
ITCS 2022

Near-Optimal Distributed Implementations of Dynamic
Algorithms for Symmetry-Breaking Problems

Shiri Antaki Quanquan C. Liu Shay Solomon
Tel Aviv University MIT Tel Aviv University

ITCS 2022

Graph Algorithms
• Traditionally in sequential,

centralized setting

ITCS 2022

Graph Algorithms
• Traditionally in sequential,

centralized setting

• Static algorithms recompute
the solution each time

ITCS 2022

Graph Algorithms

~ 2 billion edges

~ 92.5 million edges

~ 128 billion edges

Example Sizes of Publicly Available Datasets

• Traditionally in sequential,
centralized setting

• Static algorithms recompute
the solution each time

ITCS 2022

Graph Algorithms

Graphs Topology Dynamically Changing
with Edge Insertions and Deletions

~ 2 billion edges

~ 92.5 million edges

~ 128 billion edges

Example Sizes of Publicly Available Datasets

• Traditionally in sequential,
centralized setting

• Static algorithms recompute
the solution each time

Large Graphs Too Expensive to Rerun Even
Linear Time Static Algorithms After Updates

ITCS 2022

Dynamic Graph Algorithms
• Traditionally in sequential,

centralized setting

ITCS 2022

Dynamic Graph Algorithms
• Traditionally in sequential,

centralized setting

• Dynamic algorithms recompute
part of the solution after each
update

ITCS 2022

Dynamic Graph Algorithms
• Traditionally in sequential,

centralized setting

• Dynamic algorithms recompute
part of the solution after each
update

• Quality measure is update time,
time to recompute solution

ITCS 2022

Dynamic Graph Algorithms

𝑣

𝑤

𝑥

𝑢

Example Maximal Independent Set
Updated After Edge Insertions/Deletions

Goal (Sequential, Centralized Setting):
Minimize Update Time

• Traditionally in sequential,
centralized setting

• Dynamic algorithms recompute
part of the solution after each
update

• Quality measure is update time,
time to recompute solution

ITCS 2022

Dynamic Graph Algorithms

𝑣

𝑤

𝑥

𝑢

Example Maximal Independent Set
Updated After Edge Insertions/Deletions

Goal (Sequential, Centralized Setting):
Minimize Update Time

Look at Direct Neighbors to Update MIS

• Traditionally in sequential,
centralized setting

• Dynamic algorithms recompute
part of the solution after each
update

• Quality measure is update time,
time to recompute solution

ITCS 2022

Dynamic Graph Algorithms

𝑣

𝑤

𝑥

𝑢

Example Maximal Independent Set
Updated After Edge Insertions/Deletions

Goal (Sequential, Centralized Setting):
Minimize Update Time

Look at Direct Neighbors to Update MIS

• Traditionally in sequential,
centralized setting

• Dynamic algorithms recompute
part of the solution after each
update

• Quality measure is update time,
time to recompute solution

ITCS 2022

Dynamic Graph Algorithms

𝑣

𝑤

𝑥

𝑢

Example Maximal Independent Set
Updated After Edge Insertions/Deletions

Goal (Sequential, Centralized Setting):
Minimize Update Time

Look at Direct Neighbors to Update MIS

• Traditionally in sequential,
centralized setting

• Dynamic algorithms recompute
part of the solution after each
update

• Quality measure is update time,
time to recompute solution

ITCS 2022

Dynamic Graph Algorithms

𝑣

𝑤

𝑥

𝑢

Example Maximal Independent Set
Updated After Edge Insertions/Deletions

Goal (Sequential, Centralized Setting):
Minimize Update Time

Look at Direct Neighbors to Update MIS

• Traditionally in sequential,
centralized setting

• Dynamic algorithms recompute
part of the solution after each
update

• Quality measure is update time,
time to recompute solution

ITCS 2022

Dynamic Graph Algorithms

𝑣

𝑤

𝑥

𝑢

Example Maximal Independent Set
Updated After Edge Insertions/Deletions

Goal (Sequential, Centralized Setting):
Minimize Update Time

Look at Direct Neighbors to Update MIS

• Traditionally in sequential,
centralized setting

• Dynamic algorithms recompute
part of the solution after each
update

• Quality measure is update time,
time to recompute solution

ITCS 2022

Dynamic Graph Algorithms
• Traditionally in sequential,

centralized setting

