Static-Memory-Hard Functions, and
Modeling the Cost of Space vs. Time

Thaddeus Dryja, Quanquan C. Liu, Sunoo Park
MIT

Password Hashing

Password ———

Salt/Pepper —

f

—

Hash output:
stored in a login DB

Password Hashing

Password ———

Salt/Pepper —

Honest evaluators need
only use | few times

f

—

Hash output:
stored in a login DB

Password Hashing

Password ———

Salt/Pepper —

Honest evaluators need
only use | few times

f

_, Hashoutput:
stored in a login DB

Adversaries may run J many times
(e.g. large-scale server attacks).

Password Hashing

Password .F . Hashoutput:

Salt/Pepper — stored in a login DB

Honest evaluators need Adversaries may run J many times
only use F few times (e.g. large-scale server attacks).

Desirable goal:
Make brute-force attacks hard by making '/ hard to compute over many hashes.

Password Hashing

Password .F . Hashoutput:

Salt/Pepper — stored in a login DB

Honest evaluators need Adversaries may run J many times
only use F few times (e.g. large-scale server attacks).

Desirable goal:
Make brute-force attacks hard by making '/ hard to compute over many hashes.

(Not implied by traditional hash function guarantees like collision-resistance.)

Honest Evaluator vs. Adversary

Honest Evaluator Adversary

* Few evaluations * Many evaluations
e Total cost = cost per evaluation e Total cost = cost of many evaluations

Honest Evaluator vs. Adversary

Honest Evaluator Adversary
* Few evaluations * Many evaluations
* Total cost = cost per evaluation * Total cost = cost of many evaluations

* Cannot amortize costs » Can use amortization / parallelization

Honest Evaluator vs. Adversary

Honest Evaluator Adversary
* Few evaluations * Many evaluations
* Total cost = cost per evaluation * Total cost = cost of many evaluations
* Cannot amortize costs » Can use amortization / parallelization
e General-purpose hardware * Special-purpose hardware

(e.g., ASICs optimized for hash computation)

Honest Evaluator vs. Adversary

Honest Evaluator Adversary
* Few evaluations * Many evaluations
* Total cost = cost per evaluation * Total cost = cost of many evaluations
* Cannot amortize costs » Can use amortization / parallelization
e General-purpose hardware e Special-purpose hardware

(e.g., ASICs optimized for hash computation)

Desirable goal:
Make brute-force attacks hard by making '/~ hard to compute over many hashes

Honest Evaluator vs. Adversary

Honest Evaluator Adversary
* Few evaluations * Many evaluations
* Total cost = cost per evaluation * Total cost = cost of many evaluations
* Cannot amortize costs » Can use amortization / parallelization
e General-purpose hardware e Special-purpose hardware

(e.g., ASICs optimized for hash computation)

Desirable goal:
Make brute-force attacks hard by making '/~ hard to compute over many hashes
even against adversaries with the advantages of hardware and scale.

Memory Complexity Measures

* Several have been proposed
1. ST-Complexity
2. Cumulative Complexity
3. Sustained Space Complexity

Memory doesn’t just
mean buying a disk, it
could mean renting
storage space from
AWS, etc.

* Each has their strengths and weaknesses

Memory Complexity Measures

* Several have been proposed
1. ST-Complexity
2. Cumulative Complexity
3. Sustained Space Complexity

Memory doesn’t just
mean buying a disk, it
could mean renting
storage space from
AWS, etc.

* Each has their strengths and weaknesses

* Next: a quick overview of prior proposed measures
* Then we’ll get into our contributions

ST-Complexity

e “ST” = “Space-Time” = max (peak) memory usage x time

Memory Usage

Time

ST-Complexity

e “ST” = “Space-Time” = max (peak) memory usage x time

Memory Usage

Time

ST-Complexity

 Limitation: does not capture amortization

Not robust to
amortization
attacks!

