
Scheduling with Communication Delay in Near-Linear Time 

Quanquan C. Liu1, Manish Purohit2, Zoya Svitkina2, Erik Vee2, Joshua R. Wang2
[1] MIT CSAIL quanquan@mit.edu

[2] Google Research {mpurohit, zoya, erikvee, joshuawang}@ncsu.edu 

 

Near-Linear Time Algorithm

EECS Rising Stars 2021

Scheduling Small SubgraphsMotivation

How computationally expensive is it to perform 
approximately-optimal scheduling? 

With growing input sizes and large data centers, highly 
desirable to obtain a scheduling algorithm whose running 

time is linear in the size of the input. 

All current state-of-the-art algs take super-linear time.

v Previous Result: Computing an optimal schedule is NP-hard in general. Best previous result by Lepere and Rapine obtain 
𝑂 !" #

!" !" #
-approx. in Ω 𝑚𝜌 + 𝑛 ln𝑀  time

v Our Result: 𝑂 𝑛 ln𝑀 + $ !"! % !" #
!" !" #

 time and 𝑂 !" #
!" !" # -approx. algorithm, tight up to polylog factors

Analysis Key Insights

Problem Definition
Classical scheduling problem with communication delay 

on identical machines, unit size jobs 

Precedence-constrained jobs modeled as directed acyclic 
graph (DAG), vertex is job, edge indicates order

Given DAG 𝐺 = 𝑉, 𝐸 , 𝑛 unit-sized jobs, 𝑀 identical 
machines and communication delay 𝜌, provide a near-

optimal schedule in near-linear time. 

𝑎

𝑏

𝑐

𝑑

𝑒

𝑓

𝑔

ℎ

𝑎

𝑏

𝑐

𝑑

𝑒

Small Subgraph Schedule

𝑒

𝑎 𝑐𝑏 𝑑

𝑎 𝑐

𝑎

𝑏

𝑐

𝑑

𝑒

𝑓

𝑔

ℎ
𝑓

𝑔

ℎ

Add 𝜌 delay

𝑔𝑓 ℎ

New Small Subgraph

Remaining Schedule
Schedule

𝑒

𝑎 𝑐𝑏 𝑑

𝑎 𝑐

(1)   Initial Input DAG (2)   Find a small subgraph in the input 
DAG and schedule it

(3)   Remove scheduled vertices from the graph. Add a 𝜌
communication delay to schedule after previously scheduled 

jobs. Find a new small subgraph and schedule it. 

Graph 
Problem!

How do you find jobs with ancestor sets 
that do not overlap too much quickly?

𝑎

𝑏

𝑐

𝑑

𝑒

𝑔

𝑓

ℎ

𝑎

𝑏

𝑐

𝑔

𝑓

ℎ

𝑎

𝑏

𝑐

𝑑

𝑒

𝑎 𝑏 𝑐 𝑑 𝑒

0 ancestor edges 1 ancestor edge 3-4 ancestor edges

𝑎 𝑏 𝑐 𝑑 𝑒𝑎 𝑐𝑎 𝑐𝑎 𝑒

𝑎 𝑒
𝑆

❌ ✅✅

𝑎

𝑒𝑎 𝑐

𝑎

𝑏

𝑐

𝑑

𝑒

𝑎 𝑏 𝑐 𝑑 𝑒

0 ancestor edges 1 ancestor edge 2-3 ancestor edges

v Small Subgraph: A subgraph of the input DAG where each vertex has at most 𝝆 − 𝟏 ancestors

(1)   Initial small subgraph (2)   Vertices bucketed according to ancestor 
edge estimate

(3)   Vertices uniformly-at-random sampled from bucket, checked for 
ancestor overlap and added to 𝑆

(5)   Pruning vertices with large overlap with 𝑆 (6)   List scheduling jobs in 𝑆

v Estimating Number of Ancestor 
Edges: We use count-distinct 
estimators to estimate the number of 
ancestors and edges in the induced 
subgraph of each node and its 
ancestors

v Partitioning Vertices to Buckets: 
First partition vertices into 𝑂 log 𝜌  
buckets based on ancestor edge 
estimates 

v Sampling Vertices from Buckets: 
Vertices (and ancestors) are sampled 
from buckets and added to 𝑆 if its 
ancestors do not overlap too much 
with 𝑆. Keep sampling until we’ve 
seen 𝑂 log 𝑛  vertices in a row that 
we do not add to 𝑺 or bucket is 
empty.

v Pruning All Stale Vertices from 
Buckets: Vertices with ancestor sets 
that overlap too much with 𝑆 are 
pruned or removed from buckets

v Standard list scheduling jobs in 𝑺: 
Duplicate all ancestors of a job, 
schedule a job and all its (duplicated) 
ancestors on the same machine

[Lepere and Rapine] Renaud Lepere and Christophe Rapine. An asymptotic O(ln ρ/ ln ln ρ)-approximation algorithm for the scheduling problem with 
duplication on large communication delay graphs. In STACS, volume 2285 of Lecture Notes in Computer Science, pages 154–165, 2002.

[Graham] R. L. Graham. Bounds on multiprocessing anomalies and related packing algorithms. In Proceedings of the May 16-18, 1972, Spring Joint 
Computer Conference, AFIPS ’72 (Spring), page 205–217, New York, NY, USA, 1971. Association for Computing Machinery. 
 

v Estimating Number of Ancestor Edges: Our count-distinct estimator algorithm on DAGs return 1 ± 𝜖 -approximations to 
the number of ancestors (and edges) with probability at least 1 − '

%"
 for any constant 𝑑 ≥ 1 in 𝑂 '

(#
log) 𝑛  time per vertex

v Partitioning Vertices to Buckets: A vertex 𝑣 is in the 𝑖-th bucket if the estimate of the number of edges in the induced 
subgraph of its ancestors, 3𝒆(𝒗), is in 𝟐𝒊, 𝟐𝒊"𝟏 ; we can partition all vertices in 𝑂 ,-.

/! log0 𝑛  time

v Sampling Vertices from Buckets: A sampled vertex 𝑣 and all its ancestors are added to 𝑺 if at least a 𝛾 fraction of its 
ancestor set is not in 𝑆. Once we stop sampling, less than a constant fraction of the vertices remaining in each bucket can 
be added to 𝑆 (for any constant)

v Pruning All Stale Vertices from Buckets: All vertices that cannot be added to 𝑺 are pruned; any pruned vertex has at most 
a 𝟒𝜸-fraction of ancestors not in 𝑆

v Standard list scheduling jobs in 𝑺: Graham’s list scheduling algorithm where scheduling |𝑆| jobs requires 𝑂 𝑆 	log	𝑀  time


