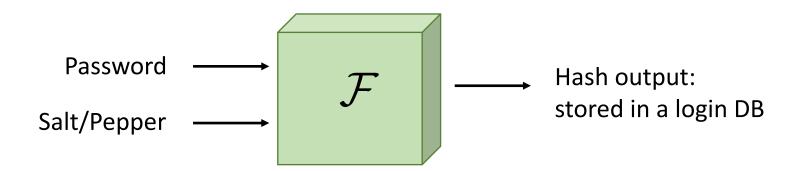
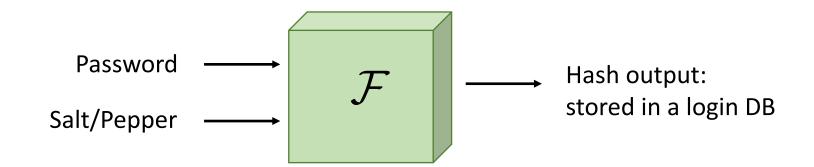
Static-Memory-Hard Functions, and Modeling the Cost of Space vs. Time

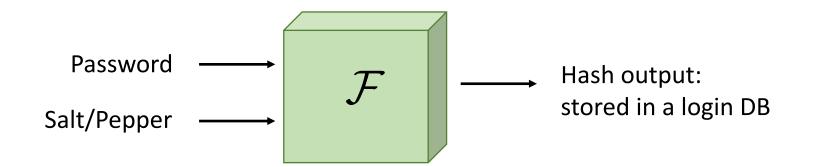
Thaddeus Dryja, Quanquan C. Liu, Sunoo Park

MIT



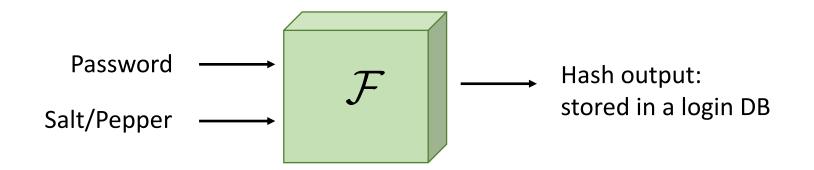


Honest evaluators need only use \mathcal{F} few times



Honest evaluators need only use \mathcal{F} few times

Adversaries may run \mathcal{F} many times (e.g. large-scale server attacks).

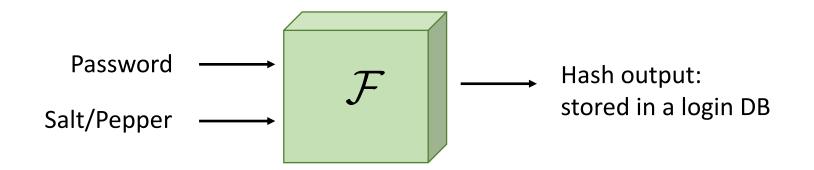


Honest evaluators need only use \mathcal{F} few times

Adversaries may run \mathcal{F} many times (e.g. large-scale server attacks).

Desirable goal:

Make brute-force attacks hard by making \mathcal{F} hard to compute over many hashes.



Honest evaluators need only use ${\mathcal F}$ few times

Adversaries may run \mathcal{F} many times (e.g. large-scale server attacks).

Desirable goal:

Make brute-force attacks hard by making \mathcal{F} hard to compute over many hashes.

(Not implied by traditional hash function guarantees like collision-resistance.)

Honest Evaluator

- Few evaluations
 - Total cost ≈ cost per evaluation

Adversary

- Many evaluations
 - Total cost = cost of many evaluations

Honest Evaluator

- Few evaluations
 - Total cost ≈ cost per evaluation
 - Cannot amortize costs

Adversary

- Many evaluations
 - Total cost = cost of many evaluations
 - Can use amortization / parallelization

Honest Evaluator

- Few evaluations
 - Total cost ≈ cost per evaluation
 - Cannot amortize costs
- General-purpose hardware

Adversary

- Many evaluations
 - Total cost = cost of many evaluations
 - Can use amortization / parallelization
- Special-purpose hardware (e.g., ASICs optimized for hash computation)

Honest Evaluator

- Few evaluations
 - Total cost ≈ cost per evaluation
 - Cannot amortize costs
- General-purpose hardware

Adversary

- Many evaluations
 - Total cost = cost of many evaluations
 - Can use amortization / parallelization
- Special-purpose hardware (e.g., ASICs optimized for hash computation)

Desirable goal:

Make brute-force attacks hard by making \mathcal{F} hard to compute over many hashes

Honest Evaluator

- Few evaluations
 - Total cost ≈ cost per evaluation
 - Cannot amortize costs
- General-purpose hardware

Adversary

- Many evaluations
 - Total cost = cost of many evaluations
 - Can use amortization / parallelization
- Special-purpose hardware (e.g., ASICs optimized for hash computation)

Desirable goal:

Make brute-force attacks hard by making \mathcal{F} hard to compute over many hashes even against adversaries with the advantages of hardware and scale.

Memory Complexity Measures

- Several have been proposed
 - 1. ST-Complexity
 - 2. Cumulative Complexity
 - 3. Sustained Space Complexity
- Each has their strengths and weaknesses

Memory doesn't just mean buying a disk, it could mean renting storage space from AWS, etc.

