Brief Announcement: Improved Massively Parallel Triangle Counting in O(1) Rounds

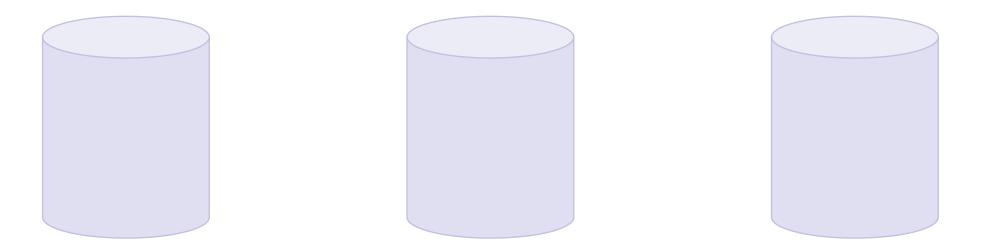
Quanquan C. Liu Yale University^m

quanquan.liu@yale.edu

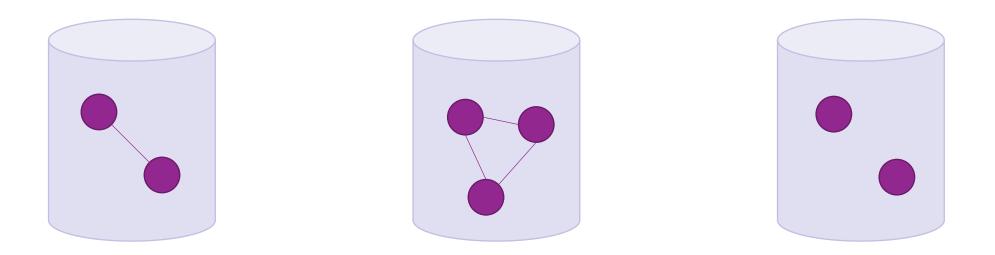
C. Seshadhri UC SANTA CRUZ sesh@ucsc.edu

