### Scheduling with Communication Delay in Near-Linear Time

Quanquan C. Liu Northwestern University



**Manish Purohit** 

**Google Research** 





Joshua R. Wang Google Research

Zoya Svitkina Google Research

Erik Vee Google Research

**STACS 2022** 

| Machine 1 |  |  |
|-----------|--|--|
| Machine 2 |  |  |
| Machine 3 |  |  |

# Scheduling is a classical problem in theory and in practice



- Cluster data processing management (Google Cloud Dataflow, Spark, Hadoop, Mesos...etc.)
- Machine learning (scheduling training, e.g., Tensorflow...etc.)

| Machine 1 |  |  |
|-----------|--|--|
| Machine 2 |  |  |
| Machine 3 |  |  |

Scheduling is a classical problem in theory and in practice

# Efficient Scheduling is Important in Large Data Centers

Google Cloud Dataflow

- Cluster data processing management (Google Cloud Dataflow, Spark, Hadoop, Mesos...etc.)
- Machine learning (scheduling training, e.g., Tensorflow...etc.)

#### **Research Question and Goal**

How computationally expensive is it to perform approximatelyoptimal scheduling?



# Scheduling with Communication Delay



- With duplication:
  - Unit jobs, fixed uniform communication delay, identical machines, duplication:

#### • With duplication:

- Unit jobs, fixed uniform communication delay, identical machines, duplication:
  - $O(\log \rho / \log \log \rho)$ -approximation [Lepere-Rapine, STACS '02], assuming schedule has length at least  $\rho$

#### • With duplication:

- Unit jobs, fixed uniform communication delay, identical machines, duplication:
  - $O(\log \rho / \log \log \rho)$ -approximation [Lepere-Rapine, STACS '02], assuming schedule has length at least  $\rho$
  - $\Omega(n \ln M + n\rho^2 + m\rho)$  runtime

#### • With duplication:

- Unit jobs, fixed uniform communication delay, identical machines, duplication:
  - $O(\log \rho / \log \log \rho)$ -approximation [Lepere-Rapine, STACS '02], assuming schedule has length at least  $\rho$
  - $\Omega(n \ln M + n\rho^2 + m\rho)$  runtime

**Our Result:**  $O(\log \rho / \log \log \rho)$ -approximation,  $O(n \ln M + m \ln^3 n \ln \rho / \ln \ln \rho)$  runtime, whp, assuming schedule has length at least  $\rho$ 

# Lepere-Rapine Algorithm

• Small subgraph: A maximal subgraph of the input where each vertex has at most  $2\rho$  ancestors

• Small subgraph: A maximal subgraph of the input where each vertex has at most  $2\rho$  ancestors

• Phases:

Schedule a small subgraph



• Small subgraph: A maximal subgraph of the input where each vertex has at most  $2\rho$  ancestors

- Schedule a small subgraph
  - List schedule subsets of jobs in batches

• Small subgraph: A maximal subgraph of the input where each vertex has at most  $2\rho$  ancestors

- Schedule a small subgraph
  - List schedule subsets of jobs in batches
  - Add a delay of  $\rho$  to the schedule after each batch

• Small subgraph: A maximal subgraph of the input where each vertex has at most  $2\rho$  ancestors

- Schedule a small subgraph
  - List schedule subsets of jobs in batches
  - Add a delay of  $\rho$  to the schedule after each batch
  - Remove batch from small subgraph

• Small subgraph: A maximal subgraph of the input where each vertex has at most  $2\rho$  ancestors

- Schedule a small subgraph
  - List schedule subsets of jobs in batches
  - Add a delay of  $\rho$  to the schedule after each batch
  - Remove batch from small subgraph



**STACS 2022** 

• Small subgraph: A maximal subgraph of the input where each vertex has at most  $2\rho$  ancestors  $\Omega(n\rho^2 + m\rho)$ 

- Schedule a small subgraph
  - List schedule subsets of jobs in batches
  - Add a delay of  $\rho$  to the schedule after each batch
  - Remove batch from small subgraph

• Small subgraph: A maximal subgraph of the input where each vertex has at most  $2\rho$  ancestors