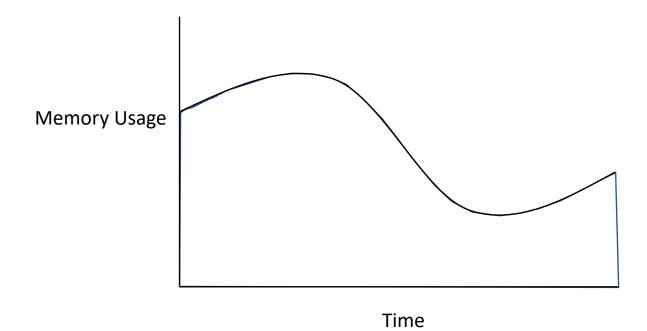
Memory Complexity Measures

- Several have been proposed
 - 1. ST-Complexity
 - 2. Cumulative Complexity
 - 3. Sustained Space Complexity
- Each has their strengths and weaknesses
- Next: a quick overview of prior proposed measures
 - Then we'll get into our contributions

Memory doesn't just mean buying a disk, it could mean renting storage space from AWS, etc.

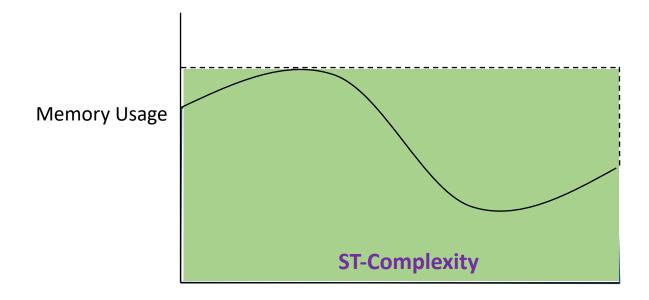
ST-Complexity

• "ST" = "Space-Time" = max (peak) memory usage x time



ST-Complexity

• "ST" = "Space-Time" = max (peak) memory usage x time

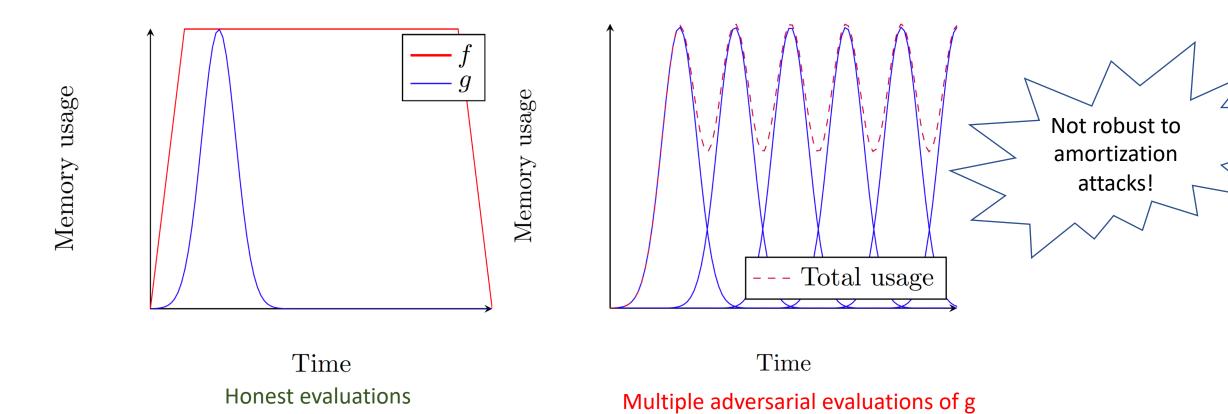


Time

ST-Complexity

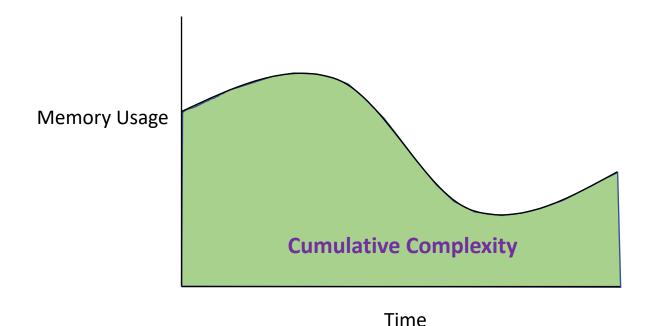
• Limitation: does not capture amortization

(f & g have same ST-complexity)



Cumulative Memory Complexity (CC) [AS15]

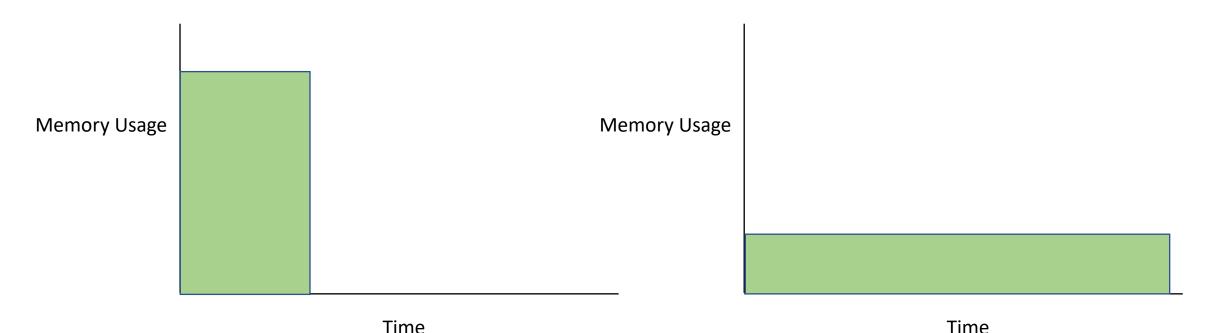
- Goal: Solves amortization of cost issue for ST-complexity
- CC: Sum of the memory used over time