- M machines
- Synchronous rounds

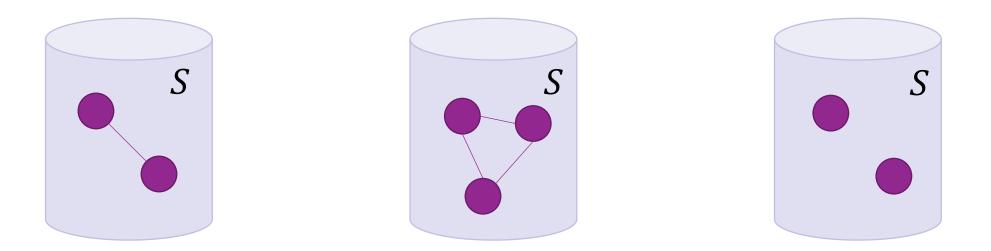
- *M* machines
- Synchronous rounds



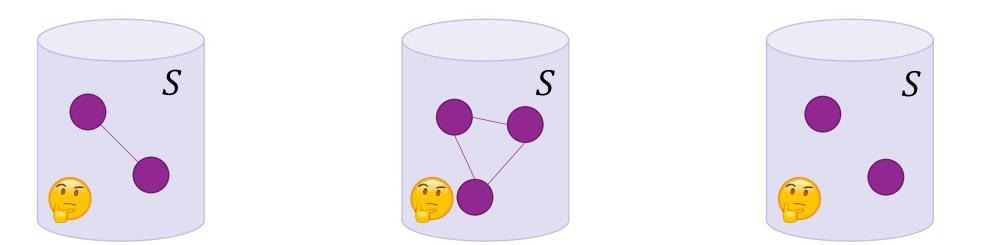
- M machines
- Synchronous rounds



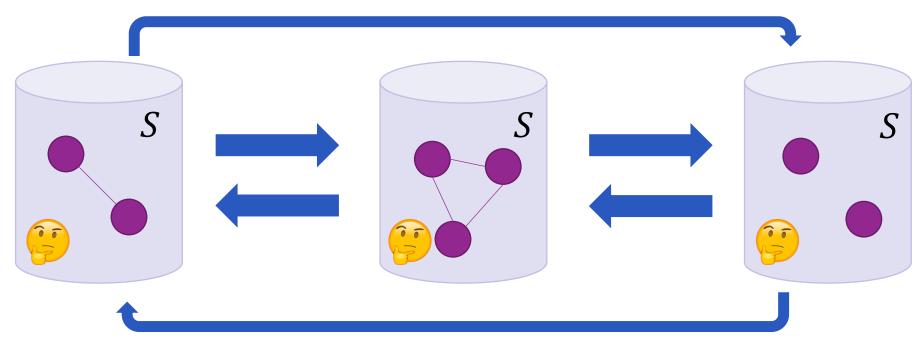
- M machines
- Synchronous rounds



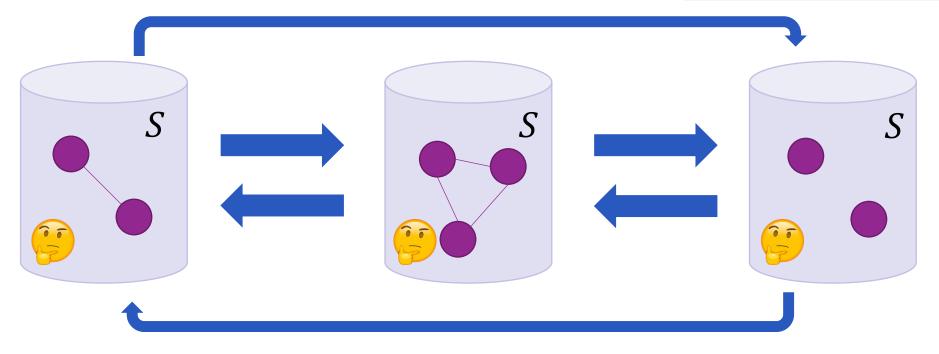
- M machines
- Synchronous rounds



- M machines
- Synchronous rounds



- M machines
- Synchronous rounds

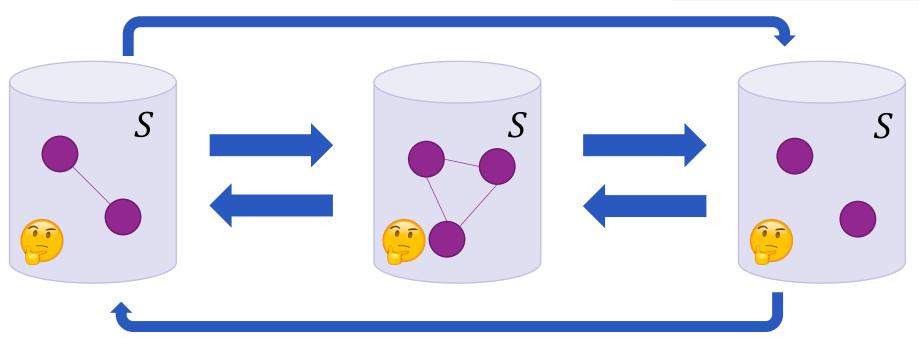


- M machines
- Synchronous rounds

Complexity measures:

- Total Space
- Space Per Machine
- Rounds of communication

Total Space: $M \cdot S$



- Strongly sublinear memory:
 - $S = n^{\delta}$ for some constant $\delta \in (0, 1)$
- Near-linear memory:
 - $S = \widetilde{\Theta}(n)$ (ignoring poly(log(n)) factors)
- Strongly superlinear memory:
 - $S = n^{1+\delta}$ for some constant $\delta > 0$

Also want: O(1) rounds

- Strongly sublinear memory:
 - $S = n^{\delta}$ for some constant $\delta \in (0, 1)$
- Near-linear memory:
 - $S = \widetilde{\Theta}(n)$ (ignoring poly(log(n)) factors)
- Strongly superlinear memory:
 - $S = n^{1+\delta}$ for some constant $\delta > 0$

