Red-Blue Pebble Game: Complexity of Computing the Trade-Off between Cache Size and Memory Transfers

Erik D. Demaine and Quanquan C. Liu
I/O-Model

• Two-level memory hierarchy: fast cache and slow memory [HK81, AV88]
Red-Blue Pebble Game

• Used to model I/O complexity of I/O-model [HK81]
• Sequentially add, remove, and recolor "red" and "blue" pebbles on a DAG
• Dependency DAG represents data dependency in computation
Red-Blue Pebble Game

Dependency DAG:
- Represents data dependencies
- Data starts out in disk
- Recoloring: blue to red = bring data into cache
- Recoloring: red to blue = write data into disk
- Deleting pebble: remove data from cache or disk

Goal: Pebble sink nodes with blue pebbles.

= data in disk

Represents I/Os

3 Transitions
Red-Blue Pebble Game

Minimizing red pebbles: minimizing cache size = 5

Minimizing transitions: minimizing I/O-complexity (number of read-ins/write-outs) = 5

Goal: Pebble sink nodes with blue pebbles.
Pebble Games and Hardness

- Used to model computation and space constraints in many different models of computation
- Standard (black) pebble game: PSPACE-complete [GLT80]
- Black-white pebble game: PSPACE-complete [HP10]
- Reversible pebble game: PSPACE-complete [CLNV15]
Other Applications

• Protection against large-scale attacks on secure systems

• **Proofs of work** (via pebbling) use large computation time [DNW05]
 • Adversaries build specialized circuits

• **Memory-hard functions** [AS15] — use lots of memory to perform computation
 • Doesn’t account for different access times

• **Bandwidth-hard functions** [BRZ18] — use many I/Os to perform computation
Our Results

Thm 1. Computing the number of red pebbles and number of transitions in the Red-Blue Pebble Game is PSPACE-Complete even given constant number of transitions.

Thm 2. Computing the number of red pebbles and number of transitions (even constant) in the Red-Blue Pebble Game with No Deletion is NP-Complete.

Thm 3. Computing the number of red pebbles and number of transitions in the Red-Blue Pebble Game is W[1]-hard when parameterized by the number of transitions, even for layered graphs.
Red-Blue Pebble Game with No Deletions

- No deletion move allowed
- Studies a simpler problem—what does deletion afford in the I/O-model?
- Applications for when computed data need to be maintained
- Can be used to model cases where computation time in cache similar to I/O cost
- Provides an additional proof of NP-completeness for model in [BRZ18] when computation time cost in cache is equal to I/O cost
NP-Completeness Proof

• Similar in spirit to [GLT80] proof framework
• Reduction from Positive 1-in-3 SAT [GJ90]

Positive 1-in-3 SAT [GJ90]: Set \(\mathcal{U} \) of variables and \(\mathcal{C} \) of clauses over \(\mathcal{U} \) where each clause \(c \in \mathcal{C} \) has size \(|c| = 3 \) and all literals in \(c \) are positive. Does there exist a truth assignment for \(\mathcal{U} \) such that each clause has exactly one true literal?

\[
\mathcal{U} = \{x_1, x_2, x_3, x_4, x_5, x_6\} \\
\begin{array}{cccccc}
T & T & F & T & F & F \\
\end{array}
\]

\[
\mathcal{C} = (x_1 \lor x_3 \lor x_6) \land (x_2 \lor x_5 \lor x_6) \land (x_3 \lor x_4 \lor x_5)
\]

\[
\mathcal{C} = (x_1 \lor x_3 \lor x_6) \land (x_2 \lor x_5 \lor x_6) \land (x_3 \lor x_4 \lor x_5)
\]
Proof Overview

Maintains pebbles on pyramid nodes in variable gadgets throughout pebbling

Finish pebbling all variable gadgets

Place extra pebbles in pyramid sink paths

Pebble clause gadgets

Pebble anti-clause gadgets—one for each variable

Goal: Given r red pebbles and t transitions, can the sink be pebbled?

Pebble hold path

Reduction: The sink can be pebbled using r red pebbles and t transitions if and only if the Positive 1-in-3 SAT instance can be solved for some setting of variables.
Gadgets

Variable Gadget

Pyramid/Pebble
Sink Path

Must keep a pebble on every pyramid in the path.
Gadgets

Clause Gadget

Anti-clause Gadget

Cannot reduce bound on the number of transitions in bound for # of transitions.

