Scheduling with Communication Delay
In Near-Linear Time

Quanquan C. Liu
Northwestern University

Manish Purohit Zoya Svitkina Erik Vee Joshua R. Wang
Google Research Google Research Google Research Google Research

STACS 2022

Machine 1

Scheduling is a classical problem in

Machine 2 . i
theory and in practice
Machine 3
ap

<> <> Apache .

><>< APACHE

! MESOS S "\Z 1

<

e park

TensorFlow
L@ =[a[a]a]n)

mﬂmﬁh@ Google Cloud Dataflow

* Cluster data processing management (Google Cloud Dataflow, Spark, Hadoop, Mesos...etc.)
* Machine learning (scheduling training, e.g., Tensorflow...etc.)

STACS 2022

Efficient Scheduling is Important in Large

Data Centers

Research Question and Goal

How computationally expensive is it to perform approximately-
optimal scheduling?
P~
P
P S

g ven simple

Rich body of literature for desjeni
rmulatiofks Of

exact sched ingcom lﬁ?iegtmmlévatlon algorith

multiprocessor scheduling

Y

g
Open: efficient
algorithms with good

1o rtions
ion N Yy

e while computing good approx. schedules

Scheduling Job Duplics
. Algorithms

Goal: Minimiz

STACS 2022

Scheduling with Communication Delay

Machine 1 b
e <
Machine 2 [I g I h
A
g communlcatlon
plC%té?&O jobs
Machine M
Precedence
| Constraints

|

Minimize Makespan i) i
Runtime as Close to Linear as Possible

STACS 2022

Previous Results

* With duplication:

 Unit jobs, fixed uniform communication delay, identical
machines, duplication:

STACS 2022

Previous Results

* With duplication:
 Unit jobs, fixed uniform communication delay, identical
machines, duplication:
* O(log p /loglog p)-approximation [Lepere-Rapine, STACS
‘02], assuming schedule has length at least p

STACS 2022

Previous Results

* With duplication:

 Unit jobs, fixed uniform communication delay, identical
machines, duplication:

* O(log p /loglog p)-approximation [Lepere-Rapine, STACS
‘02], assuming schedule has length at least p

* Q(nInM + np? + mp) runtime

STACS 2022

Previous Results

* With duplication:

 Unit jobs, fixed uniform communication delay, identical
machines, duplication:

* O(log p /loglog p)-approximation [Lepere-Rapine, STACS
‘02], assuming schedule has length at least p

* Q(nInM + np? + mp) runtime

Our Result: O(log p /loglog p)-approximation,
OnIlnM +mIn3nlnp /Inlnp) runtime, whp, assuming
schedule has length at least p

STACS 2022

Lepere-Rapine Algorithm

STACS 2022

Lepere-Rapine Algorithm (+Modifications)

» Small subgraph: A maximal subgraph of the input where
each vertex has at most 2p ancestors

STACS 2022

Lepere-Rapine Algorithm (+Modifications)

» Small subgraph: A maximal subgraph of the input where
each vertex has at most 2p ancestors

* Phases:
» Schedule a small subgraph

Small Subgraph

STACS 2022

Lepere-Rapine Algorithm (+Modifications)

» Small subgraph: A maximal subgraph of the input where
each vertex has at most 2p ancestors
* Phases:
» Schedule a small subgraph
* List schedule subsets of jobs in batches

STACS 2022

Lepere-Rapine Algorithm (+Modifications)

» Small subgraph: A maximal subgraph of the input where
each vertex has at most 2p ancestors
* Phases:
» Schedule a small subgraph
* List schedule subsets of jobs in batches
* Add a delay of p to the schedule after each batch

STACS 2022

Lepere-Rapine Algorithm (+Modifications)

» Small subgraph: A maximal subgraph of the input where
each vertex has at most 2p ancestors
* Phases:
» Schedule a small subgraph
* List schedule subsets of jobs in batches
* Add a delay of p to the schedule after each batch
 Remove batch from small subgraph

STACS 2022

Lepere-Rapine Algorithm (+Modifications)

» Small subgraph: A maximal subgraph of the input where
each vertex has at most 2p ancestors
* Phases:
» Schedule a small subgraph
* List schedule subsets of jobs in batches
* Add a delay of p to the schedule after each batch
 Remove batch from small subgraph

STACS 2022

Lepere-Rapine Algorithm (+Modifications)

New Small Subgraph

flglh]

lalc]e)

Schedule

STACS 2022

Lepere-Rapine Algorithm (+Modifications)

» Small subgraph: A maximal subgraph of the input where

each vertex has at most 2p ancestors

* Phases:
» Schedule a small subgraph

* List schedule subsets of jobs in batches
* Add a delay of p to the schedule after each batch