Memory usage
Memory usage

- - - Total usage

N NL O NS

3
>

Y

Time Time

Honest evaluations Multiple adversarial evaluations of g
(f & g have same ST-complexity)

Cumulative Memory Complexity (CC) [AS15]

C: Sum of the memory used over time

e Goal: Solves amortization of cost issue for ST-complexity

Memory Usage

Cumulative Complexity

Time

Cumulative Memory Complexity (CC) [AS15]

e Caveat: Could still result in different hardware costs (e.g. one time
cost or cost varies with time)

Same CC but different cost i.e. cost is not uniform w.r.t. time

Memory Usage Memory Usage

Time Time

Sustained-Space Complexity (SSC) [ABP17]

* SSC,: Space usage = N is sustained for a period of time

Memory Usage N

N space for T/2 time

T/2

Time

Sustained Space Complexity (SSC) [ABP17]

* SSC,: Space usage = N is sustained for a period of time

Memory Usage

N space for T/2 time

T/2

Time

SS,

T/2 |

Inherently parameterized notion
(what’s the most informative N for a given situation?)

Sustained Space Complexity (SSC) [ABP17]

* SSC,: Space usage = N is sustained for a period of time

Memory Usage

N space for T/2 time

T/2

Time

T/2 |

Inherently parameterized notion
(what’s the most informative N for a given situation?)

Sustained Space Complexity (SSC) [ABP17]

* SSC,: Space usage = N is sustained for a period of time

Memory Usage

N space for T/2 time

T/2

Time

T/2

Inherently parameterized notion
(what’s the most informative N for a given situation?)

Sustained Space Complexity (SSC) [ABP

Sum of all memory
(to some power)

* SSC,: Space usage = N is sustained for a period o over total eval time:

Memory Usage

N space for T/2 time

T/2

Time

CC-alpha (look in
paper!)

T/2

Inherently parameterized notion
(what’s the most informative N for a given situation?)

Memory-Hard Functions [AS15]

* Goal: Protection against large-scale password-cracking attacks

» Resilient against: special circuitry, parallel evaluation, amortization of cost
over multiple evaluations

* Using memory instead of time [Percival 2009, ACPRT16]: A (data-dependent)
function scrypt that needs a lot of memory to compute (not time)

* Advances in memory access times incremental / Special Circuitry
* Construction forces sequential evaluations v Parallelism
* Complexity measure (CC-complexity) v, Amortization

Memory-Hard Functions (MHFs)

 MHFs [AS15, AB16, AB17, ABP17, RD16]: Memory is generated dynamically at
runtime given the input to the hash function (i.e. in RAM, not on disk)

* Existing constructions rely on combinatorial concept of pebbling a hard-to-
pebble graph “via” random oracle queries

» Caveats: Size of memory requirement is bounded by runtime needed by honest
evaluator

* Honest evaluator needs to pebble the graph at runtime provided input to the
function

Our Contributions

 Static-Memory-Hard Functions (SHFs)
* Definition
* Preliminaries for construction:
graph pebbling & parallel random oracle model (PROM)

* New pebbling game useful for our constructions: black-magic pebble game
* Constructions

* CC-alpha
(new complexity measure capturing non-linear space/time tradeoffs)

e Optimal-CC construction in sequential setting (up to polylog factors)

Talk Outline

 Static-Memory-Hard Functions (SHFs)
* Definition
* Preliminaries for our constructions
e Graph pebbling & parallel random oracle model (PROM)

* New pebbling game useful for our constructions: black-magic pebble game
e Functions defined by DAGs

e Constructions

Static-Memory-Hard Functions (SHFs)

» Goal: Account for static memory requirements

* Static (read-only, on-disk) memory requirements can serve as deterrent to
large-scale attacks, but are not captured at all by existing MHF definitions.

 Static memory requirements may be much greater than dynamic memory
requirements captured by MHF notions, because they could be >> runtime.

* Two-part hash function:

e Part 1 (setup phase):
One-time generation of value table (static generation of memory)

* Part 2 (online phase):
Quick online lookups, given oracle access to the output of Part 1
(Low time complexity hash evaluation given input, for honest evaluator)

* Note: Part 1 is input-independent.