Also want: O(1) rounds

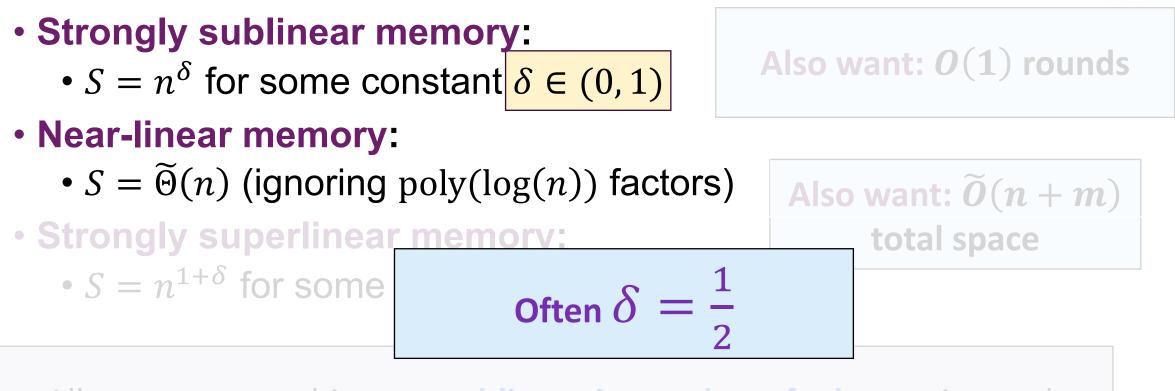
Also want: $\widetilde{O}(n+m)$ total space

- Strongly sublinear memory:
 - $S = n^{\delta}$ for some constant $\delta \in (0, 1)$
- Near-linear memory:
 - $S = \widetilde{\Theta}(n)$ (ignoring poly(log(n)) factors)
- Strongly superlinear memory:
 - $S = n^{1+\delta}$ for some constant $\delta > 0$

Also want: O(1) rounds

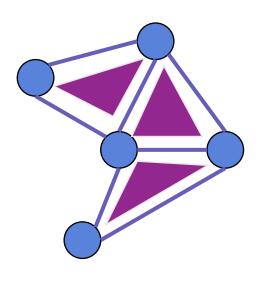
Also want: $\widetilde{O}(n+m)$ total space

All space per machine are sublinear in number of edges *m* in graph

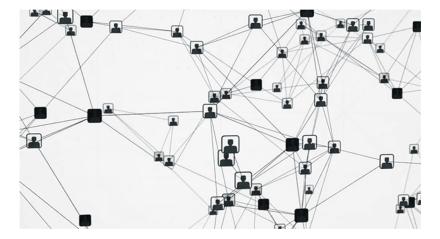


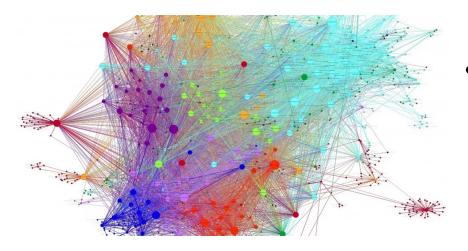
All space per machine are **sublinear in number of edges** *m* in graph

Triangle Counting



3 triangles





- **Clustering Algorithms**
- Identifying thematic structures of networks
 - Spam and fraud detection
- Link classification and recommendation
- Joining three relations in a database
 - Database query optimization

Triangle Counting in MPC Model

Exact Setting						
Previous Work	MPC Rounds	Space Per Machine	Total Space			
[SV11]	1	$O(m/\rho^2)$	O(ho m)			
[CC11]	O(n)	O(n)	O(m)			
Folklore [CN85]	$O(\log n)$	$O(\alpha^2)$	$O(m\alpha)$			
[BELMR22]	$O(\log \log n)$	$O(n^{\delta})$	$O(m\alpha)$			