- Schedule a small subgraph
  - List schedule subsets of jobs in batches
  - Add a delay of  $\rho$  to the schedule after each batch
  - Remove batch from small subgraph

• Finding a batch to schedule



• Finding a batch to schedule



• Finding a batch to schedule















**Our Result:**  $O(\log \rho / \log \log \rho)$ -approximation,  $\tilde{O}(n + m)$  runtime, whp, assuming schedule has length at least  $\rho$ 



**STACS 2022** 

• Estimating the Number of Ancestors

• Estimating the Number of Ancestors (+ Number of Edges)

Estimating the Number of Ancestors (+ Number of Edges)
Count-Distinct Estimator

- Estimating the Number of Ancestors (+ Number of Edges)
  - Count-Distinct Estimator [Bar-Yossef, Jayram, Kumar, Sivakumar, Trevisan Random '02]

- Estimating the Number of Ancestors (+ Number of Edges)
  - Count-Distinct Estimator [Bar-Yossef, Jayram, Kumar, Sivakumar, Trevisan Random '02] Mergeable estimator

- Estimating the Number of Ancestors (+ Number of Edges)
  - Count-Distinct Estimator [Bar-Yossef, Jayram, Kumar, Sivakumar, Trevisan Random '02] Mergeable estimator



- Estimating the Number of Ancestors (+ Number of Edges)
  - Count-Distinct Estimator [Bar-Yossef, Jayram, Kumar, Sivakumar, Trevisan Random '02] Mergeable estimator
    - Topsort graph and update estimators in every node

- Estimating the Number of Ancestors (+ Number of Edges)
  - Count-Distinct Estimator [Bar-Yossef, Jayram, Kumar, Sivakumar, Trevisan Random '02] Mergeable estimator
    - Topsort graph and update estimators in every node



- Estimating the Number of Ancestors (+ Number of Edges)
  - Count-Distinct Estimator [Bar-Yossef, Jayram, Kumar, Sivakumar, Trevisan Random '02] Mergeable estimator
    - Topsort graph and update estimators in every node



- Estimating the Number of Ancestors (+ Number of Edges)
  - Count-Distinct Estimator [Bar-Yossef, Jayram, Kumar, Sivakumar, Trevisan Random '02] Mergeable estimator
    - Topsort graph and update estimators in every node



- Estimating the Number of Ancestors (+ Number of Edges)
  - Count-Distinct Estimator [Bar-Yossef, Jayram, Kumar, Sivakumar, Trevisan Random '02] Mergeable estimator
    - Topsort graph and update estimators in every node



- Estimating the Number of Ancestors (+ Number of Edges)
  - Count-Distinct Estimator [Bar-Yossef, Jayram, Kumar, Sivakumar, Trevisan Random '02] Mergeable estimator
    - Topsort graph and update estimators in every node



- Estimating the Number of Ancestors (+ Number of Edges)
  - Count-Distinct Estimator [Bar-Yossef, Jayram, Kumar, Sivakumar, Trevisan Random '02] Mergeable estimator
    - Topsort graph and update estimators in every node



- Estimating the Number of Ancestors (+ Number of Edges)
  - Count-Distinct Estimator [Bar-Yossef, Jayram, Kumar, Sivakumar, Trevisan Random '02] Mergeable estimator
    - Topsort graph and update estimators in every node



• Estimating the Number of Ancestors (+ Number of Edges)

- Count-Distinct Estimator [Bar-Yossef, Jayram, Kumar, Sivakumar, Trevisan Random '02] Mergeable estimator
  - Topsort graph and update estimators in every node





 $O((n+m)\log^2 n)$ 

#### **Our Result:** $O(\log \rho / \log \log \rho)$ -approximation, $\tilde{O}(n+m)$ runtime, whp, assuming schedule has length at least $\rho$



## Scheduling Small Subgraph

• Partition vertices into buckets where v is in bucket i if the number of ancestor edges is in  $[2^i, 2^{i+1})$  (starting with i = 0, first bucket for nodes with no ancestors)



# Scheduling Small Subgraph

• Partition vertices into buckets where v is in bucket i if the number of ancestor edges is in  $[2^i, 2^{i+1})$  (starting with i = 0, first bucket for nodes with no ancestors)





