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MPC Model Definition

𝑆 𝑆 𝑆

• M machines
• Synchronous rounds

Complexity measures:
• Total Space
• Space Per Machine
• Rounds of communication

Total Space: 𝑴 ⋅ 𝑺
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Space per Machine in MPC

• Strongly sublinear memory: 
• 𝑆 = 𝑛! for some constant 𝛿 ∈ (0, 1)

• Near-linear memory: 
• 𝑆 = .Θ 𝑛  (ignoring poly(log 𝑛 ) factors)
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• 𝑆 = 𝑛"#! for some constant 𝛿 > 0
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Space per Machine in MPC

• Strongly sublinear memory: 
• 𝑆 = 𝑛! for some constant 𝛿 ∈ (0, 1)

• Near-linear memory: 
• 𝑆 = .Θ 𝑛  (ignoring poly(log 𝑛 ) factors)

• Strongly superlinear memory: 
• 𝑆 = 𝑛"#! for some constant 𝛿 > 0

Also want: .𝑶 𝒏 +𝒎  
total space

All space per machine are sublinear in number of edges m in graph

Also want: 𝑶 𝟏  rounds  

Often 𝛿 = !
"
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Triangle Counting

3 triangles

• Clustering Algorithms
• Identifying thematic 

structures of 
networks

• Spam and fraud 
detection

• Link classification and 
recommendation

• Joining three relations 
in a database

• Database query 
optimization
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Triangle Counting in MPC Model

𝜹 > 𝟎 is any constant

Exact Setting
Previous Work MPC Rounds Space Per Machine Total Space

[SV11] 1 𝑂(𝑚/𝜌$) 𝑂 𝜌𝑚
[CC11] 𝑂(𝑛) 𝑂(𝑛) 𝑂(𝑚)

Folklore [CN85] 𝑂(log	𝑛) 𝑂(𝛼$) 𝑂(𝑚𝛼)
[BELMR22] 𝑂(log	log	𝑛) 𝑂(𝑛!) 𝑂(𝑚𝛼)

[SV11]: Suri and Vassilvitski, WWW ‘11
[CC11]: Chu and Cheng KDD ’11

[CN85]: Chiba and Nishizeki SICOMP ’85
[BELMR22]: Biswas, Eden, L, Mitrović, Rubinfeld APPROX ‘22
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Triangle Counting in MPC Model

𝜹 > 𝟎 is any constant

Exact Setting
Previous Work MPC Rounds Space Per Machine Total Space

[SV11] 1 𝑂(𝑚/𝜌$) 𝑂 𝜌𝑚
[CC11] 𝑂(𝑛) 𝑂(𝑛) 𝑂(𝑚)

Folklore [CN85] 𝑂(log	𝑛) 𝑂(𝛼$) 𝑂(𝑚𝛼)
[BELMR22] 𝑶(𝐥𝐨𝐠	𝐥𝐨𝐠	𝒏) 𝑶(𝒏𝜹) 𝑶(𝒎𝜶)

Arboricity 𝜶: number of 
forests that edges can be 

partitioned into

Real-world graphs: 
arboricity generally 

poly(log	𝒏)

[SV11]: Suri and Vassilvitski, WWW ‘11
[CC11]: Chu and Cheng KDD ’11

[CN85]: Chiba and Nishizeki SICOMP ’85
[BELMR22]: Biswas, Eden, L, Mitrović, Rubinfeld APPROX ‘22
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Arboricity of the Graph

• Arboricity of the graph
• Minimum number of forests to decompose the graph
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Chiba-Nishizeki Sum of Minimum Degree 
Endpoints [CN85]
• Given an input graph 𝐺	 = 	 (𝑉, 𝐸)	with arboricity 𝜶, it holds sum 

of minimum degrees endpoints of every edge is at most 𝟐𝒎𝜶
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Chiba-Nishizeki Sum of Minimum Degree 
Endpoints [CN85]
• Given an input graph 𝐺	 = 	 (𝑉, 𝐸)	with arboricity 𝜶, it holds sum 

of minimum degrees endpoints of every edge is at most 𝟐𝒎𝜶
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2Sum of minimum 
degrees of 

endpoints = 29

𝟐𝟗 ≤ 𝟐 ⋅ 𝟏𝟐 ⋅ 𝟐 = 𝟒𝟖	
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MPC Triangle Counting Algorithm

Send adjacency list of 
smaller degree endpoint 

of each edge to 
machines

Each machine generates 
wedge queries

Sort wedge queries with 
edges to produce set of 

triangles each edge is part of

Triple the number of 
triangles: divide by 3 to get 

count

Theorem: Exact triangle count in 𝑶 𝟏
𝜹

 MPC rounds, 
𝑶 𝒏𝜹  space per machine, and 𝑶 𝒎𝜶  total space. 
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Matching Lower Bound
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Each machine 
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Matching Lower Bound

𝑚/𝑛!  machines

Aggregate 
count into one 
machine—tree 

with 𝒎/𝒏𝜹 
leaves 5 6 8

11 14

25

Each machine can 
receive at most 𝑛!  

counts
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Matching Lower Bound

𝑚/𝑛!  machines

Aggregate 
count into one 
machine—tree 

with 𝒎/𝒏𝜹 
leaves 5 6 8

11 14

25

log"!
#
"!

≤ log"! 𝑛
$ =

𝛀 𝟏
𝜹

 depth for 𝛿 ∈ (0, 1)
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Open Questions and Future Directions

• Small subgraph counting for a broader class of small 
subgraphs

• Decrease the total space usage for exact triangle counting in 
𝑂 1  rounds to 𝑂 𝑚 + 𝑛  (even 𝑛 number of rounds, linear 
space per machine not known) 

• Approximate triangle counting in 𝑂 1  rounds and strictly 
sublinear space in sparse graphs where 𝑚 = L𝑂(𝑛)