Cumulative Memory Complexity (CC) [AS15]

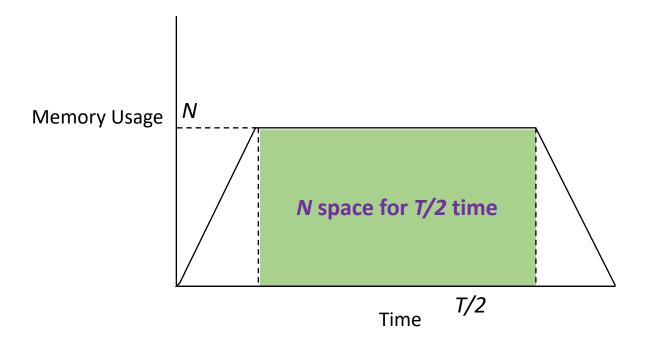
• <u>Caveat</u>: Could still result in different hardware costs (e.g. one time cost or cost varies with time)

Same CC but different cost i.e. cost is not uniform w.r.t. time



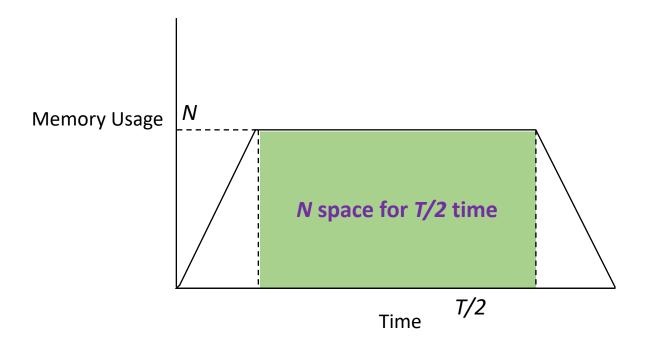
Sustained-Space Complexity (SSC) [ABP17]

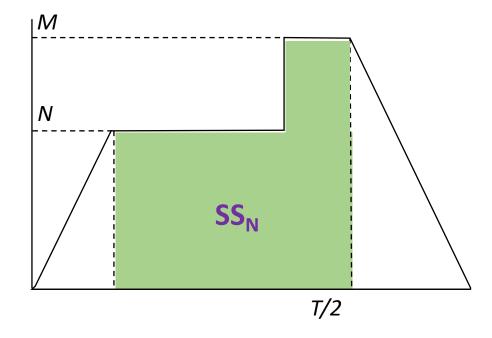
• SSC_N: Space usage ≥ N is sustained for a period of time



Sustained Space Complexity (SSC) [ABP17]

• SSC_N: Space usage ≥ N is sustained for a period of time

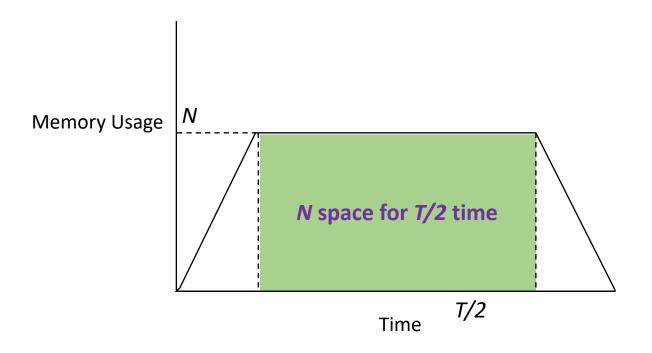


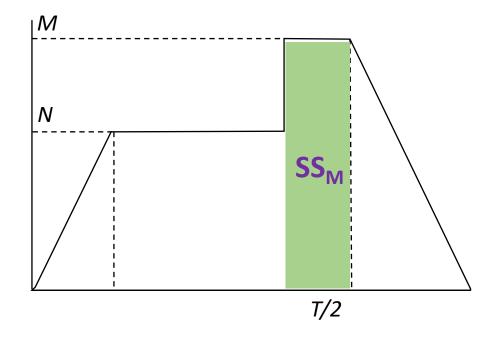


Inherently parameterized notion

Sustained Space Complexity (SSC) [ABP17]

• SSC_N: Space usage ≥ N is sustained for a period of time

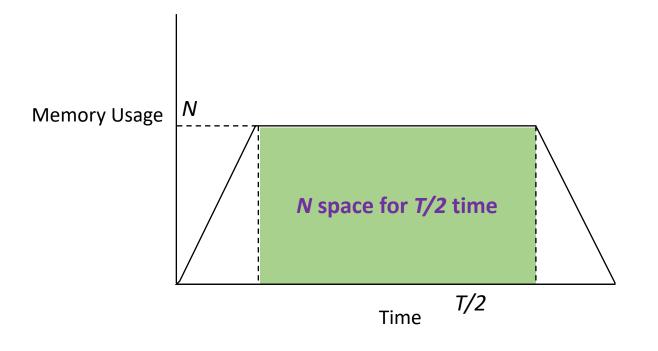


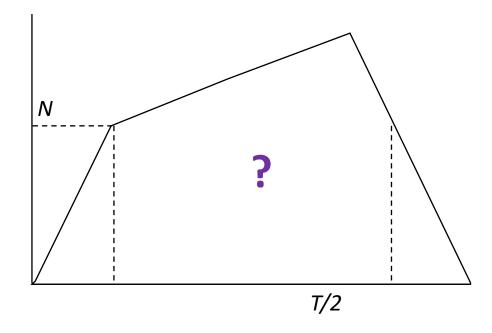


Inherently parameterized notion

Sustained Space Complexity (SSC) [ABP17]

