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* Cluster data processing management (Google Cloud Dataflow, Spark, Hadoop, Mesos...etc.)
* Machine learning (scheduling training, e.g., Tensorflow...etc.)
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Efficient Scheduling is Important in Large

Data Centers



Research Question and Goal

How computationally expensive is it to perform approximately-
optimal scheduling?
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Scheduling with Communication Delay
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Previous Results

* With duplication:

 Unit jobs, fixed uniform communication delay, identical
machines, duplication:
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Previous Results

* With duplication:

 Unit jobs, fixed uniform communication delay, identical
machines, duplication:

* O(log p /loglog p)-approximation [Lepere-Rapine, STACS
‘02], assuming schedule has length at least p

* Q(nInM + np? + mp) runtime

Our Result: O(log p /loglog p)-approximation,
OnIlnM +mIn3nlnp /Inlnp) runtime, whp, assuming
schedule has length at least p
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Lepere-Rapine Algorithm

STACS 2022




Lepere-Rapine Algorithm (+Modifications)

» Small subgraph: A maximal subgraph of the input where
each vertex has at most 2p ancestors
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Lepere-Rapine Algorithm (+Modifications)

New Small Subgraph
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Lepere-Rapine Algorithm (+Modifications)

» Small subgraph: A maximal subgraph of the input where

each vertex has at most 2p ancestors

* Phases:
» Schedule a small subgraph

* List schedule subsets of jobs in batches
* Add a delay of p to the schedule after each batch

* Remove batch from small subgraph
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Lepere-Rapine Algorithm (+Modifications)

* Finding a batch to schedule

> % ancestors +
vertex are not in
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Lepere-Rapine Algorithm (+Modifications)

* Finding a batch to schedule at most 1/3 not in batch

STACS 2022



Lepere-Rapine Algorithm (+Modifications)

* Finding a batch to schedule 7

STACS 2022



Lepere-Rapine Algorithm (+Modifications)

* Finding a batch to schedule 7

STACS 2022



Lepere-Rapine Algorithm (+Modifications)

* Finding a batch to schedule

Machinel (a |f |b |d |C
Machine2 | f |g | h

STACS 2022




Lepere-Rapine Algorithm (+Modifications)

* Finding a batch to schedule

Machinel (a |f |b |d |C
Graham'’s list scheduling, 1971 | Machine2 | f [g | h

STACS 2022




Lepere-Rapine Algorithm (+Modifications)

» Finding a batch to schedule Q(np? + mp)

Machinel (a |f |b |d |C
Graham'’s list scheduling, 1971 | Machine2 | f [g | h
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Our Result: O(log p /loglog p)-approximation,
O(n + m) runtime, whp, assuming schedule has length at least p
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Near-Linear Time Scheduling

« Estimating the Number of Ancestors
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Near-Linear Time Scheduling

» Estimating the Number of Ancestors (+ Number of Edges)
» Count-Distinct Estimator [Bar-Yossef, Jayram, Kumar, Sivakumarr,

Trevisan Random ‘02] 4mm Mergeable estimator
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Near-Linear Time Scheduling

» Estimating the Number of Ancestors (+ Number of Edges)

» Count-Distinct Estimator [Bar-Yossef, Jayram, Kumar, Sivakumarr,
Trevisan Random ‘02] 4mm Mergeable estimator

 Topsort graph and update estimators in every node
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Our Result: O(log p /loglog p)-approximation,
O(n + m) runtime, whp, assuming schedule has length at least p
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Scheduling Small Subgraph

* Partition vertices into buckets where v is in bucket i if the
number of ancestor edges is in [2¢,21*1) (starting with i = 0,
first bucket for nodes with no ancestors)
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Scheduling Small Subgraph

* Partition vertices into buckets where v is in bucket i if the
number of ancestor edges is in [2¢,21*1) (starting with i = 0,
first bucket for nodes with no ancestors)

O (log p) buckets

o (D0 ]E

No ancestor [1, 2) [2, 4) [4, 8)
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Sample Vertices from Buckets
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Sample Vertices from Buckets
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Sample Vertices from Buckets
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Pruning Vertices
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Pruning Vertices

Remove scheduled vertices u
from small subgraph and u
rerun estimate
ancestors/edges
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Pruning Vertices

Remove scheduled vertices u Calculate ratio between
from small subgraph and u new estimate and old
rerun estimate estimate—prune if less
ancestors/edges than 1/2
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Pruning Vertices

Remove scheduled vertices u Calculate ratio between
from small subgraph and u new estimate and old
rerun estimate estimate—prune if less
ancestors/edges than 1/2
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Schedule Bucket
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Our Result: O(log p /loglog p)-approximation,
O(n + m) runtime, whp, assuming schedule has length at least p
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» Scheduling Small Subgraph Sampling Runtime:
* O(In p) buckets, each charge at most O(Inn) not added
vertices to an added vertex
« At most O(Inn - In p) charged to each element of a batch
* O(In p) iterations of scheduling batches
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* Pruning Runtime: O(|Eg| - In®n - In p)
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Runtime

- Estimate the number of ancestors/edges: 0(m In? n)

» Scheduling Small Subgraph Sampling Runtime:
* O(In p) buckets, each charge at most O(Inn) not added
vertices to an added vertex
« At most O(Inn In p) Charged to each element of a batch

*Onp Total: O(mln nlnp+nlnM)

. 0 E AAAL T UL W WAl W W WV I WAl QW1 WA GWINS I \.;
S ol oV

* Pruning Runtime: 0(|ES| -In®n - In p)
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Conclusion

Main challenge: efficiently
determining which jobs to
schedule in a batch of jobs

Solution: size-estimation via
sketching, sampling and pruning, and
work charging argument
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Open Questions:

Can we get a linear time
algorithm?

Near-linear time algorithm for
non-uniform machines and non-
unit jobs.

Can we obtain a linear-time
transformation for a result without
duplication?