Need an exact bound on the number of transitions.
\[\phi = (x_1 \lor x_2 \lor x_3) \land (x_3 \lor x_5 \lor x_4) \]

1. Set Variable Gadgets
2. Clauses/Anti-clause Gadgets
4. Pebble Hold Path
5. Target Node
Parameterized Complexity

• **Fixed-parameter tractable**: problem parameterized by k can be solved in $f(k)n^{O(1)}$ time

• **W[1]-hardness**: assuming ETH (Exponential Time Hypothesis) no FPT algorithm for problem parameterized k (e.g. FPT $\not=$ W[1])

Exponential Time Hypothesis [IPZ01]: There exists a positive real s such that 3-CNF-SAT with parameter n cannot be solved in time $2^{sn}(n+m)^{O(1)}$.
Our Results

Thm 1. Computing the number of red pebbles and number of transitions in the Red-Blue Pebble Game is PSPACE-Complete even given constant number of transitions.

Thm 2. Computing the number of red pebbles and number of transitions (even constant) in the Red-Blue Pebble Game with No Deletion is NP-Complete.

Thm 3. Computing the number of red pebbles and number of transitions in the Red-Blue Pebble Game is W[1]-hard when parameterized by the number of transitions, even for layered graphs.
W[1]-hardness Proof

• Red-blue pebble game parameterized by number of transitions \(t \) is W[1]-hard
• Reduction from **Weighted 3-CNF SAT**

Weighted 3-CNF SAT\((k)\): Set \(\mathcal{U} \) of variables and \(\mathcal{C} \) of clauses over \(\mathcal{U} \) where each clause \(c \in \mathcal{C} \) has size \(|c| = 3\) and all literals in \(c \) are positive. Does there exist a truth assignment for \(\mathcal{U} \) such that exactly \(k \) variables are true in \(\mathcal{U} \)?

\[
\begin{align*}
\mathcal{U} &= \{x_1, x_2, x_3, x_4, x_5, x_6\} \\
\text{Truth Assignment:} & \quad T \ T \ F \ T \ T \ F \ F \\
\mathcal{C} &= (x_1 \lor x_3 \lor x_6) \land (x_2 \lor x_5 \lor x_6) \land (x_3 \lor x_4 \lor x_5)
\end{align*}
\]
W[1]-hardness Proof

Set all variables to the false configuration.

Resets k variable gadgets to the true configuration using $2k$ transitions.

Place extra pebbles in pebble sink paths

Finish pebbling all variable gadgets

All-False Gadget

k-True Variables Gadgets

3-or-None Gadgets

Clause Gadgets

Pebble hold path

Transitions are limited!

Makes sure all variables are set to either true or false
W[1]-hardness Proof Gadgets
W[1]-hardness Proof Gadgets

All-False

\[x_1, x_2, \ldots, x_i, x_j, x_k, \ldots, x_1, x_2, \ldots \]

\[a_i, a_j, a_k, \ldots \]

\[2k + 1 \]

\[\cdots \]

\[3n - 2k + 1 \]

\[3n - 4k - 3 \]

k-True

\[x'_1, x'_2, \ldots, x'_i, x'_j, x'_k, \ldots, x'_1, x'_2, \ldots \]

\[a'_i, a'_j, a'_k, \ldots \]

3-or-None

\[x'_i, a'_i \]
\[\phi = (x_1 \lor \overline{x_2} \lor \overline{x_3}) \land (x_2 \lor x_1 \lor \overline{x_4}) \land (\overline{x_2} \lor \overline{x_3} \lor \overline{x_4}) \]

1. Set Variable Gadgets
2. All-False Gadget
3. k-True Gadget
4. 3-or-None Gadgets
5. Clauses
6. Pebble Sink Path
6. Pebble Hold Path + Target
Open questions

• Hardness of approximation—we don’t even have constant factor inapproximation!

• FPT algorithms for restricted classes of graphs
 • Our results can be easily expanded to layered graphs
 • Bounded width graphs?
 • Planar and series-parallel?

• W[1]-hardness when parameterized by the number of red pebbles