• SSC_N: Space usage ≥ N is sustained for a period of time





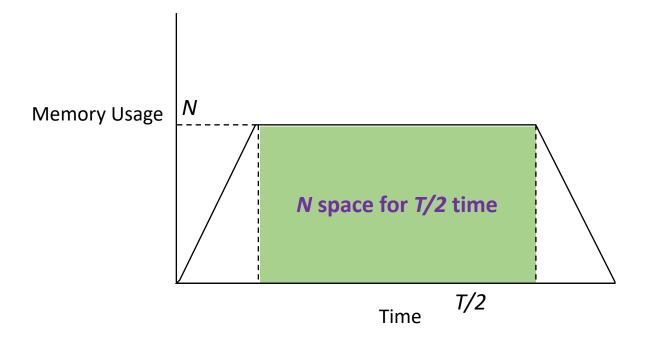
Inherently parameterized notion

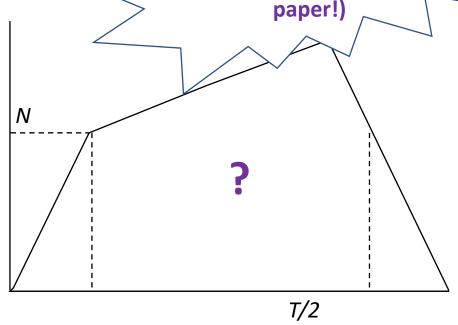
Sustained Space Complexity (SSC) [ABP]/

SSC_N: Space usage ≥ N is sustained for a period of

Sum of all memory (to some power) over total eval time:

CC-alpha (look in paper!)





Inherently parameterized notion

Memory-Hard Functions [AS15]

- **Goal**: Protection against large-scale password-cracking attacks
 - **Resilient against**: special circuitry, parallel evaluation, amortization of cost over multiple evaluations

- Using memory instead of time [Percival 2009, ACPRT16]: A (data-dependent) function scrypt that needs a lot of memory to compute (not time)

 - Complexity measure (CC-complexity)

 √ Amortization

Memory-Hard Functions (MHFs)

- MHFs [AS15, AB16, AB17, ABP17, RD16]: Memory is generated dynamically at runtime given the input to the hash function (i.e. in RAM, not on disk)
 - Existing constructions rely on combinatorial concept of pebbling a hard-topebble graph "via" random oracle queries
- <u>Caveats</u>: Size of memory requirement is <u>bounded by runtime needed by honest</u> evaluator
 - Honest evaluator needs to pebble the graph at runtime provided input to the function

Our Contributions

- Static-Memory-Hard Functions (SHFs)
 - Definition
 - Preliminaries for construction:
 graph pebbling & parallel random oracle model (PROM)
 - New pebbling game useful for our constructions: black-magic pebble game
 - Constructions
- CC-alpha
 (new complexity measure capturing non-linear space/time tradeoffs)
- Optimal-CC construction in sequential setting (up to polylog factors)

Talk Outline

- Static-Memory-Hard Functions (SHFs)
 - Definition
 - Preliminaries for our constructions
 - Graph pebbling & parallel random oracle model (PROM)
 - New pebbling game useful for our constructions: black-magic pebble game
 - Functions defined by DAGs
 - Constructions
- CC-alpha

 (new complexity measure capturing non-linear space/time tradeoffs)
- Optimal-CC construction in sequential setting (up to polylog factors)

- **Goal**: Account for **static** memory requirements
 - Static (read-only, on-disk) memory requirements can serve as deterrent to large-scale attacks, but are not captured at all by existing MHF definitions.
 - Static memory requirements may be much greater than *dynamic* memory requirements captured by MHF notions, because they could be >> runtime.
- Two-part hash function:
 - Part 1 (setup phase):
 One-time generation of value table (static generation of memory)
 - Part 2 (online phase):

 Quick online lookups, given oracle access to the output of Part 1
 (Low time complexity hash evaluation given input, for honest evaluator)
 - Note: Part 1 is input-independent.
- Complementary & incomparable to standard MHF guarantee
 - Ideally, want both! ("Dynamic-SHF" will mention briefly later.)

- (Parallel) random oracle model
- Syntax:
 - A static-memory hash function family

$$\mathcal{H}^{\mathcal{O}} = \{ h_{\kappa}^{\mathcal{O}} : \{0, 1\}^{w'} \to \{0, 1\}^{w} \}_{\kappa \in \mathbb{N}}$$

is described by deterministic oracle algorithms $(\mathcal{H}_1,\mathcal{H}_2)$:

- (Parallel) random oracle model
- Syntax:
 - A static-memory hash function family

$$\mathcal{H}^{\mathcal{O}} = \{ h_{\kappa}^{\mathcal{O}} : \{0, 1\}^{w'} \to \{0, 1\}^{w} \}_{\kappa \in \mathbb{N}}$$

is described by deterministic oracle algorithms $(\mathcal{H}_1,\mathcal{H}_2)$:

One-time setup:
$$\mathcal{H}_1(1^\kappa)=R$$

(R is a "big string" or "lookup table" and H₁ is a succinct description of how to generate R)

Online computation:
$$\mathcal{H}_2^R(1^\kappa,x)=h_\kappa(x)$$

(H_2 computes the correct hash output **on input x**, and has oracle access to the output of H_1)