* Remove batch from small subgraph

STACS 2022

Q(np? + mp)

Lepere-Rapine Algorithm (+Modifications)

» Small subgraph: A maximal subgraph of the input where
each vertex has at most 2p ancestors
* Phases:
» Schedule a small subgraph
* List schedule subsets of jobs in batches
* Add a delay of p to the schedule after each batch
* Remove batch from small subgraph

STACS 2022

Lepere-Rapine Algorithm (+Modifications)

* Finding a batch to schedule

> % ancestors +
vertex are not in

STACS 2022

Lepere-Rapine Algorithm (+Modifications)

* Finding a batch to schedule

STACS 2022

Lepere-Rapine Algorithm (+Modifications)

* Finding a batch to schedule

STACS 2022

Lepere-Rapine Algorithm (+Modifications)

* Finding a batch to schedule at most 1/3 not in batch

STACS 2022

Lepere-Rapine Algorithm (+Modifications)

* Finding a batch to schedule 7

STACS 2022

Lepere-Rapine Algorithm (+Modifications)

* Finding a batch to schedule 7

STACS 2022

Lepere-Rapine Algorithm (+Modifications)

* Finding a batch to schedule

Machinel (a |f |b |d |C
Machine2 | f |g | h

STACS 2022

Lepere-Rapine Algorithm (+Modifications)

* Finding a batch to schedule

Machinel (a |f |b |d |C
Graham'’s list scheduling, 1971 | Machine2 | f [g | h

STACS 2022

Lepere-Rapine Algorithm (+Modifications)

» Finding a batch to schedule Q(np? + mp)

Machinel (a |f |b |d |C
Graham'’s list scheduling, 1971 | Machine2 | f [g | h

STACS 2022

Our Result: O(log p /loglog p)-approximation,
O(n + m) runtime, whp, assuming schedule has length at least p

[a [ch
) o S

-

. >1/2 nodes/edges not in

Bucketing and

Samples vertices until see S |
.. . 0(logn) vertices that E] E] amplin
kCou nt-Distinct Estimator / \ cannot be added to B B Al /

Remove scheduled vertices from
small subgraph and rerun

estimate ancestors/edges “ u
@ @ @ Pruning

K 0 ancestor edges 1 ancestor edge 2-3 ancestor edges /

STACS 2022

Near-Linear Time Scheduling

« Estimating the Number of Ancestors

STACS 2022

Near-Linear Time Scheduling

» Estimating the Number of Ancestors (+ Number of Edges)

STACS 2022

Near-Linear Time Scheduling

» Estimating the Number of Ancestors (+ Number of Edges)
* Count-Distinct Estimator

STACS 2022

Near-Linear Time Scheduling

» Estimating the Number of Ancestors (+ Number of Edges)

» Count-Distinct Estimator [Bar-Yossef, Jayram, Kumar, Sivakumarr,
Trevisan Random ‘02]

STACS 2022

Near-Linear Time Scheduling

» Estimating the Number of Ancestors (+ Number of Edges)

» Count-Distinct Estimator [Bar-Yossef, Jayram, Kumar, Sivakumarr,
Trevisan Random ‘02] 4mm Mergeable estimator

STACS 2022

Near-Linear Time Scheduling

» Estimating the Number of Ancestors (+ Number of Edges)
» Count-Distinct Estimator [Bar-Yossef, Jayram, Kumar, Sivakumarr,

Trevisan Random ‘02] 4mm Mergeable estimator

Mergeable
Estimat®ovided |S; U S| = n,
required 0 (log? n) time

+ £)-appr
cardinality of0 perform merge

52

Mergeable
Estimator 1

Merged Estimator

(1 + &)-appro
of cardinality ¢
51

(1 + &)-approx. of
cardinality of S; U §>

STACS 2022

Near-Linear Time Scheduling

» Estimating the Number of Ancestors (+ Number of Edges)

» Count-Distinct Estimator [Bar-Yossef, Jayram, Kumar, Sivakumarr,
Trevisan Random ‘02] 4mm Mergeable estimator

 Topsort graph and update estimators in every node

STACS 2022

Near-Linear Time Scheduling

» Estimating the Number of Ancestors (+ Number of Edges)

» Count-Distinct Estimator [Bar-Yossef, Jayram, Kumar, Sivakumarr,
Trevisan Random ‘02] 4mm Mergeable estimator

 Topsort graph and update estimators in every node

STACS 2022

Near-Linear Time Scheduling

» Estimating the Number of Ancestors (+ Number of Edges)

