non-permanent edge
- Thus, 3T charges in each subproblem with T updates

Total Runtime: $\widetilde{O}(T \log(T))$ by

Master Theorem

• Learning-augmented minimum spanning tree:

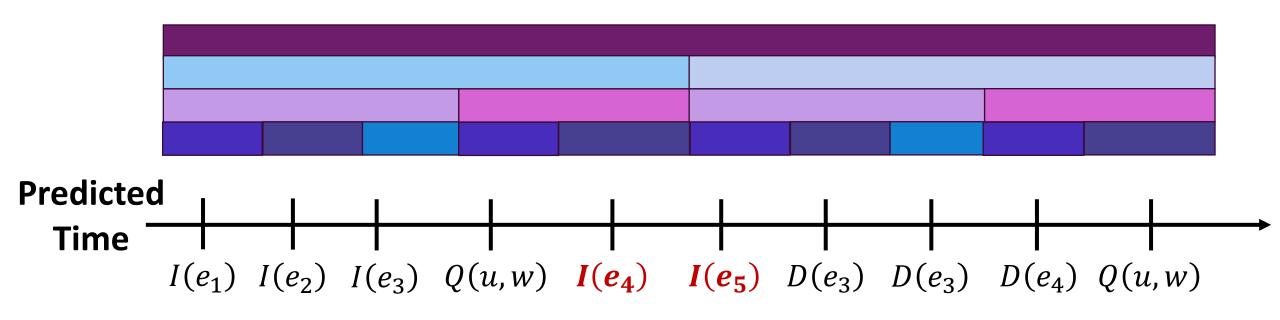
- Learning-augmented minimum spanning tree:
 - Predicted sequence:
 - All updates and query times are given as predictions

- Learning-augmented minimum spanning tree:
 - Predicted sequence:
 - All updates and query times are given as predictions
 - Can give the predictions in batches
 - Will not discuss today

- Learning-augmented minimum spanning tree:
 - Predicted sequence:
 - All updates and query **times** are given as **predictions**
 - Can give the predictions in batches
 - Will not discuss today
 - Key Problem: deterministic division of divide-and-conquer tree can lead to arbitrarily bad runtime