- (Parallel) random oracle model
- Syntax:
 - A static-memory hash function family

$$\mathcal{H}^{\mathcal{O}} = \{ h_{\kappa}^{\mathcal{O}} : \{0, 1\}^{w'} \to \{0, 1\}^{w} \}_{\kappa \in \mathbb{N}}$$

is described by deterministic oracle algorithms $(\mathcal{H}_1,\mathcal{H}_2)$:

One-time setup:
$$\mathcal{H}_1(1^\kappa)=R$$

(R is a "big string" or "lookup table" and H₁ is a succinct description of how to generate R)

Online computation:
$$\mathcal{H}_2^R(1^\kappa,x)=h_\kappa(x)$$

(H₂ computes the correct hash output **on input x**, and has **oracle access** to the output of H₁)

models **static** (disk) memory access

- (Parallel) random oracle model
- Syntax:
 - A static-memory hash function family

$$\mathcal{H}^{\mathcal{O}} = \{h_{\kappa}^{\mathcal{O}} : \{0,1\}^{w'} \to \{0,1\}^{w}\}_{\kappa \in \mathbb{N}}$$

is described by deterministic oracle algorithms $(\mathcal{H}_1,\mathcal{H}_2)$:

One-time setup:
$$\mathcal{H}_1(1^\kappa)=R$$

(R is a "big string" or "lookup table" and H₁ is a succinct description of how to generate R)

Online computation:
$$\mathcal{H}_2^R(1^\kappa,x)=h_\kappa(x)$$

(H_2 computes the correct hash output **on input x**, and has **oracle access** to the output of H_1)

models static (disk) memory access

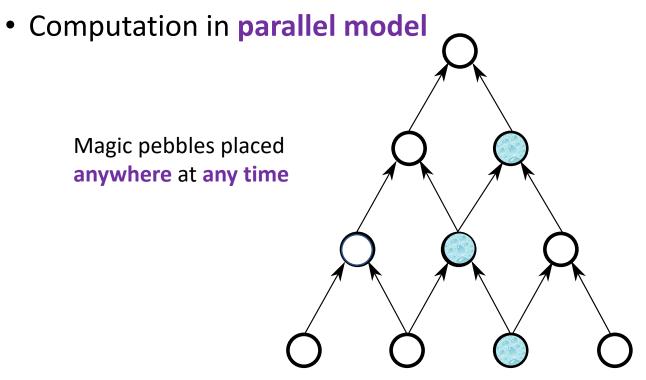
- Adversary model: 2-part adversary (A_1, A_2)
 - A₁ outputs a "big string" R' (think of this as the adversary's static memory)
 - A₂ tries to output correct pairs (x,h(x)) given oracle access to R'
 <u>Intuition:</u> A₂ shouldn't be able to correctly guess more pairs than fit in R'

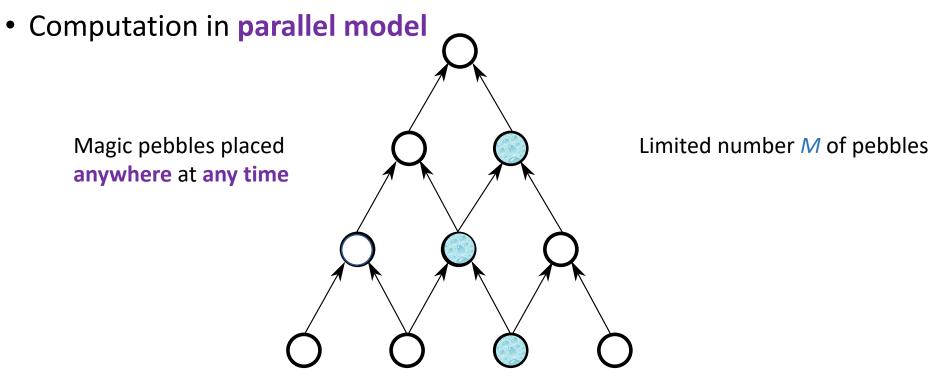
- Adversary model: 2-part adversary (A_1, A_2)
 - A₁ outputs a "big string" R' (think of this as the adversary's static memory)
 - A₂ tries to output correct pairs (x,h(x)) given oracle access to R'
 <u>Intuition:</u> A₂ shouldn't be able to correctly guess more pairs than fit in R'
- Security guarantee (informal): $(\Lambda, \Delta, \tau, q)$ -hardness Any adversary (A_1, A_2) that produces $\geq q$ correct input-output pairs of the hash function must **either**
 - have A_1 produce Λ - Δ static memory (i.e., $|R'| \ge \Lambda$ - Δ) or
 - have A_2 use Λ dynamic memory sustained over τ time-steps

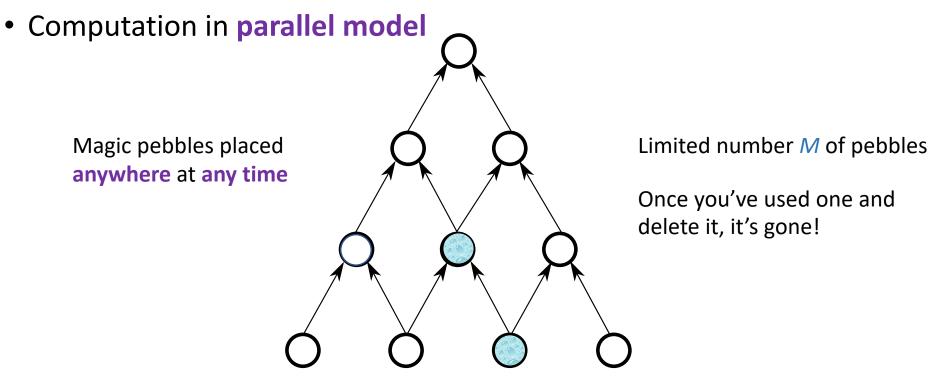
- Adversary model: 2-part adversary (A_1, A_2)
 - A₁ outputs a "big string" R' (think of this as the adversary's static memory)
 - A₂ tries to output correct pairs (x,h(x)) given oracle access to R'
 <u>Intuition:</u> A₂ shouldn't be able to correctly guess more pairs than fit in R'
- Security guarantee (informal): $(\Lambda, \Delta, \tau, q)$ -hardness Any adversary (A_1, A_2) that produces $\geq q$ correct input-output pairs of the hash function must **either**
 - have A_1 produce Λ - Δ static memory (i.e., $|R'| \ge \Lambda$ - Δ) or
 - have A_2 use Λ dynamic memory sustained over τ time-steps \Rightarrow requires runtime at least Λ .
 - Recall: Λ may be gigabytes & honest evaluator only requires a few oracle accesses to their "big string", so this adversary's runtime >> honest runtime of H_2 !