$\delta > 0$ is any constant

[SV11]: Suri and Vassilvitski, WWW '11 [CC11]: Chu and Cheng KDD '11 [CN85]: Chiba and Nishizeki SICOMP '85 [BELMR22]: Biswas, Eden, L, Mitrović, Rubinfeld APPROX '22

Triangle Counting in MPC Model

Exact Setting						
Previous Work	MPC Rounds	Space Per Machine	Total Space			
[SV11]	1	$O(m/\rho^2)$	O(ho m)			
[CC11]	O(n)	O(n)	O(m)			
Folklore [CN85]	$O(\log n)$	$O(\alpha^2)$	$O(m\alpha)$			
[BELMR22]	$O(\log \log n)$	$oldsymbol{O}(n^{\delta})$	$O(m\alpha)$			

$\delta > 0$ is any constant

[SV11]: Suri and Vassilvitski, WWW '11 [CC11]: Chu and Cheng KDD '11 [CN85]: Chiba and Nishizeki SICOMP '85 [BELMR22]: Biswas, Eden, L, Mitrović, Rubinfeld APPROX '22

Triangle Counting in MPC Model

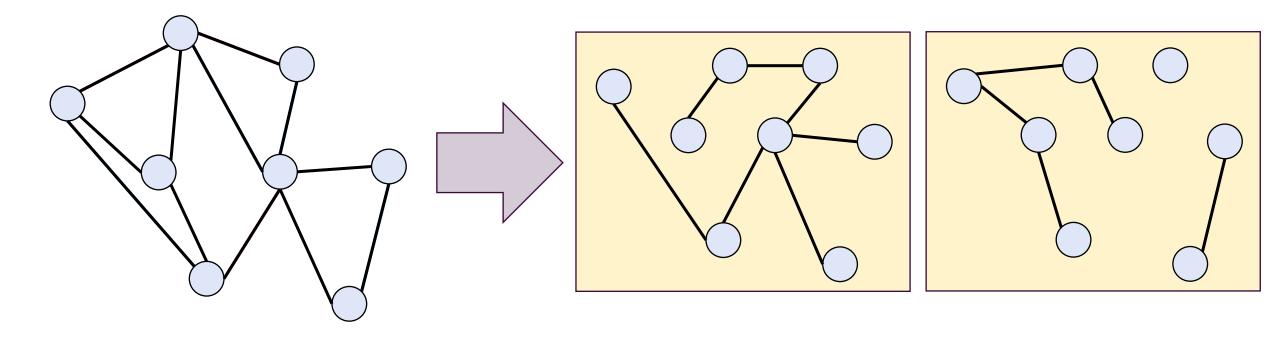
	Exact	Setting	Arboricity α : number of
Previous Work	MPC Rounds	Space Pe	forests that edges can be
[SV11]	1	0(m	partitioned into
[CC11]	O(n)	0(
Folklore [CN85]	$O(\log n)$	0(1	Real-world graphs: arboricity generally
[BELMR22]	$O(\log \log n)$	O (1	poly(log n)

$\delta > 0$ is any constant

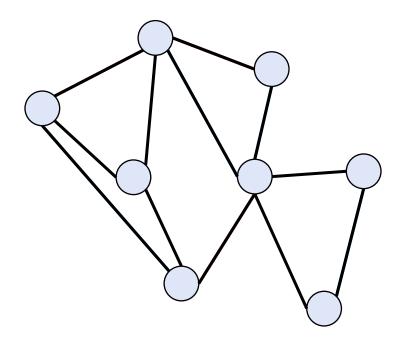
[SV11]: Suri and Vassilvitski, WWW '11 [CC11]: Chu and Cheng KDD '11 [CN85]: Chiba and Nishizeki SICOMP '85 [BELMR22]: Biswas, Eden, L, Mitrović, Rubinfeld APPROX '22