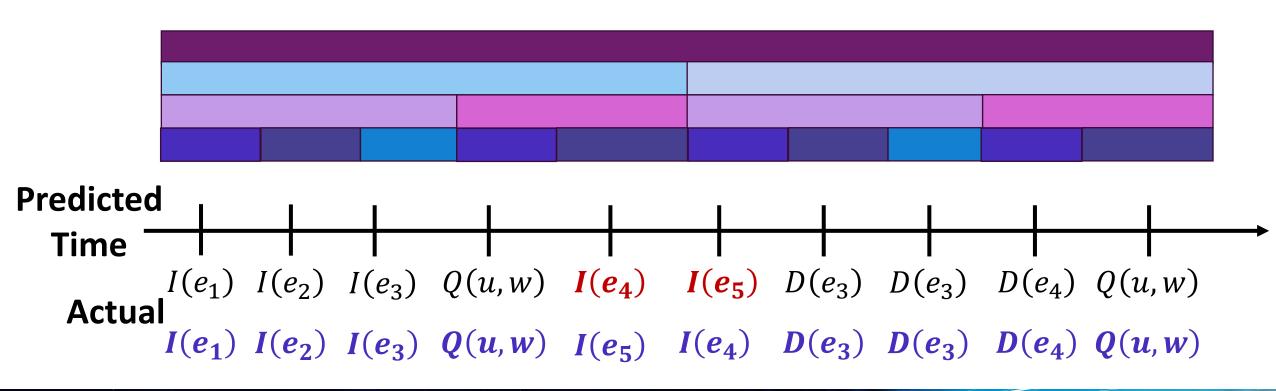
Offline to Online First Attempt

Use Offline Divide-and-Conquer Algorithm on Predicted Sequence



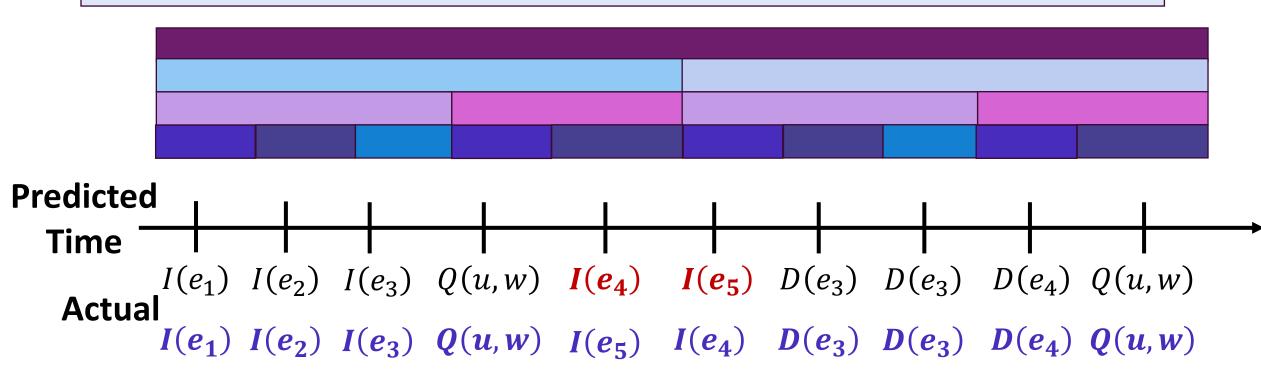
Offline to Online First Attempt

Use Offline Divide-and-Conquer Algorithm on Predicted Sequence



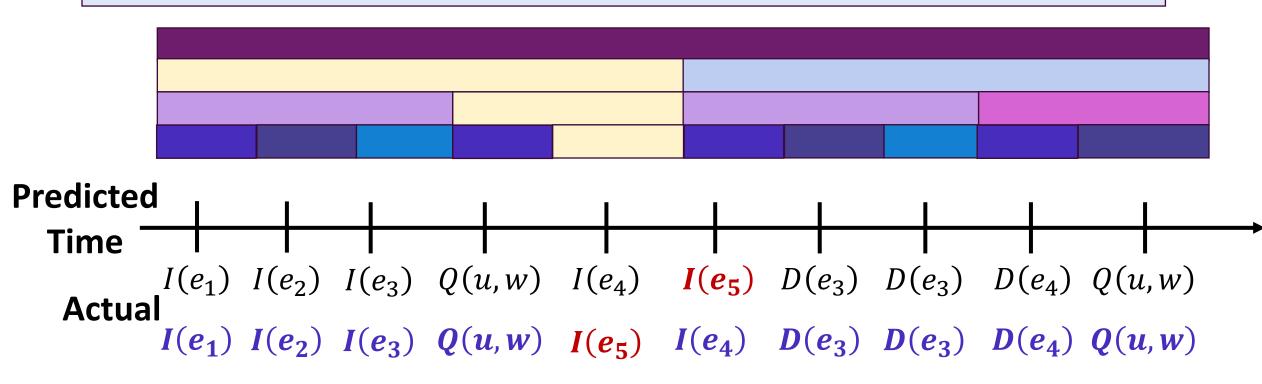
Offline to Online First Attempt

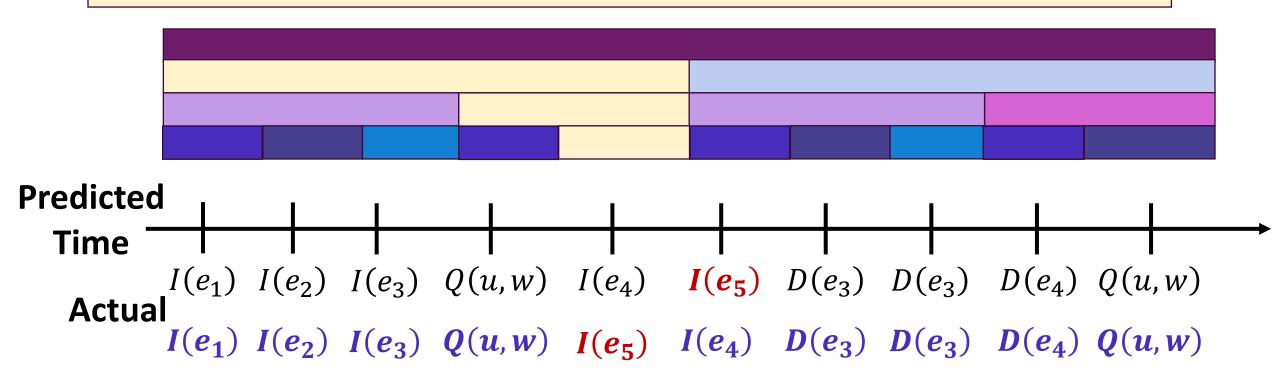
Fix all subtrees up to largest subtree containing error as (i.e. redo subtrees containing $I(e_5)$ as permanent edge; it becomes non-permanent)