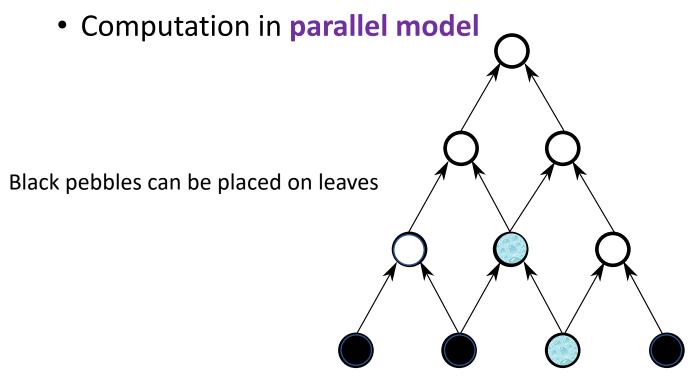
Graph Pebbling and PROM

 Given a DAG, computation of the hash result follows from rules of our black-magic pebble game

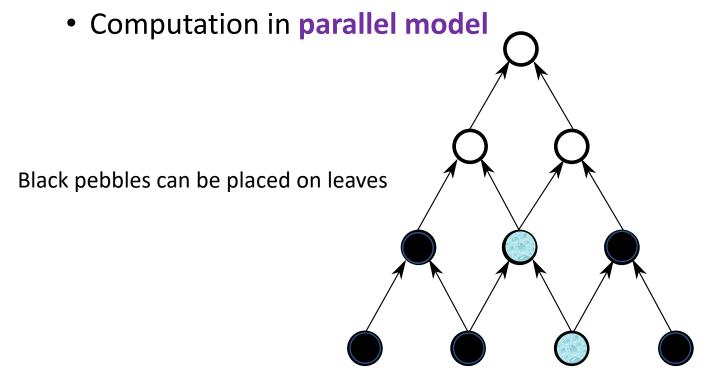




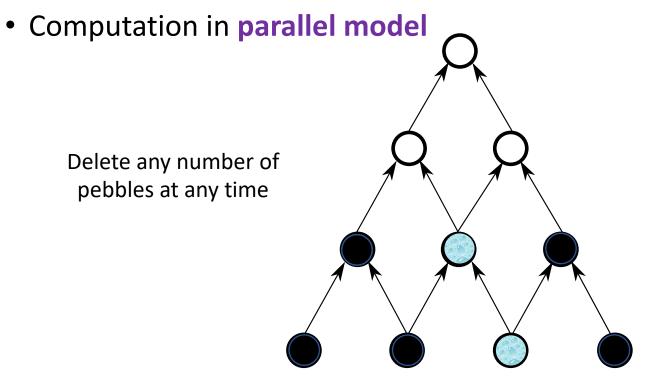


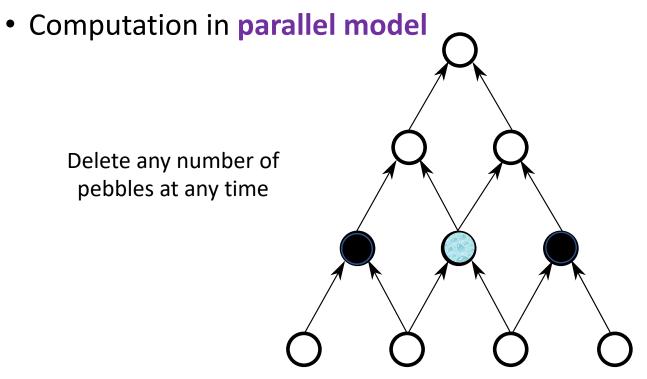


 Given a DAG, computation of the hash result follows from rules of our black-magic pebble game



Black pebbles can be placed on nodes where all predecessors are pebbled

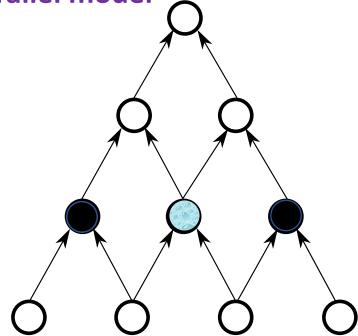




 Given a DAG, computation of the hash result follows from rules of our black-magic pebble game

Computation in parallel model

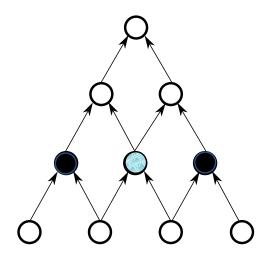
Similar to the pebble game presented in [DFKP15].