» Count-Distinct Estimator [Bar-Yossef, Jayram, Kumar, Sivakumarr,
Trevisan Random ‘02] 4mm Mergeable estimator

 Topsort graph and update estimators in every node

STACS 2022

Near-Linear Time Scheduling

» Estimating the Number of Ancestors (+ Number of Edges)

» Count-Distinct Estimator [Bar-Yossef, Jayram, Kumar, Sivakumarr,
Trevisan Random ‘02] 4mm Mergeable estimator

 Topsort graph and update estimators in every node

STACS 2022

Near-Linear Time Scheduling

» Estimating the Number of Ancestors (+ Number of Edges)

» Count-Distinct Estimator [Bar-Yossef, Jayram, Kumar, Sivakumarr,
Trevisan Random ‘02] 4mm Mergeable estimator

 Topsort graph and update estimators in every node

STACS 2022

Near-Linear Time Scheduling

» Estimating the Number of Ancestors (+ Number of Edges)

» Count-Distinct Estimator [Bar-Yossef, Jayram, Kumar, Sivakumarr,
Trevisan Random ‘02] 4mm Mergeable estimator

 Topsort graph and update estimators in every node

o] 4]

STACS 2022

Near-Linear Time Scheduling

» Estimating the Number of Ancestors (+ Number of Edges)

» Count-Distinct Estimator [Bar-Yossef, Jayram, Kumar, Sivakumarr,
Trevisan Random ‘02] 4mm Mergeable estimator

 Topsort graph and update estimators in every node

2]
“ @@

STACS 2022

Near-Linear Time Scheduling

» Estimating the Number of Ancestors (+ Number of Edges)

» Count-Distinct Estimator [Bar-Yossef, Jayram, Kumar, Sivakumarr,
Trevisan Random ‘02] 4mm Mergeable estimator

 Topsort graph and update estimators in every node

2]
“ @@

STACS 2022

Near-Linear Time Scheduling

» Estimating the Number of Ancestors (+ Number of Edges)

» Count-Distinct Estimator [Bar-Yossef, Jayram, Kumar, Sivakumarr,
Trevisan Random ‘02] 4mm Mergeable estimator

 Topsort graph and update estimators in every node

b
(1 + €)-approx. on @ @
number of ancestors @ 0((n + m)log?n)
and edges @

STACS 2022

Our Result: O(log p /loglog p)-approximation,
O(n + m) runtime, whp, assuming schedule has length at least p

-

How does one efficiently find a
batch of ert;icg;tgs hedule? [“H;] ae [“HCH] e
g

. >1/2 nodes/edges not in

Bucketing and

Samples vertices until see s |
.. . 0(logn) vertices that E] E] amplin
Count-Distinct Estimator \ cannot be added to B B Al /

-

Remove scheduled vertices from
small subgraph and rerun

estimate ancestors/edges < ‘ u
@ @ @ Pruning

K 0 ancestor edges 1 ancestor edge 2-3 ancestor edges /

STACS 2022

Scheduling Small Subgraph

* Partition vertices into buckets where v is in bucket i if the
number of ancestor edges is in [2¢,21*1) (starting with i = 0,
first bucket for nodes with no ancestors)

o [(D]E0E]E

No ancestor [1, 2) [2, 4) [4, 8)

STACS 2022

Scheduling Small Subgraph

* Partition vertices into buckets where v is in bucket i if the
number of ancestor edges is in [2¢,21*1) (starting with i = 0,
first bucket for nodes with no ancestors)

O (log p) buckets

o (D0]E

No ancestor [1, 2) [2, 4) [4, 8)

STACS 2022

Sample Vertices from Buckets

<
g
: — TN
w w
x ol
¥/ ¥/
>1/2 nodes/edges not
‘ in B

Sample Vertices from Buckets

i i
L= S e 1
loljazeloo]

Sample Vertices from Buckets

Sample Vertices from Buckets

" fﬂ "
— — P |
e el L] L e [
— % ;_/mlodiens/;dgesnot v
C
| i il
dme” |p [

Sample Vertices from Buckets

< O <
g 3 J
v ¥/
) | L)) e He [Lalle]
— x — Elements in the same
- >1/2 nodgs/edges hot bucket have approx.
in B same size!
e
Samples vertices until see Charge the cost of the
®(logn) vertices that [a J [¢] [e J O (logn) vertices not
cannot be added to B B y added to added to B

STACS 2022

Sample Vertices from Buckets

< O <
& 3 &
v u
e el L)) Le e He e[]
— x — Elements in the same
- >1/2 nodgs/edges hot bucket have approx.
in B same size!
-
Less than a constant Charge the cost of the
fraction of vertices [a J [c] [e J O (log n) vertices not
remaining can be added B y added to added to B

