Scheduling with Communication Delay in Near-Linear Time

Quanquan C. Liu ${ }^{1}$, Manish Purohit², Zoya Svitkina², Erik Vee², Joshua R. Wang² [1] MIT CSAIL quanquan@mit.edu

EECS Rising Stars 2021

[2] Google Research \{mpurohit, zoya, erikvee, joshuawang\}@ncsu.edu
CSAIL

Google Research

Motivation

How computationally expensive is it to perform approximately-optimal scheduling?

With growing input sizes and large data centers, highly desirable to obtain a scheduling algorithm whose running time is linear in the size of the input.

All current state-of-the-art algs take super-linear time.

Problem Definition

Classical scheduling problem with communication delay on identical machines, unit size jobs

Precedence-constrained jobs modeled as directed acyclic graph (DAG), vertex is job, edge indicates order

Given DAG $G=(V, E)$, n unit-sized jobs, M identical machines and communication delay ρ, provide a nearoptimal schedule in near-linear time.

Near-Linear Time Algorithm

* Previous Result: Computing an optimal schedule is NP-hard in general. Best previous result by Lepere and Rapine obtain $O\left(\frac{\ln \rho}{\ln \ln \rho}\right)$-approx. in $\Omega(m \rho+n \ln M)$ time
* Our Result: $O\left(n \ln M+\frac{m \ln ^{3} n \ln \rho}{\ln \ln \rho}\right)$ time and $O\left(\frac{\ln \rho}{\ln \ln \rho}\right)$-approx. algorithm, tight up to polylog factors

(1) Initial Input DAG

(3) Remove scheduled vertices from the graph. Add a communication delay to schedule after previously scheduled jobs. Find a new small subgraph and schedule it.

How do you find jobs with ancestor sets that do not overlap too much quickly?

[^0]Scheduling Small Subgraphs

* Small Subgraph: A subgraph of the input DAG where each vertex has at most $\rho-1$ ancestors
 ancestor overlap and added to S

(5) Pruning vertices with large overlap with S (6) List scheduling jobs in S
* Estimating Number of Ancestor Edges: We use count-distinct dges: We use count-distinct ancestors and edges in the induced subgraph of each node and its ancestors
* Partitioning Vertices to Buckets: First partition vertices into $O(\log \rho)$ buckets based on ancestor edge estimates
* Sampling Vertices from Buckets: Vertices (and ancestors) are sampled from buckets and added to S if its ancestors do not overlap too much with S. Keep sampling until we've seen $O(\log n)$ vertices in a row that we do not add to S or bucket empty
* Pruning All Stale Vertices from Buckets: Vertices with ancestor sets Bat overlap too much with S are pruned or removed from buckets
* Standard list scheduling jobs in S : Duplicate all ancestors of a job, schedule a job and all its (duplicated) ancestors on the same machine

Analysis Key Insights

* Estimating Number of Ancestor Edges: Our count-distinct estimator algorithm on DAGs return ($1 \pm \epsilon$)-approximations to the number of ancestors (and edges) with probability at least $1-\frac{1}{n^{d}}$ for any constant $d \geq 1$ in $O\left(\frac{1}{\epsilon^{2}} \log ^{2} n\right)$ time per vertex
*Partitioning Vertices to Buckets: A vertex v is in the i-th bucket if the estimate of the number of edges in the induced subgraph of its ancestors, $\hat{\boldsymbol{e}}(\boldsymbol{v})$, is in $\left[2^{i}, 2^{i+1}\right)$; we can partition all vertices in $O\left(\frac{m+n}{\epsilon^{2}} \log ^{2} n\right)$ time
* Sampling Vertices from Buckets: A sampled vertex v and all its ancestors are added to S if at least a γ fraction of its ancestor set is not in S. Once we stop sampling, less than a constant fraction of the vertices remaining in each bucket can be added to S (for any constant)
* Pruning All Stale Vertices from Buckets: All vertices that cannot be added to S are pruned; any pruned vertex has at most 4γ-fraction of ancestors not in S
* Standard list scheduling jobs in S : Graham's list scheduling algorithm where scheduling $|S|$ jobs requires $O(|S| \log M)$ time

[^0]: [Lepere and Rapine] Renaud Lepere and Christophe Rapine. An asymptotic O (In $\rho /$ In In ρ)-approximation algorithm for the scheduling problem with duplication on large communication delay graphs. In STACS, volume 2285 of Lecture Notes in Computer Science, pages 154-165, 2002.
 [Graham] R. L. Graham. Bounds on multiprocessing anomalies and related packing algorithms. In Proceedings of the May 16-18, 1972, Spring Joint Computer Conference, AFIPS ' 72 (Spring), page 205-217, New York, NY, USA, 1971. Association for Computing Machinery.