Offline to Online First Attempt

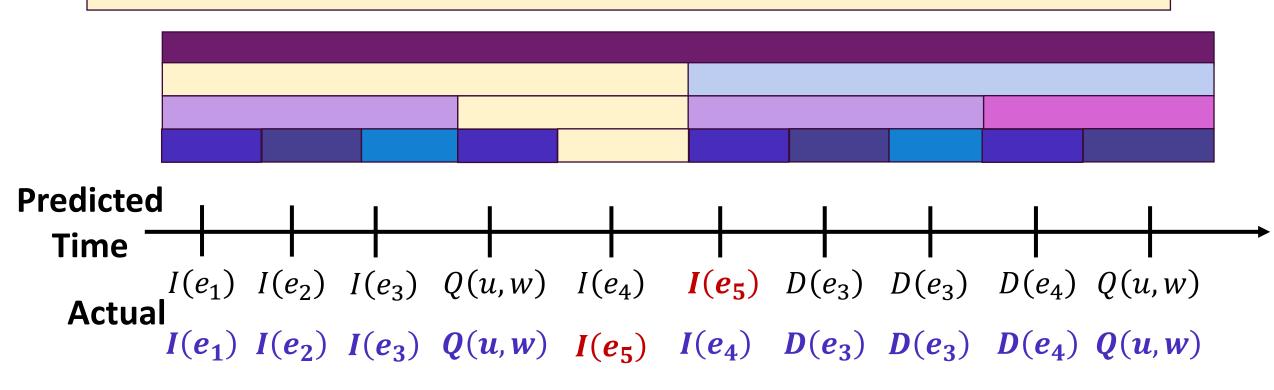
Fix all subtrees up to largest subtree containing error as (i.e. redo subtrees containing $I(e_5)$ as permanent edge; it becomes non-permanent)



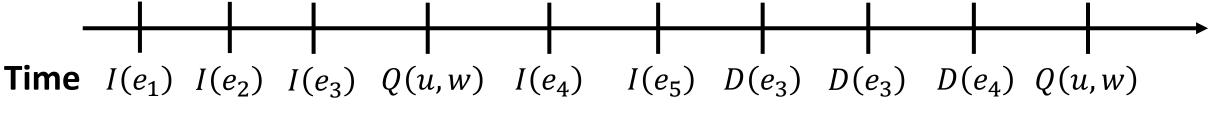


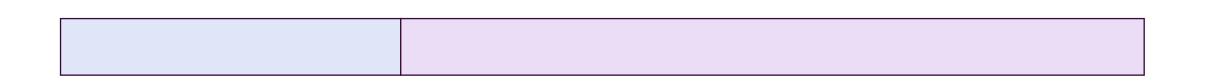
Offline to Online First Attempt: Failed

Issue: large subtree divides predicted and real timestamps L_1 Error: **1**; Update time: **0**(**n**)