STACS 2022

Pruning Vertices

BRI N

0 ancestor edges 1 ancestor edge 2-3 ancestor edges

STACS 2022

Pruning Vertices

Remove scheduled vertices u
from small subgraph and u
rerun estimate
ancestors/edges

[T]

0 ancestor edges 1 ancestor edge 2-3 ancestor edges

STACS 2022

Pruning Vertices

Remove scheduled vertices u Calculate ratio between
from small subgraph and u new estimate and old
rerun estimate estimate—prune if less
ancestors/edges than 1/2

0 ancestor edges 1 ancestor edge 2-3 ancestor edges

STACS 2022

Pruning Vertices

Remove scheduled vertices u Calculate ratio between
from small subgraph and u new estimate and old
rerun estimate estimate—prune if less
ancestors/edges than 1/2

0((ns + mg)log?n)

0 ancestor edges 1 ancestor edge 2-3 ancestor edges

STACS 2022

Schedule Bucket

Machine 1

Machine 2

Schedule Remaining Vertices

o o e

No ancestor [1, 2) [2, 4) [4, 8)

Machine 2

& &
S -
o8

5

Our Result: O(log p /loglog p)-approximation,
O(n + m) runtime, whp, assuming schedule has length at least p

- X "V :

-

. >1/2 nodes/edges not in

Bucketing and

Samples vertices until see S |
.. . 0(logn) vertices that E] E] amplin
kCou nt-Distinct Estimator / \ cannot be added to B B Al /

Remove scheduled vertices from
small subgraph and rerun

estimate ancestors/edges “ u
@ @ @ Pruning

K 0 ancestor edges 1 ancestor edge 2-3 ancestor edges /

STACS 2022

Runtime

- Estimate the number of ancestors/edges: 0(m In? n)

STACS 2022

Runtime

- Estimate the number of ancestors/edges: 0(m In? n)
» Scheduling Small Subgraph Sampling Runtime:

STACS 2022

Runtime

- Estimate the number of ancestors/edges: 0(m In? n)

» Scheduling Small Subgraph Sampling Runtime:

* O(In p) buckets, each charge at most O(Inn) not added
vertices to an added vertex

STACS 2022

Runtime

- Estimate the number of ancestors/edges: 0(m In? n)

» Scheduling Small Subgraph Sampling Runtime:

* O(In p) buckets, each charge at most O(Inn) not added
vertices to an added vertex

« At most O(Inn - In p) charged to each element of a batch

STACS 2022

Runtime

- Estimate the number of ancestors/edges: 0(m In? n)

» Scheduling Small Subgraph Sampling Runtime:

* O(In p) buckets, each charge at most O(Inn) not added
vertices to an added vertex

« At most O(Inn - In p) charged to each element of a batch
* O(In p) iterations of scheduling batches

STACS 2022

Runtime

- Estimate the number of ancestors/edges: 0(m In? n)

» Scheduling Small Subgraph Sampling Runtime:

* O(In p) buckets, each charge at most O(Inn) not added
vertices to an added vertex

« At most O(Inn - In p) charged to each element of a batch
* O(In p) iterations of scheduling batches
* O(|Eg| -Inn - Inp - In p) total cost over all iterations

STACS 2022

Runtime

- Estimate the number of ancestors/edges: 0(m In? n)

» Scheduling Small Subgraph Sampling Runtime:
* O(In p) buckets, each charge at most O(Inn) not added
vertices to an added vertex
« At most O(Inn - In p) charged to each element of a batch
* O(In p) iterations of scheduling batches
* O(|Eg| -Inn - Inp - In p) total cost over all iterations

* Pruning Runtime: O(|Eg| - In®n - In p)

STACS 2022

Runtime

- Estimate the number of ancestors/edges: 0(m In? n)

» Scheduling Small Subgraph Sampling Runtime:
* O(In p) buckets, each charge at most O(Inn) not added
vertices to an added vertex
« At most O(Inn In p) Charged to each element of a batch

*Onp Total: O(mln nlnp+nlnM)

. 0 E AAAL T UL W WAl W W WV I WAl QW1 WA GWINS I \.;
S ol oV

* Pruning Runtime: 0(|ES| -In®n - In p)

STACS 2022

Conclusion

Main challenge: efficiently
determining which jobs to
schedule in a batch of jobs

Solution: size-estimation via
sketching, sampling and pruning, and
work charging argument

STACS 2022

Open Questions:

Can we get a linear time
algorithm?

Near-linear time algorithm for
non-uniform machines and non-
unit jobs.

Can we obtain a linear-time
transformation for a result without
duplication?