Arboricity of the Graph

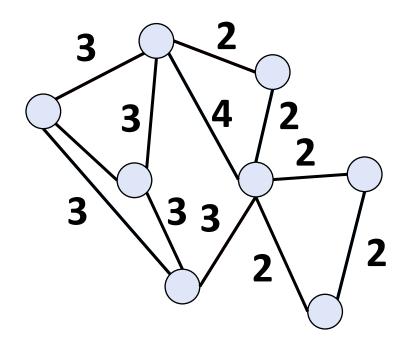
- Arboricity of the graph
 - Minimum number of forests to decompose the graph



• Given an input graph G = (V, E) with arboricity α , it holds sum of minimum degrees endpoints of every edge is at most $2m\alpha$

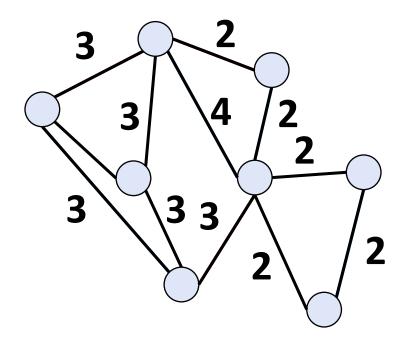


• Given an input graph G = (V, E) with arboricity α , it holds sum of minimum degrees endpoints of every edge is at most $2m\alpha$



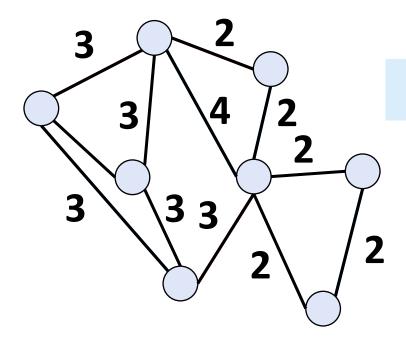
• Given an input graph G = (V, E) with arboricity α , it holds sum of minimum degrees endpoints of every edge is at most $2m\alpha$

Sum of minimum degrees of endpoints = **29**

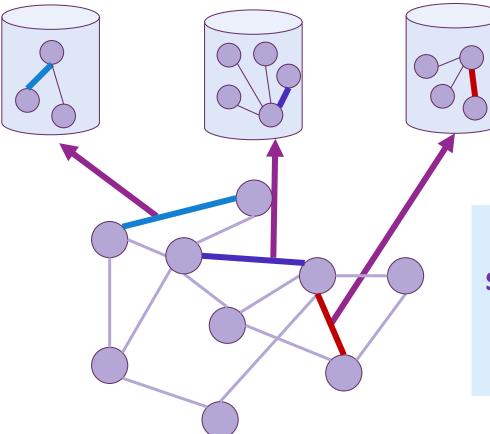


• Given an input graph G = (V, E) with arboricity α , it holds sum of minimum degrees endpoints of every edge is at most $2m\alpha$