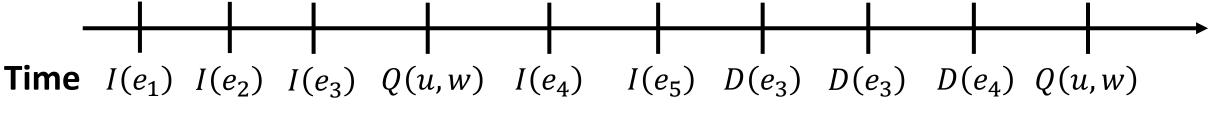


Pick a uniformly at random divider for subproblems

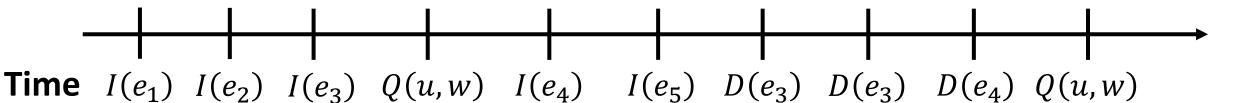




Pick a uniformly at random divider for subproblems

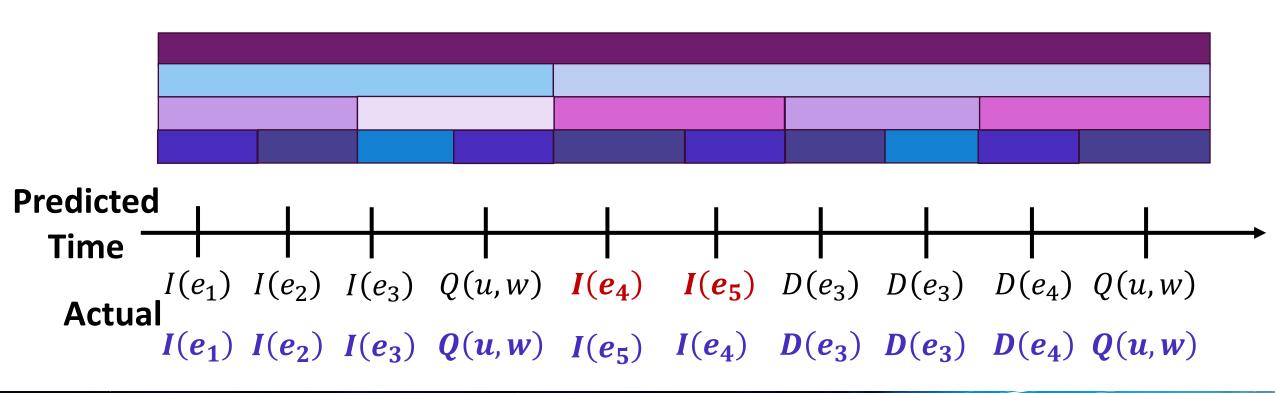


Run offline divide-and-conquer algorithm on randomly picked subproblems

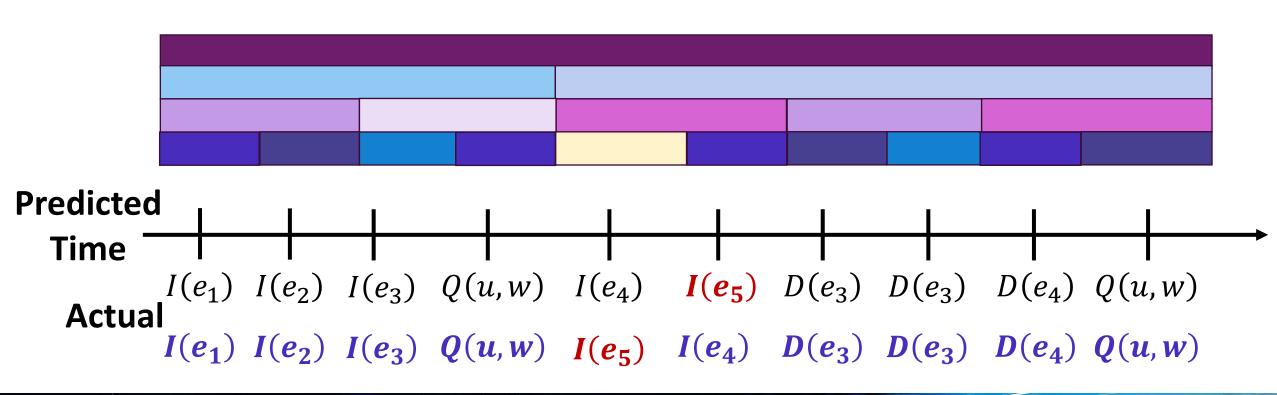


TTIC Workshop on Learning-Augmented Algorithms 2024

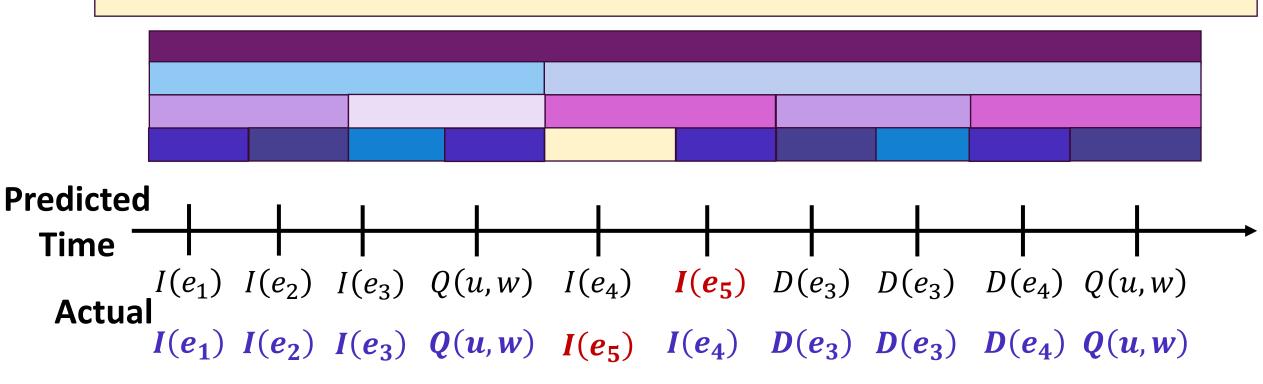
Run offline divide-and-conquer algorithm on randomly picked subproblems