* Complementary & incomparable to standard MHF guarantee
* Ideally, want both! (“Dynamic-SHF” — will mention briefly later.)

Static-Memory-Hard Functions (SHFs)

* (Parallel) random oracle model

* Syntax:
* A static-memory hash function family

HO = {h9 : {0,1}* — {0,1}*}.en

is described by deterministic oracle algorithms (1, Hs):

Static-Memory-Hard Functions (SHFs)

* (Parallel) random oracle model

* Syntax:
A staticc-memory hash function family

HO = {h2 :{0,1}"" — {0,1}"}ren
is described by deterministic oracle algorithms (1, Hs):

. i K (R is a “big string” or “lookup table” and
One-time setup: p—
P 7_[1 (]-) R H, is a succinct description of how to generate R)

. _— R K (H, computes the correct hash output on input x,
Online computation: 7_[2 (1 y ZE) T hK, ('/'E) and has oracle access to the output of H,)

Static-Memory-Hard Functions (SHFs)

* (Parallel) random oracle model

* Syntax:
* A static-memory hash function family

HO = {9 : {0,1}¥ — {0,1}*}.en
is described by deterministic oracle algorithms (1, Hs):

One-time setup: 7—[(]_ K) — R (R Is a “big §tring" or_”Iopkup table” and
1 H, is a succinct description of how to generate R)

. _— R K (H, computes the correct hash output on input x,
Online computation: 7_[2 (]- y ZE) T hK, ('/'E) and has oracle access to the output of H,)

\

models static (disk) memory access

Static-Memory-Hard Functions (SHFs)

H, is
input-independent

* (Parallel) random oracle model

* Syntax:
* A static-memory hash function family

HO = {9 : {0,1}¥ — {0,1}*}.en
is described by deterministic oracle algorithms (1, Hs):

One-time setup: 7_[(1 K) — R (R i_s a “big §tring" or_”Io.okup table” and
1 H, is a succinct description of how to generate R)

. . R K (H, computes the correct hash output on input x
I : — ’
Onfine compitation HQ (]- y 33) T hK, ('/'E) and has oracle access to the output of H,)

\

models static (disk) memory access

Static-Memory-Hard Functions (SHFs)

 Adversary model: 2-part adversary (A1, .Az2)
* A, outputs a “big string” R’ (think of this as the adversary’s static memory)

* A, tries to output correct pairs (x,h(x)) given oracle access to R’
Intuition: A, shouldn’t be able to correctly guess more pairs than fit in R’

Static-Memory-Hard Functions (SHFs)

 Adversary model: 2-part adversary (A1, .Az2)
* A, outputs a “big string” R’ (think of this as the adversary’s static memory)

* A, tries to output correct pairs (x,h(x)) given oracle access to R’
Intuition: A, shouldn’t be able to correctly guess more pairs than fit in R’

e Security guarantee (informal): (A, A, 7, g)-hardness
Any adversary(A;1,.As) that produces > g correct input-output pairs of the
hash function must either

* have A, produce A-A static memory (i.e., |R"|>A-A) or
* have A, use A dynamic memory sustained over T time-steps

Static-Memory-Hard Functions (SHFs)

 Adversary model: 2-part adversary (A1, .Az2)
* A, outputs a “big string” R’ (think of this as the adversary’s static memory)

* A, tries to output correct pairs (x,h(x)) given oracle access to R’
Intuition: A, shouldn’t be able to correctly guess more pairs than fit in R’

e Security guarantee (informal): (A, A, 7, g)-hardness
Any adversary(A;1,.As) that produces > g correct input-output pairs of the
hash function must either

* have A, produce A-A static memory (i.e., |R"|>A-A) or

* have A, use A dynamic memory sustained over T time-steps
= requires runtime at least A.

* Recall: A may be gigabytes & honest evaluator only requires a few oracle accesses to their
“big string”, so this adversary’s runtime >> honest runtime of H,!