Complexity of Strategy = maximum number of pebbles on the graph at any time and total number of magic pebbles

- Function defined by DAG:
 - Magic pebbles represent stored labels
 - Label each node via recursive function where a black pebble represents computing a label:

$$label_{\mathcal{O},\zeta}(v) = \begin{cases} \mathcal{O}(v,\zeta) \text{ if } indeg(v) = 0\\ \mathcal{O}(v,label_{\mathcal{O},\zeta}(\operatorname{pred}(v))) \text{ if } indeg(v) > 0. \end{cases}$$

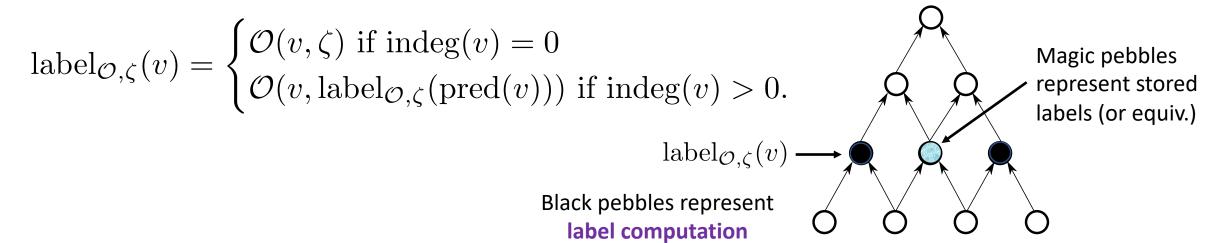


- Function defined by DAG:
 - Magic pebbles represent stored labels
 - Label each node via recursive function where a black pebble represents computing a label:

$$\operatorname{label}_{\mathcal{O},\zeta}(v) = \begin{cases} \mathcal{O}(v,\zeta) \text{ if } \operatorname{indeg}(v) = 0 \\ \mathcal{O}(v,\operatorname{label}_{\mathcal{O},\zeta}(\operatorname{pred}(v))) \text{ if } \operatorname{indeg}(v) > 0. \end{cases}$$

$$\operatorname{label}_{\mathcal{O},\zeta}(v)$$
 Black pebbles represent label computation

- Function defined by DAG:
 - Magic pebbles represent stored labels
 - Label each node via recursive function where a black pebble represents computing a label:



- Function defined by DAG:
 - Magic pebbles represent stored labels
 - Label each node via recursive function where a black pebble represents computing a label:

$$label_{\mathcal{O},\zeta}(v) = \begin{cases} \mathcal{O}(v,\zeta) \text{ if } indeg(v) = 0\\ \mathcal{O}(v,label_{\mathcal{O},\zeta}(\operatorname{pred}(v))) \text{ if } indeg(v) > 0. \end{cases}$$

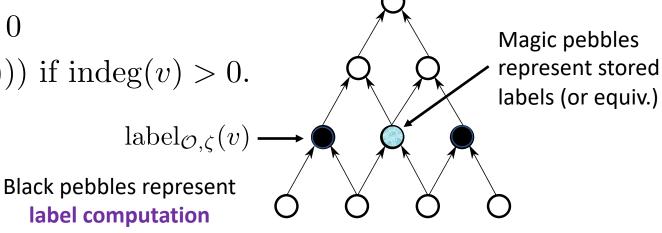
Memory complexity represented by max number of pebbles on the graph and total number of magic pebbles used

- Function defined by DAG:
 - Magic pebbles represent stored labels
 - Label each node via recursive function where a black pebble represents computing a label:

 Target nodes -> R

$$label_{\mathcal{O},\zeta}(v) = \begin{cases} \mathcal{O}(v,\zeta) \text{ if } indeg(v) = 0\\ \mathcal{O}(v,label_{\mathcal{O},\zeta}(\operatorname{pred}(v))) \text{ if } indeg(v) > 0. \end{cases}$$

Memory complexity represented by max number of pebbles on the graph and total number of magic pebbles used



Static-Memory-Hard Function Definition

- $(\mathcal{H}_1,\mathcal{H}_2)$: \mathcal{H}_1 computes static table of values via black-magic pebble game
 - One-time set-up computation
- \mathcal{H}_2 queries for values in table provided hash function input
 - Many queries over entire period of use
- \mathcal{H}_2 construction:
 - On input x and given oracle access to Seek_R where R is the string output from \mathcal{H}_1

Random Oracle

Input:
$$x \longrightarrow \mathcal{O} \longrightarrow p_0 = \mathcal{O}(x)$$

 $x+1 \longrightarrow \mathcal{O} \longrightarrow p_1 = \mathcal{O}(x+1)$

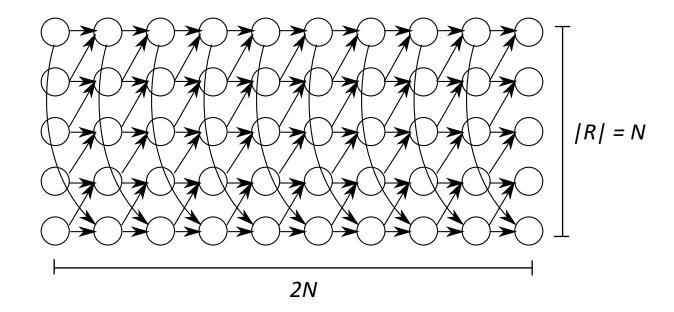
Static-Memory-Hard Function Definition

- $(\mathcal{H}_1, \mathcal{H}_2)$: \mathcal{H}_1 computes static table of values via black-magic pebble game
 - One-time set-up computation
- \mathcal{H}_2 queries for values in table provided hash function input
 - Many queries over entire period of use
- \mathcal{H}_2 construction:
 - On input ${\mathcal X}$ and given oracle access to ${\rm Seek}_R$ where R is the string output from ${\mathcal H}_1$