Run offline divide-and-conquer algorithm on randomly picked subproblems



Purpose of the random partition tree: in expectation size of subproblem (largest subtree going in between) equal to L_1 error



Purpose of the random partition tree: in expectation size of subproblem (smallest subtree) equal to L_1 error

Proof: Coupling argument for splitting subproblems to drawing dividers:

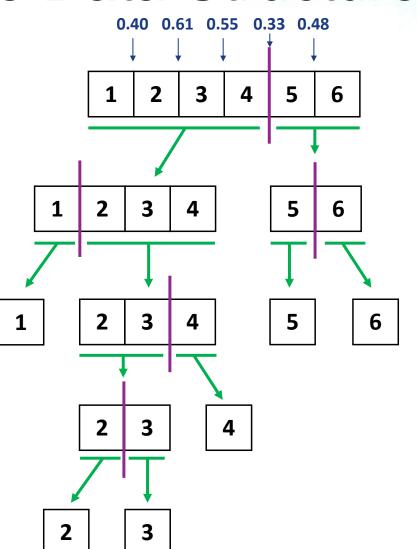
1. For each divider between two timestamps in the original sequence, draw value (called rank) in [0, 1]

Purpose of the random partition tree: in expectation size of subproblem (smallest subtree) equal to L_1 error

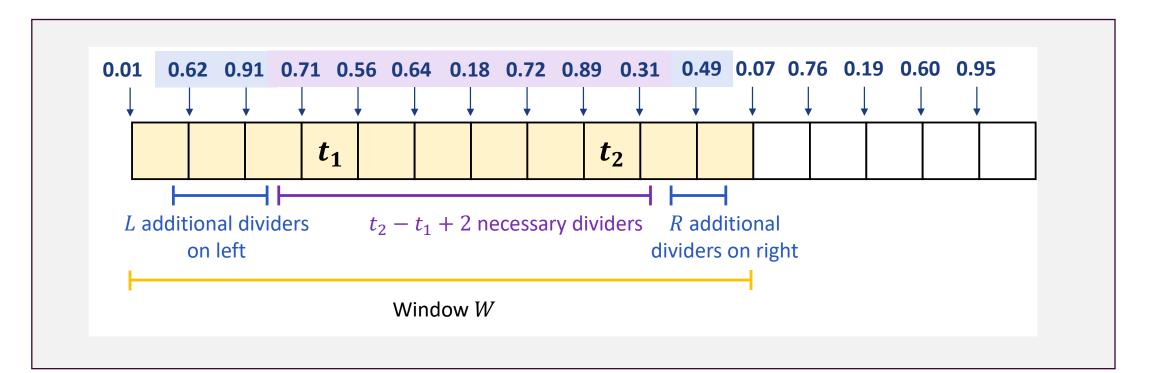
Proof: Coupling argument for splitting subproblems to drawing dividers:

- 1. For each divider between two timestamps in the original sequence, draw value (called rank) in [0, 1]
- 2. Divide sequence of updates lowest rank first