Sum of minimum degrees of endpoints = **29**



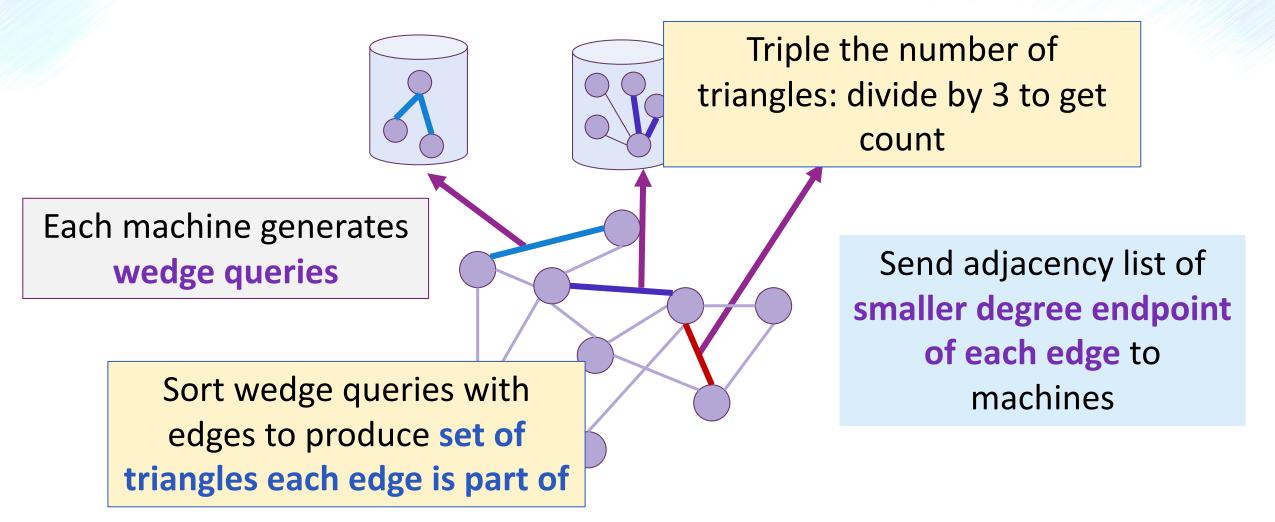
$29 \leq 2 \cdot 12 \cdot 2 = 48$

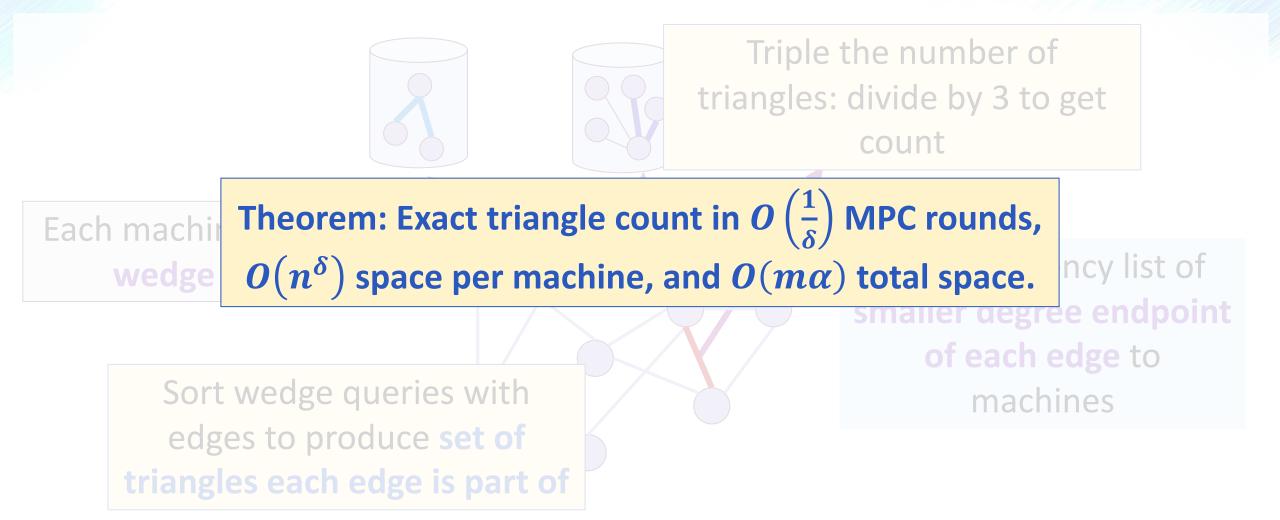


Each machine generates wedge queries

Each machine generates wedge queries

Each machine generates wedge queries Sort wedge queries with edges to produce set of triangles each edge is part of