Random Oracle
$$x \longrightarrow p_0 = \mathcal{O}(x) \longrightarrow \iota \in [|R|] \xrightarrow{R} 0$$
 Output:
$$x + 1 \longrightarrow p_1 = \mathcal{O}(x+1) \longrightarrow \iota \in [|R|]$$

Candidate Constructions of \mathcal{H}_1

- Any graph with one target node doesn't work
- Need at least enough target nodes so that R is reasonably large
- Simple construction cylinder graph we implemented (n = N^2)



Our Constructions & Security Guarantees

• <u>Cylinder Graph SHF</u>: For $\Lambda \in \Theta\left(\sqrt{n}/\kappa - \xi \log(\kappa)\right)$ where n is the number of nodes in the graph, κ is the security parameter, and $\xi \in \omega(1)$, an adversary attempting to query $Q = \omega(S)$ non-trivially more hashes than she stored must incur at least Λ dynamic memory usage for at least $\Theta(\sqrt{n})$ steps.

Our Constructions & Security Guarantees

• <u>Cylinder Graph SHF</u>: For $\Lambda \in \Theta\left(\sqrt{n}/\kappa - \xi \log(\kappa)\right)$ where n is the number of nodes in the graph, κ is the security parameter, and $\xi \in \omega(1)$, an adversary attempting to query $Q = \omega(S)$ non-trivially more hashes than she stored must incur at least Λ dynamic memory usage for at least $\Theta(\sqrt{n})$ steps.

Best possible for layered graph constructions!

Our Constructions & Security Guarantees

• <u>Cylinder Graph SHF</u>: For $\Lambda \in \Theta\left(\sqrt{n}/\kappa - \xi \log(\kappa)\right)$ where n is the number of nodes in the graph, κ is the security parameter, and $\xi \in \omega(1)$, an adversary attempting to query $Q = \omega(S)$ non-trivially more hashes than she stored must incur at least Λ dynamic memory usage for at least $\Theta(\sqrt{n})$ steps.

Best possible for layered graph constructions!

• "Shortcut-Free" SHF: For $\Lambda \in \Theta\left(\sqrt{n}/\kappa - \xi \log(\kappa)\right)$ where definitions as above, an adversary attempting to query non-trivially more hashes than she stored must incur at least Λ dynamic memory usage for at least $\Theta(n)$ steps.

Dynamic-SHFs: Best of Both Worlds

 Combine with MHFs [AS15, AB16, AB17, ABP17, RD16] from previous works via simple concatenation scheme

• Benefits:

- Inherits both the properties of SHFs and MHFs
- Dynamic memory requirement upon input from MHF
- Adversaries incur large static memory requirement from SHF

Open Questions

• SHFs:

- Can we improve the security guarantee to have a smaller loss from the security parameter?
- Can we have better space guarantees for SHFs in general graphs?
- CC-alpha (from paper)
 - Does there exist an example where CC-alpha differs between linear and quadratic trade-off?
- Optimal CC construction (from paper)
 - Can our optimal sequential construction be modified to obtain optimal bounds in the parallel case?

Talk Outline

- Static-Memory-Hard Functions
 - Definition
 - Preliminaries for our constructions
 - Graph pebbling & parallel random oracle model (PROM)
 - New pebbling game useful for our constructions: black-magic pebble game
 - Functions defined by DAGs
 - Constructions
- CC-alpha
 (new complexity measure capturing non-linear space/time tradeoffs)
- Optimal-CC construction in sequential setting (up to polylog factors)

CC^{α}

- <u>Goal</u>: Another complexity measure for non-linear space-time cost tradeoffs
- Based on the cumulative complexity measure [AS15]
- <u>Definition</u>: Given a graph G=(V,E) , the $CC^{\alpha}(G)$ is $\min_{\mathcal{P}\in\mathbb{P}}\left(\sum_{P_i\in\mathcal{P}}|P_i|^{\alpha}\right)$

CC^{α}

- <u>Goal</u>: Another complexity measure for non-linear space-time cost tradeoffs
- Based on the cumulative complexity measure [AS15]
- <u>Definition</u>: Given a graph G=(V,E) , the $CC^{lpha}(G)$ is $\min_{\mathcal{P}\in\mathbb{P}}\left(\sum_{P_i\in\mathcal{P}}|P_i|^{lpha}\right)$

Main Theorem: There exist graphs for which an adversary facing a *linear space-time* trade-off would **employ a different pebbling strategy** from one facing a *cubic trade-off*.

Talk Outline

- Static-Memory-Hard Functions
 - Definition
 - Preliminaries for our constructions
 - Graph pebbling & parallel random oracle model (PROM)
 - New pebbling game useful for our constructions: black-magic pebble game
 - Functions defined by DAGs
 - Constructions
- CC-alpha

 (new complexity measure capturing non-linear space/time tradeoffs)
- Optimal-CC construction in sequential setting (up to polylog factors)

Optimal CC Construction for Sequential Case

- Asymptotically tight sequential lower bound for lpha=1
- Using stacked superconcentrator construction of [LT82] (with slight modification)
 - Gives CC of $\Theta\left(\frac{n^2 \log \log n}{\log n}\right)$
 - Meets upper bound [AB16, ABP17] up to polylog factors