Graph Pebbling and PROM

* Given a DAG, computation of the hash result follows from rules of our
black-magic pebble game

* Computation in parallel model

Magic pebbles placed
anywhere at any time

Graph Pebbling and PROM

* Given a DAG, computation of the hash result follows from rules of our
black-magic pebble game

* Computation in parallel model

Magic pebbles placed Limited number M of pebbles
anywhere at any time

Graph Pebbling and PROM

* Given a DAG, computation of the hash result follows from rules of our
black-magic pebble game

* Computation in parallel model

Magic pebbles placed Limited number M of pebbles

anywhere at any time
Once you’ve used one and

delete it, it’s gone!

Graph Pebbling and PROM

* Given a DAG, computation of the hash result follows from rules of our
black-magic pebble game

* Computation in parallel model

Black pebbles can be placed on leaves

Graph Pebbling and PROM

* Given a DAG, computation of the hash result follows from rules of our
black-magic pebble game

* Computation in parallel model

Black pebbles can be placed on leaves Black pebbles can be placed on nodes
where all predecessors are pebbled

Graph Pebbling and PROM

* Given a DAG, computation of the hash result follows from rules of our
black-magic pebble game

* Computation in parallel model

Delete any number of
pebbles at any time

Graph Pebbling and PROM

* Given a DAG, computation of the hash result follows from rules of our
black-magic pebble game

* Computation in parallel model

Delete any number of
pebbles at any time

Graph Pebbling and PROM

* Given a DAG, computation of the hash result follows from rules of our
black-magic pebble game

* Computation in parallel model

mil h | Complexity of Strategy = maximum
Similar to the pebble game number of pebbles on the graph at

presented in [DFKP15]. any time and total number of magic
pebbles

Functions Defined by DAGs

* Function defined by DAG:
* Magic pebbles represent stored labels

* Label each node via recursive function where a black pebble represents
computing a label:

O(v,() if indeg(v) =0

label =
welocv) {O(v,labelo,g(pfed(v))) if indeg(v) > 0.

Functions Defined by DAGs

* Function defined by DAG:
* Magic pebbles represent stored labels

* Label each node via recursive function where a black pebble represents
computing a label:

O(v,() if indeg(v) =0

label =
welocv) {O(v,labelo,g(pfed(v))) if indeg(v) > 0.

labelp ¢(v) —

Black pebbles represent
label computation

Functions Defined by DAGs

* Function defined by DAG:
* Magic pebbles represent stored labels

* Label each node via recursive function where a black pebble represents
computing a label:

O(Ua C) if indeg(v) =0 Magic pebbles
O(v, labelp ¢(pred(v))) if indeg(v) > 0. represent stored

labels (or equiv.)

labelp ¢(v) = {

labelp ¢(v) —

Black pebbles represent
label computation

Functions Defined by DAGs

* Function defined by DAG:
* Magic pebbles represent stored labels

* Label each node via recursive function where a black pebble represents
computing a label:

O(’U, C) if indeg(v) =0 Magic pebbles
O(v, labelp ¢(pred(v))) if indeg(v) > 0. represent stored

labels (or equiv.)

labelp ¢(v) = {

labelp ¢(v) —

Black pebbles represent

Memory complexity represented by max }
label computation

number of pebbles on the graph and
total number of magic pebbles used

Functions Defined by DAGs

* Function defined by DAG:
* Magic pebbles represent stored labels

* Label each node via recursive function where a black pebble represents

computing a label:
.—— Target nodes -> R

O(’U, C) if indeg(v) =0 Magic pebbles
O(v, labelp ¢(pred(v))) if indeg(v) > 0. represent stored

labels (or equiv.)

labelp ¢(v) = {

labelp ¢(v) —

Black pebbles represent

Memory complexity represented by max }
label computation

number of pebbles on the graph and
total number of magic pebbles used

Static-Memory-Hard Function Definition

e (H1,Ho): H1computes static table of values via black-magic pebble game
* One-time set-up computation

« Ho queries for values in table provided hash function input
* Many queries over entire period of use

e Ho construction:

* Oninput X and given oracle access to Seekr where R is the string output
from H1