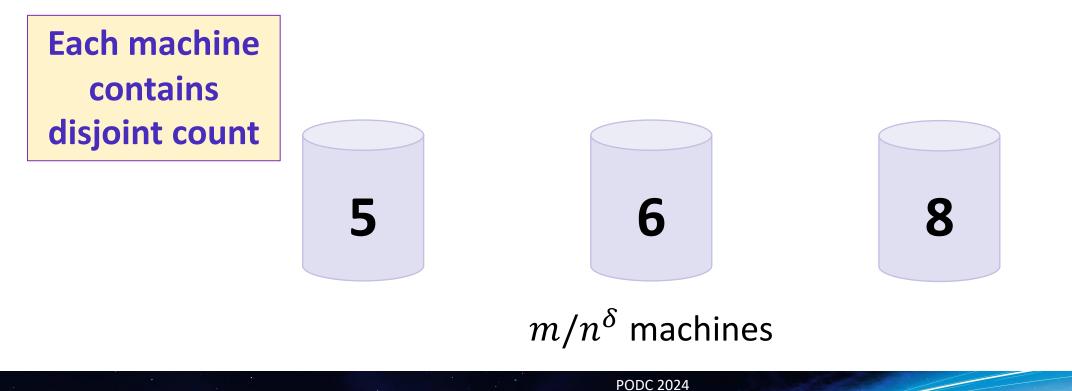


Matching Lower Bound

Theorem: Exact triangle count requires $\Omega\left(\frac{1}{\delta}\right)$ MPC rounds, when given $O(n^{\delta})$ space per machine, and $O(m\alpha)$ total space.

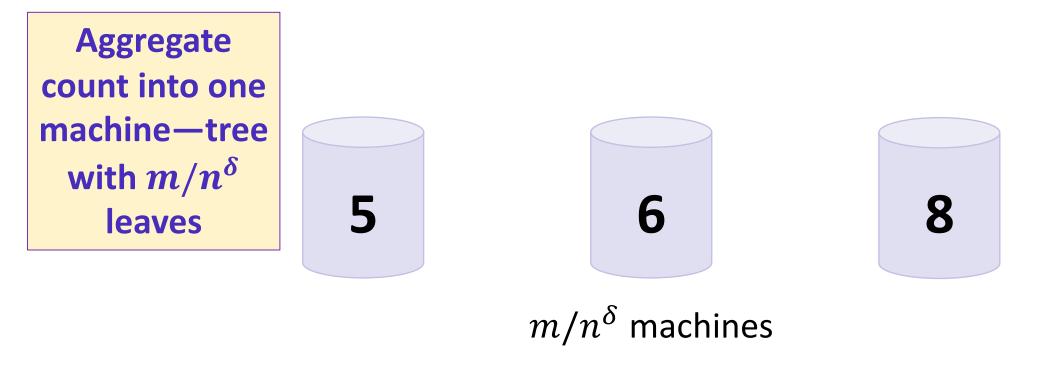
Matching Lower Bound

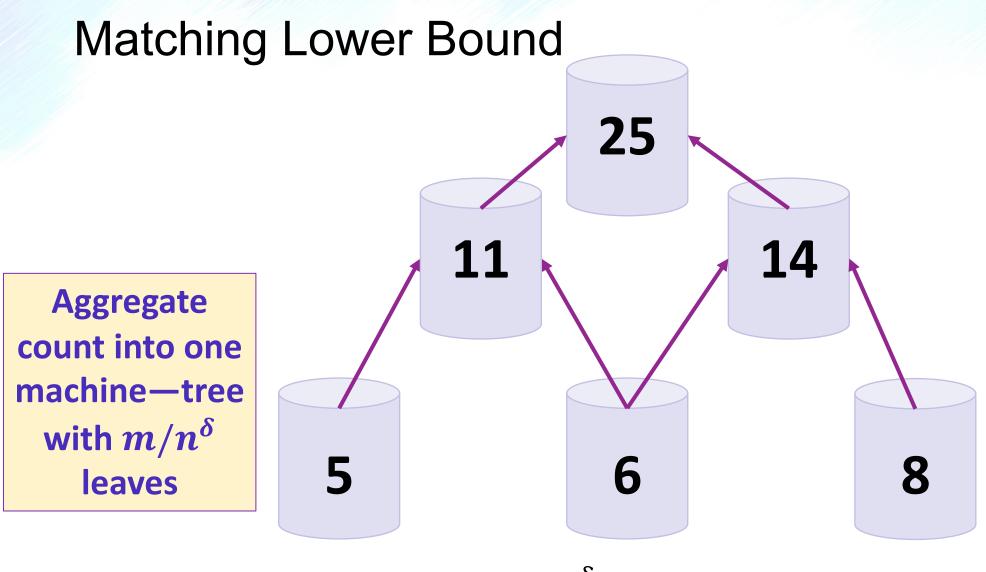
Theorem: Exact triangle count requires $\Omega\left(\frac{1}{\delta}\right)$ MPC rounds, when given $O(n^{\delta})$ space per machine, and $O(m\alpha)$ total space.