**STACS 2022** 





**STACS 2022** 











Remove scheduled vertices from small subgraph and rerun estimate ancestors/edges



Remove scheduled vertices from small subgraph and rerun estimate ancestors/edges



Calculate ratio between new estimate and old estimate—prune if less than 1/2

Remove scheduled vertices from small subgraph and rerun estimate ancestors/edges



Calculate ratio between new estimate and old estimate—prune if less than 1/2





1 ancestor edge

2-3 ancestor edges

#### Schedule Bucket



**STACS 2022** 

# **Schedule Remaining Vertices**



**Our Result:**  $O(\log \rho / \log \log \rho)$ -approximation,  $\tilde{O}(n + m)$  runtime, whp, assuming schedule has length at least  $\rho$ 



**STACS 2022** 

• Estimate the number of ancestors/edges:  $O(m \ln^2 n)$ 

- Estimate the number of ancestors/edges:  $O(m \ln^2 n)$
- Scheduling Small Subgraph Sampling Runtime:

- Estimate the number of ancestors/edges:  $O(m \ln^2 n)$
- Scheduling Small Subgraph Sampling Runtime:
  - O(ln ρ) buckets, each charge at most O(ln n) not added vertices to an added vertex

- Estimate the number of ancestors/edges:  $O(m \ln^2 n)$
- Scheduling Small Subgraph Sampling Runtime:
  - O(ln ρ) buckets, each charge at most O(ln n) not added vertices to an added vertex
  - At most  $O(\ln n \cdot \ln \rho)$  charged to each element of a batch

- Estimate the number of ancestors/edges:  $O(m \ln^2 n)$
- Scheduling Small Subgraph Sampling Runtime:
  - O(ln ρ) buckets, each charge at most O(ln n) not added vertices to an added vertex
  - At most  $O(\ln n \cdot \ln \rho)$  charged to each element of a batch
  - $O(\ln \rho)$  iterations of scheduling batches

- Estimate the number of ancestors/edges:  $O(m \ln^2 n)$
- Scheduling Small Subgraph Sampling Runtime:
  - O(ln ρ) buckets, each charge at most O(ln n) not added vertices to an added vertex
  - At most  $O(\ln n \cdot \ln \rho)$  charged to each element of a batch
  - $O(\ln \rho)$  iterations of scheduling batches
  - $O(|E_S| \cdot \ln n \cdot \ln \rho \cdot \ln \rho)$  total cost over all iterations

- Estimate the number of ancestors/edges:  $O(m \ln^2 n)$
- Scheduling Small Subgraph Sampling Runtime:
  - O(ln ρ) buckets, each charge at most O(ln n) not added vertices to an added vertex
  - At most  $O(\ln n \cdot \ln \rho)$  charged to each element of a batch
  - $O(\ln \rho)$  iterations of scheduling batches
  - $O(|E_S| \cdot \ln n \cdot \ln \rho \cdot \ln \rho)$  total cost over all iterations
- Pruning Runtime:  $O(|E_S| \cdot \ln^3 n \cdot \ln \rho)$

- Estimate the number of ancestors/edges:  $O(m \ln^2 n)$
- Scheduling Small Subgraph Sampling Runtime:
  - $O(\ln \rho)$  buckets, each charge at most  $O(\ln n)$  not added vertices to an added vertex
  - At most  $O(\ln n \cdot \ln \rho)$  charged to each element of a batch
  - $O(\ln \rho)$   $O(|E_S|$  Total:  $O(m \ln^3 n \ln \rho + n \ln M)$
- Pruning Runtime:  $O(|E_S| \cdot \ln^3 n \cdot \ln \rho)$

#### Conclusion

#### Main challenge: efficiently determining which jobs to schedule in a batch of jobs

Solution: size-estimation via sketching, sampling and pruning, and work charging argument

#### **Open Questions:**

- 1. Can we get a **linear time** algorithm?
- Near-linear time algorithm for non-uniform machines and nonunit jobs.
- 3. Can we obtain a linear-time transformation for a result without duplication?