Random Oracle

T — — po = O()
O — p1 = Oz + 1)

Static-Memory-Hard Function Definition

e (Hq1,Ho): Hqcomputes static table of values via black-magic pebble game
* One-time set-up computation

« Ho queries for values in table provided hash function input
* Many queries over entire period of use

« Ho construction:
* Oninput X and given oracle access to Seekr where R is the string output

from H1
Random Oracle i
}
Input €T — O — Do = O(LU) L € HRHJ?J’ = Seekp (1) —, C/)utput:
r+1—0s —— p1=0(x+1) - Y DDP1

Candidate Constructions of H1

* Any graph with one target node doesn’t work
* Need at least enough target nodes so that R is reasonably large

» Simple construction cylinder graph we implemented (n = N/2)

R,
S Ny, “?‘@‘@‘@‘@“v >

2N

IR| =N

Our Constructions & Security Guarantees

* Cylinder Graph SHF: For A € © (\/ﬁ/ﬁ; — glog(m)) where T is the number of
nodes in the graph, K is the security parameter, and £ € w(1), an adversary
attempting to query @ = w(.S) non-trivially more hashes than she stored must
incur at least A dynamic memory usage for at least ©(y/n) steps.

Our Constructions & Security Guarantees

* Cylinder Graph SHF: For A € © (\/ﬁ/ﬁ; — glog(m)) where T is the number of
nodes in the graph, K is the security parameter, and £ € w(1), an adversary
attempting to query @ = w(S) non-trivially more hashes than she stored muyst
incur at least A dynamic memory usage for at least ©(y/n) steps.

Best possible for
layered graph
constructions!

Our Constructions & Security Guarantees

* Cylinder Graph SHF: For A € © (\/ﬁ/ﬁ; — glog(m)) where T is the number of
nodes in the graph, K is the security parameter, and £ € w(1), an adversary
attempting to query @ = w(S) non-trivially more hashes than she stored muyst
incur at least A dynamic memory usage for at least ©(y/n) steps.

Best possible for
layered graph
constructions!

* “Shortcut-Free” SHF: For A € © (v/n/k — £log(x)) where definitions as above,
an adversary attempting to query non-trivially more hashes than she stored must
incur at least A dynamic memory usage for at least ©(n) steps.

Dynamic-SHFs: Best of Both Worlds

 Combine with MHFs [AS15, AB16, AB17, ABP17, RD16] from previous works via
simple concatenation scheme
* Benefits:
* Inherits both the properties of SHFs and MHFs
* Dynamic memory requirement upon input from MHF
* Adversaries incur large static memory requirement from SHF

Open Questions

* SHFs:

e Can we improve the security guarantee to have a smaller loss from the
security parameter?

* Can we have better space guarantees for SHFs in general graphs?

e CC-alpha (from paper)
* Does there exist an example where CC-alpha differs between linear and
guadratic trade-off?

e Optimal CC construction (from paper)

e Can our optimal sequential construction be modified to obtain optimal
bounds in the parallel case?

Talk Outline

* CC-alpha
(new complexity measure capturing non-linear space/time tradeoffs)

CC*
* Goal: Another complexity measure for non-linear space-time cost tradeoffs

* Definition: Given a graphG = (V, E) , the CC*(G) is min

* Based on the cumulative complexity measure [AS15] (

CC*
* Goal: Another complexity measure for non-linear space-time cost tradeoffs

* Definition: Given a graphG = (V, E) , the CC*(G) is min

* Based on the cumulative complexity measure [AS15] (

Main Theorem: There exist graphs for which an adversary
facing a linear space-time trade-off would employ a different
pebbling strategy from one facing a cubic trade-off.

Talk Outline

e Optimal-CC construction in sequential setting (up to polylog factors)

Optimal CC Construction for Sequential Case

« Asymptotically tight sequential lower bound forv = 1

» Using stacked superconcentrator construction of [LT82] (with slight modification)
« Gives CC of © (" 10g10g”)

logn

* Meets upper bound [AB16, ABP17] up to polylog factors