• Dynamic algorithms recompute
part of the solution after each
update

• Quality measure is update time,
time to recompute solution 𝑤

𝑥

Example Maximal Independent Set
Updated After Edge Insertions/Deletions

Goal (Sequential, Centralized Setting):
Minimize Update Time

Look at Direct Neighbors to Update MIS

Billions or Even Trillions of Edges

Graph Too Large to Fit and Too Much Time
Process Sequentially on One Machine

ITCS 2022

Distributed Algorithms and Networks
Split the Large Graph Among Many

Different Processors/Machines

ITCS 2022

Distributed Algorithms and Networks
Split the Large Graph Among Many

Different Processors/Machines

Each Node is a Processor/Machine

ITCS 2022

Distributed Algorithms and Networks
Split the Large Graph Among Many

Different Processors/Machines

Each Node is a Processor/Machine Edges are Communication Links

ITCS 2022

Distributed Algorithms and Networks

Nodes Send Messages to Other Nodes Via Edges
Nodes Can Choose to Send to Some/All Neighbors

ITCS 2022

Distributed Algorithms and Networks

Nodes Use Multiple Rounds of Communication to Send Messages

ITCS 2022

Distributed Algorithms and Networks

Each Round Nodes Can Send to Same or Different Neighbors

ITCS 2022

Distributed Algorithms and Networks

Message Complexity
Number of Messages

Sent in Total
CONGEST Model:

Messages have 𝑂 log 𝑛 size

ITCS 2022

Distributed Algorithms and Networks

Message Complexity
Number of Messages

Sent in Total

Too many messages:
overwhelms bandwidth

CONGEST Model:
Messages have 𝑂 log 𝑛 size

ITCS 2022

Distributed Algorithms and Networks

Message Complexity
Number of Messages

Sent in Total

Round Complexity
Multiple Rounds of

Communication

CONGEST Model:
Messages have 𝑂 log 𝑛 size

ITCS 2022

Distributed Algorithms and Networks

Message Complexity
Number of Messages

Sent in Total

Round Complexity
Multiple Rounds of

Communication

Too many rounds:
takes too long and sends

too many messages

ITCS 2022

Dynamic Distributed Networks

Message Complexity
Number of Messages

Sent in Total

Round Complexity
Multiple Rounds of

Communication

Edges Can be Added and Deleted from the Network
Changes Network Communication Topology

ITCS 2022

Dynamic Distributed Networks

Message Complexity
Number of Messages

Sent in Total

Round Complexity
Multiple Rounds of

Communication

Edges Can be Added and Deleted from the Network
Changes Network Communication Topology

Grand Prize:
• message complexity matches update time of

best-known sequential, centralized algorithm
• round complexity is 𝑶(𝟏)

ITCS 2022

Dynamic Distributed Networks

Message Complexity
Number of Messages

Sent in Total

Round Complexity
Multiple Rounds of

Communication

Edges Can be Added and Deleted from the Network
Changes Network Communication Topology

Robust against adaptive adversaries

Grand Prize:
• message complexity matches update time of

best-known sequential, centralized algorithm
• round complexity is 𝑶(𝟏)

ITCS 2022

Previous Work: Dynamic Distributed Algorithms

• Most previous work focused on minimizing round complexity
[BEG18, BKM19, CDKPS20, CHK16, KW13, LPR09, PPS16]

• Dynamically changing distributed networks

• Very recently, [BKM19] and [CDKPS20] also studied
simultaneously handling many concurrent updates

• Previous algorithms send messages to all neighbors

• Results in Ω Δ messages for Δ = max degree

• Can be as large as Ω Δ for sparse graphs

ITCS 2022

Previous Work: Dynamic Distributed Algorithms

• Most previous work focused on minimizing round complexity
[BEG18, BKM19, CDKPS20, CHK16, KW13, LPR09, PPS16]

• Dynamically changing distributed networks

• Very recently, [BKM19] and [CDKPS20] also studied
simultaneously handling many concurrent updates

• Previous algorithms send messages to all neighbors

• Results in Ω Δ messages for Δ = max degree

• Can be as large as Ω Δ for sparse graphs

ITCS 2022

Previous Work: Dynamic Distributed Algorithms

• Most previous work focused on minimizing round complexity
[BEG18, BKM19, CDKPS20, CHK16, KW13, LPR09, PPS16]