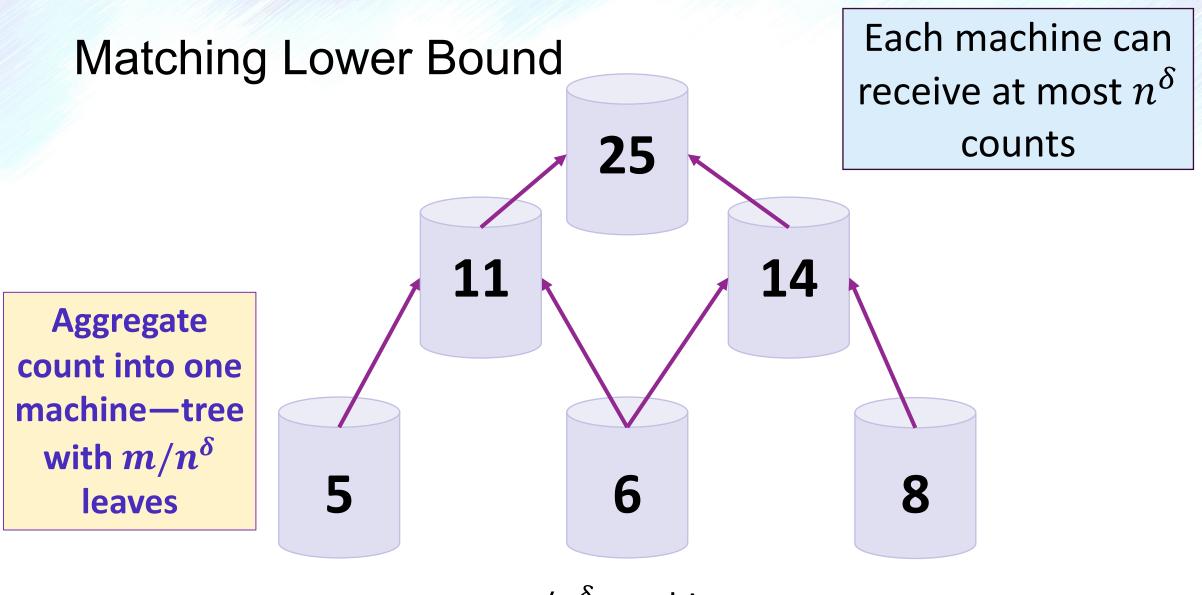
Matching Lower Bound

Theorem: Exact triangle count requires $\Omega\left(\frac{1}{\delta}\right)$ MPC rounds, when given $O(n^{\delta})$ space per machine, and $O(m\alpha)$ total space.





 m/n^{δ} machines



 m/n^{δ} machines



Open Questions and Future Directions

Small subgraph counting for a broader class of small subgraphs

Open Questions and Future Directions

- Small subgraph counting for a broader class of small subgraphs
- Decrease the total space usage for exact triangle counting in O(1) rounds to O(m + n) (even \sqrt{n} number of rounds, linear space per machine not known)

Open Questions and Future Directions

- Small subgraph counting for a broader class of small subgraphs
- Decrease the total space usage for exact triangle counting in O(1) rounds to O(m + n) (even \sqrt{n} number of rounds, linear space per machine not known)
- Approximate triangle counting in O(1) rounds and strictly sublinear space in sparse graphs where $m = \tilde{O}(n)$