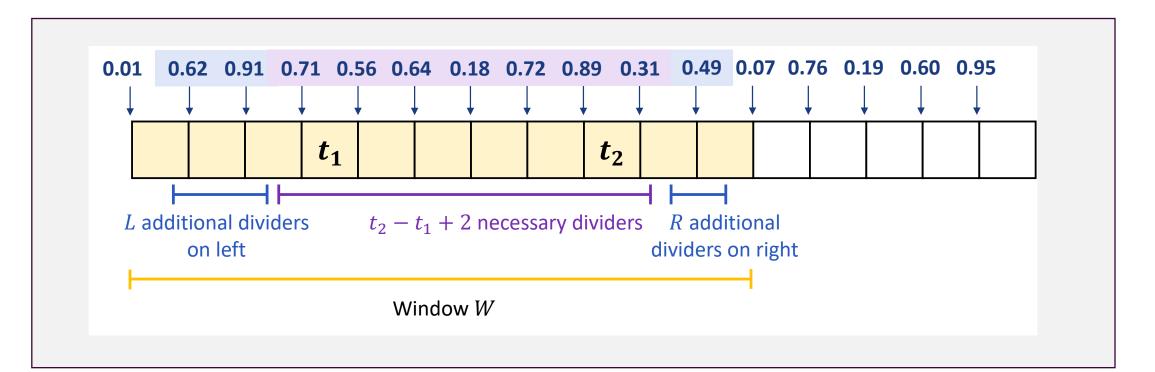
Example Random Tree produced via drawing dividers



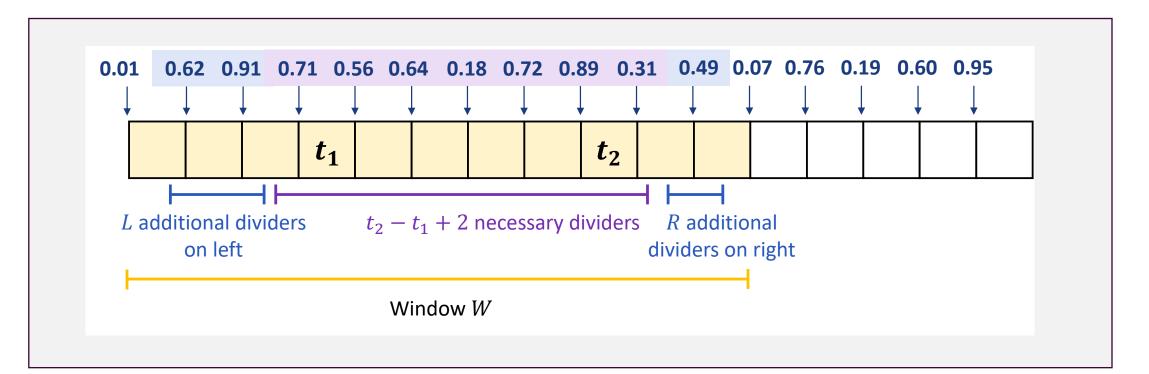
Consider an error that occurred at times t_1 , t_2



Expected window W size is equal to $L + R + (t_2 - t_1 + 1)$



$$\mathbf{E}[W] = \mathbf{O}(|t_2 - t_1| \cdot \log(T))$$



Predicted-Updates Result

$$\mathbf{E}[W] = \mathbf{O}\big(|t_2 - t_1| \cdot \log(T)\big)$$

Expected Work per error t_1 , t_2 : $\widetilde{O}(|t_2 - t_1|)$

for each recomputation over window $[t_1, t_2]$ (leaf dominated divide-and-conquer)

Predicted-Updates Result

$$\mathbf{E}[W] = \mathbf{O}\big(|t_2 - t_1| \cdot \log(T)\big)$$

Expected Work per error $t_1, t_2: \widetilde{O}(|t_2 - t_1|)$

Total expected work:
$$\widetilde{O}(|\mathbf{p} - \mathbf{r}|_1)$$

Boosting to high probability via $O(\log n)$ independent trials

Predicted-Updates Result

- Runtime in terms of L_1 -error between predictions and real
 - p vector of predicted timestamps
 - r vector of real timestamps

•
$$L_1$$
 error: $|\mathbf{p} - \mathbf{r}|_1$

update is worst-case update time of incremental/decremental algorithm

Runtime same as partially dynamic with total

$$\widetilde{O}\left(\left(\left|\left|\mathbf{p} - \mathbf{r}\right|\right|_{1} + T\right) \cdot update\right)$$

time for *T* updates
[L-Srinivas COLT '24]

