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|/O-Model

* Two-level memory hierarchy: fast cache and slow memory [HK81,

AV88]
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Red-Blue Pebble Game

* Used to model I/O complexity of I/O-model [HK81]

e Sequentially add, remove, and recolor "red” and “blue” pebbles on a
DAG

* Dependency DAG represents data dependency in computation



Red-Blue Pebble Game

Deleting pebble: remove
data from cache or disk |in

2 Transitions

Goal: Pebble sink nodes with blue pebbles.

. = data in disk

Represents 1/Os




Red-Blue Pebble Game

Minimizing red pebbles: Minimizing transitions: minimizing
minimizing cache size =5 |/O-complexity (number of read-

ins/write-outs) = 5

Goal: Pebble sink nodes with blue pebbles.




Pebble Games and Hardness

* Used to model computation and space constraints in many different
models of computation

 Standard (black) pebble game: PSPACE-complete [GLT80]
* Black-white pebble game: PSPACE-complete [HP10]
* Reversible pebble game: PSPACE-complete [CLNV15]



Other Applications

* Protection against large-scale attacks on secure systems

* Proofs of work (via pebbling) use large computation time [DNWO5]
* Adversaries build specialized circuits
* Memory-hard functions [AS15] — use lots of memory to perform

computation
e Doesn’t account for different access times

* Bandwidth-hard functions [BRZ18] — use many |/Os to perform
computation



Our Results

Extension of

[GLT80]

Thm 1. Computing the number of red pebbles and number of transitions in
the Red-Blue Pebble Game is PSPACE-Complete even given constant number
of transitions.

Thm 2. Computing the number of red pebbles and number of transitions (even constant) in the
Red-Blue Pebble Game with No Deletion is NP-Complete.

Thm 3. Computing the number of red pebbles and number of transitions in the Red-Blue Pebble
Game is W[1]-hard when parameterized by the number of transitions, even for layered graphs.




Red-Blue Pebble Game with No Deletions

* No deletion move allowed

e Studies a simpler problem—what does deletion afford in the 1/0-
model?

* Applications for when computed data need to be maintained

* Can be used to model cases where computation time in cache similar
to 1/0 cost

* Provides an additional proof of NP-completeness for model in [BRZ18]
when computation time cost in cache is equal to |/O cost



NP-Completeness Proof

 Similar in spirit to [GLT80] proof framework
e Reduction from Positive 1-in-3 SAT [GJ90]

Positive 1-in-3 SAT [GJ90]: Set U of variables and € of clauses over U where each clause
cEChas size [c[ = 3 and all literals in ¢ are positive. Does there exist a truth assignment for
U such that each clause has exactly one true literal?

U = {$1,$2,$3,CE4,3§5,3}6} C = (331 V x5 \/ZCG) A\ (ZEQ V x5 \/336) YA\ (.563 V X4 \/LU5)
T T F TFF C:(.561\/373\/5136)/\(332\/$5\/376)/\($3\/CC4\/335)



Proof Over

Maintains pebbles on
pyramid nodes in
variable gadgets

throughout pebbling

Place extra pebbles in
Finish pebbling all pyramid sink paths

variable gadgets

>

Pebble hold path

Goal: Given r red pebbles and t
transitions, can the sink be
pebbled?

Pebble anti-clause

gadgets—one for each

‘ variable

Reduction: The sink can be pebbled using r red pebbles and t transitions if and
only if the Positive 1-in-3 SAT instance can be solved for some setting of variables.



Variable Gadget

Pyramid/Pebble
Sink Path

Must keep a pebble
on every pyramid in
the path.
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1. Set Variable Gadgets

1) a. Pebble Sink Path

2. Clauses/Anti-clause Gadgets

4. Pebble Hold Path

5. Target Node




Parameterized Complexity

* Fixed-parameter tractable: problem parameterized by k can be
solved in f(k)n°*) time

* W[1]-hardness: assuming ETH (Exponential Time Hypothesis) no FPT
algorithm for problem parameterized k (e.g. FPT # W[1])

Exponential Time Hypothesis [IPZ01]: There exists a positive real s such that
3-CNF-SAT with parameter n cannot be solved in time 25"(n+m)°(),




Our Results

Extension of

[GLT80]

Thm 1. Computing the number of red pebbles and number of transitions in
the Red-Blue Pebble Game is PSPACE-Complete even given constant number
of transitions.

Thm 2. Computing the number of red pebbles and number of transitions (even constant) in the
Red-Blue Pebble Game with No Deletion is NP-Complete.

Thm 3. Computing the number of red pebbles and number of transitions in the Red-Blue Pebble
Game is W[1]-hard when parameterized by the number of transitions, even for layered graphs.




W/[1]-hardness Proof

* Red-blue pebble game parameterized by number of transitions t is
W]1]-hard

* Reduction from Weighted 3-CNF SAT

Weighted 3-CNF SAT(k): Set ‘U of variables and C of clauses over U where each
clause cEChas size [c[ = 3 and all literals in ¢ are positive. Does there exist a truth
assignment for U such that exactly k variables are true in ‘U?

k=3
U = {$1,$2,$3,$4,£U5,ZC6} C = (.5131 V3V 566) N (ZCQ Vs V 566) A (333 Vxy V 565)
C

T TFTFF = (z1 Vg Vae) A2 Vs Viag) A VeV rs)



Transitions are limited!

W[l]—hard NesSsS Pr Set all Resets k variable
variables to gadgets to the true
the false configuration using

configuration. 2k transitions.

Place extra
pebbles in pebble
Finish pebbling all sink paths All-False 3-or-None

variable gadgets — Gadget

Makes sure all
variables are set to
either true or false

Pebble hold path




W|1]-hardness Proof Gadgets
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W|1]-hardness Proof Gadgets
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3-or-None

Gadgets 1. Set Variable Gadgets

2. All-False Gadget

3. k-True Gadget

4. 3-or-None Gadgets

5. Clauses
6. Pebble Sink Path

6. Pebble Hold Path + Target




Open guestions

* Hardness of approximation—we don’t even have constant factor
inapproximation!

* FPT algorithms for restricted classes of graphs
* Our results can be easily expanded to layered graphs
* Bounded width graphs?
* Planar and series-parallel?

 W[1]-hardness when parameterized by the number of red pebbles