The Predicted-Updates Model

	Best Fully Dynamic	Best	Predicted-Updates	when $ \mathbf{p} - \mathbf{r} _1 = \tilde{O}(T)$
Planar Digraph APSP	$\widetilde{O}\left(n^{2/3} ight)$	[FR06, Kle05]	$\widetilde{O}(\sqrt{n})$	[DGWN22]
Triconnectivity	$O(n^{2/3})$	[GIS99]	$\widetilde{O}\left(1 ight)$	[HR20, PSS17]
k-Edge Connectivity	$n^{o(1)}$	[JS22]	$\widetilde{O}(1)$	$[CDK^+21]$
APSP	$egin{array}{c} \left(rac{256}{k^2} ight)^{4/k} ext{-Approx}\ \widetilde{O}\left(n^k ight) ext{ update}\ \widetilde{O}(n^{k/8}) ext{ query} \end{array}$	[FGNS23]	$(2r-1)^k ext{-}\operatorname{Approx} \ \widetilde{O}\left(m^{1/(k+1)}n^{k/r} ight)$	$[CGH^+20]$
AP Maxflow/Mincut	$O(\log(n)\log\log n) ext{-}\operatorname{Approx} \ \widetilde{O}\left(n^{2/3+o(1)} ight)$	$[CGH^+20]$	$O\left(\log^{8k}(n) ight) ext{-} ext{Approx.}\ \widetilde{O}\left(n^{2/(k+1)} ight)$	[Gor19, GHS19]
MCF	$egin{array}{c} (1+arepsilon) ext{-Approx} \ \widetilde{O}(1) ext{ update} \ \widetilde{O}(n) ext{ query} \end{array}$	[CGH ⁺ 20]	$O(\log^{8k}(n)) ext{-}\operatorname{Approx.} \ \widetilde{O}\left(n^{2/(k+1)} ight) ext{ update} \ \widetilde{O}(P^2) ext{ query}$	[Gor19, GHS19]
Uniform Sparsest Cut	$2^{O(\log^{5/6}(n))}$ -Approx $2^{O(\log^{5/6}(n))}$ update $O(\log^{1/6}(n))$ query	[GRST21]	$O\left(\log^{8k}(n) ight)$ -Approx $\widetilde{O}\left(n^{2/(k+1)} ight)$ $O(1)$ query	[Gor19, GHS19]
Submodular Max	$\begin{array}{c c}\hline O(\log V(n)) \text{ query}\\\hline 1/4\text{-Approx}\\ \widetilde{O}(k^2)\end{array}$	[DFL+23]	$\begin{array}{c} O(1) \text{ query} \\ \hline 0.3178\text{-Approx} \\ \widetilde{O} \left(\text{poly}(k) \right) \end{array}$	[Gor19, GH519] [FLN ⁺ 22]

Link Prediction – Predict edges in a network using Networkx

f X in ⊠

KUNEGIS@DAI-LAB.DE

ANDREAS@DAI-LAB.DE

Last Updated : 08 May, 2020

Practicality of link-prediction:

Lots of work on insertion link prediction

RESEARCH ARTICLE | COMPUTER SCIENCES | 👌

Link prediction using low-dimensional node embeddings: The measurement problem

Nicolas Menand 🖾 and C. Seshadhri 🔟 Authors Info & Affiliations

Towards Better Evaluation for Dynamic Link Prediction

Farimah Poursafaei^{*}, Shenyang Huang^{*}, Kellin Pelrine, Reihaneh Rabbany McGill University School of Computer Science, Mila – Quebec AI Institute [farimah.poursafaei,huangshe,kellin.pelrine,reihaneh.rabbany]@mila.quebec

Learning Spectral Graph Transformations for Link Prediction

Jérôme Kunegis Andreas Lommatzsch

DAI-Labor, Technische Universität Berlin, Ernst-Reuter-Platz 7, 10587 Berlin, Germany

Link prediction

Article Talk

From Wikipedia, the free encyclopedia

Practicality of link-prediction:

- Lots of work on insertion link prediction
- Link deletions much less well-studied

Practicality of link-prediction:

- Lots of work on insertion link prediction
- Link deletions much less well-studied
 - Lack of accurate real-world temporal dynamic graph data

Practicality of link-prediction:

- Lots of work on insertion link prediction
- Link deletions much less well-studied
 - Lack of accurate real-world temporal dynamic graph data
 - Interesting data science problem: obtain data and techniques for link deletion prediction

Practicality of link-prediction:

- Lots of work on insertion link prediction
- Link deletions much less well-studied
 - Lack of accurate real-world temporal dynamic graph data
 - Interesting data science problem: obtain data and techniques for link deletion prediction

Ongoing Sridharbaskari-Srinivas-L '24