• Dynamically changing distributed networks

• Very recently, [BKM19] and [CDKPS20] also studied
simultaneously handling many concurrent updates

• Previous algorithms send messages to all neighbors

• Results in Ω Δ messages for Δ = max degree

• Can be as large as Ω Δ for sparse graphs

ITCS 2022

Previous Work: Dynamic Distributed Algorithms

• Most previous work focused on minimizing round complexity
[BEG18, BKM19, CDKPS20, CHK16, KW13, LPR09, PPS16]

• Dynamically changing distributed networks

• Very recently, [BKM19] and [CDKPS20] also studied
simultaneously handling many concurrent updates

• Previous algorithms send messages to all neighbors (broadcast)

• Results in Ω Δ messages for Δ = max degree

• Can be as large as Ω Δ for sparse graphs

ITCS 2022

Previous Work: Dynamic Distributed Algorithms

• Most previous work focused on minimizing round complexity
[BEG18, BKM19, CDKPS20, CHK16, KW13, LPR09, PPS16]

• Dynamically changing distributed networks

• Very recently, [BKM19] and [CDKPS20] also studied
simultaneously handling many concurrent updates

• Previous algorithms send messages to all neighbors (broadcast)

• Results in Ω Δ messages for Δ = max degree

• djfdjsklf

ITCS 2022

Previous Work: Dynamic Distributed Algorithms

• Most previous work focused on minimizing round complexity
[BEG18, BKM19, CDKPS20, CHK16, KW13, LPR09, PPS16]

• Dynamically changing distributed networks

• Very recently, [BKM19] and [CDKPS20] also studied
simultaneously handling many concurrent updates

• Previous algorithms send messages to all neighbors (broadcast)

• Results in Ω Δ messages for Δ = max degree

• Can be as large as Ω 𝑚 for sparse graphs

ITCS 2022

Previous Work: Dynamic Distributed Algorithms

• Most previous work focused on minimizing round complexity
[BEG18, BKM19, CDKPS20, CHK16, KW13, LPR09, PPS16]

• Dynamically changing distributed networks

• Very recently, [BKM19] and [CDKPS20] also studied
simultaneously handling many concurrent updates

• Previous algorithms send messages to all neighbors (broadcast)

• Results in Ω Δ messages for Δ = max degree

• Can be as large as Ω 𝑚 for sparse graphs

Very few previous works consider
number of messages sent

ITCS 2022

Previous Work: Dynamic Distributed Algorithms

• Most previous work focused on minimizing round complexity
[BEG18, BKM19, CDKPS20, CHK16, KW13, LPR09, PPS16]

• Dynamically changing distributed networks

• Very recently, [BKM19] and [CDKPS20] also studied
simultaneously handling many concurrent updates

• Previous algorithms send messages to all neighbors (broadcast)

• Results in Ω Δ messages for Δ = max degree

• Can be as large as Ω Δ for sparse graphs

Very few previous works consider
number of messages sent

Many practical real-world situations
require few messages:

• Systems with poor wireless
connections

• Over-saturated network with
many independent agents

• Mobile data network in poorly
connected area

ITCS 2022

Previous Work: Dynamic Distributed Algorithms

• Most previous work focused on minimizing round complexity
[BEG18, BKM19, CDKPS20, CHK16, KW13, LPR09, PPS16]

• Dynamically changing distributed networks

• Very recently, [BKM19] and [CDKPS20] also studied
simultaneously handling many concurrent updates

• Previous algorithms send messages to all neighbors (broadcast)

• Results in Ω Δ messages for Δ = max degree

• Can be as large as Ω Δ for sparse graphs

Very few previous works consider
number of messages sent

Many practical real-world situations
require few messages:

• Systems with poor wireless
connections

• Over-saturated network with
many independent agents

• Mobile data network in poorly
connected area

ITCS 2022

Previous Work: Dynamic Distributed Algorithms

• Most previous work focused on minimizing round complexity
[BEG18, BKM19, CDKPS20, CHK16, KW13, LPR09, PPS16]

• Dynamically changing distributed networks

• Very recently, [BKM19] and [CDKPS20] also studied
simultaneously handling many concurrent updates

• Previous algorithms send messages to all neighbors (broadcast)

• Results in Ω Δ messages for Δ = max degree

• Can be as large as Ω Δ for sparse graphs

Very few previous works consider
number of messages sent

Many practical real-world situations
require few messages:

• Systems with poor wireless
connections

• Over-saturated network with
many independent agents

• Mobile data network in poorly
connected area

ITCS 2022

Previous Work: Dynamic Distributed Algorithms

• Most previous work focused on minimizing round complexity
[BEG18, BKM19, CDKPS20, CHK16, KW13, LPR09, PPS16]

• Dynamically changing distributed networks

• Very recently, [BKM19] and [CDKPS20] also studied
simultaneously handling many concurrent updates

• Previous algorithms send messages to all neighbors (broadcast)

• Results in Ω Δ messages for Δ = max degree

• Can be as large as Ω Δ for sparse graphs

Very few previous works consider
number of messages sent

Many practical real-world situations
require few messages:

• Systems with poor wireless
connections

• Over-saturated network with
many independent agents

• Mobile data network in poorly
connected area

ITCS 2022

Message Complexity for Dynamic Distributed Algorithms

• Send messages to specific subsets of neighbors, not all (multicast)
• [AOSS18, PS16] studied message complexity for certain problems

• [AOSS18] gave 𝑂 𝑚*/, amortized messages and 𝑂 1 round
algorithm for MIS

• [PS16] gave an 𝑂 𝛼/𝜖 amortized messages and 𝑂 1 round algorithm
for 1 + 𝜖 -maximum cardinality matching

• 𝛼 is a graph property, arboricity
• 𝛼 could be as large as 𝑂 𝑚

• [KS18] gave an 𝑂 log 𝑛 amortized messages low out-degree
orientation algorithm in 𝑂 1 amortized rounds when 𝛼 is constant

ITCS 2022

Message Complexity for Dynamic Distributed Algorithms

• Send messages to specific subsets of neighbors, not all (multicast)
• [AOSS18, PS16, KS18] studied message complexity for certain problems

• [AOSS18] gave 𝑂 𝑚*/, amortized messages and 𝑂 1 round
algorithm for MIS

• [PS16] gave an 𝑂 𝛼/𝜖 amortized messages and 𝑂 1 round algorithm
for 1 + 𝜖 -maximum cardinality matching

• 𝛼 is a graph property, arboricity
• 𝛼 could be as large as 𝑂 𝑚

• [KS18] gave an 𝑂 log 𝑛 amortized messages low out-degree
orientation algorithm in 𝑂 1 amortized rounds when 𝛼 is constant

ITCS 2022

Message Complexity for Dynamic Distributed Algorithms

• Send messages to specific subsets of neighbors, not all (multicast)
• [AOSS18, PS16, KS18] studied message complexity for certain problems

• [AOSS18] gave 𝑂 𝑚*/, amortized messages and 𝑂 1 round
algorithm for MIS

• [PS16] gave an 𝑂 𝛼/𝜖 amortized messages and 𝑂 1 round algorithm
for 1 + 𝜖 -maximum cardinality matching

• 𝛼 is a graph property, arboricity
• 𝛼 could be as large as 𝑂 𝑚

• [KS18] gave an 𝑂 log 𝑛 amortized messages low out-degree
orientation algorithm in 𝑂 1 amortized rounds when 𝛼 is constant

ITCS 2022

Message Complexity for Dynamic Distributed Algorithms

• Send messages to specific subsets of neighbors, not all (multicast)
• [AOSS18, PS16, KS18] studied message complexity for certain problems

• [AOSS18] gave 𝑂 𝑚*/, amortized messages and 𝑂 1 round
algorithm for MIS

• [PS16] gave an 𝑂 𝛼/𝜖 worst-case messages and 𝑂 1 round
algorithm for 1 + 𝜖 -maximum cardinality matching

• 𝛼 is a graph property, arboricity
• 𝛼 could be as large as 𝑂 𝑚

• [KS18] gave an 𝑂 log 𝑛 amortized messages low out-degree
orientation algorithm in 𝑂 1 amortized rounds when 𝛼 is constant

ITCS 2022

Message Complexity for Dynamic Distributed Algorithms

• Send messages to specific subsets of neighbors, not all (multicast)
• [AOSS18, PS16, KS18] studied message complexity for certain problems

• [AOSS18] gave 𝑂 𝑚*/, amortized messages and 𝑂 1 round
algorithm for MIS

• [PS16] gave an 𝑂 𝛼/𝜖 worst-case messages and 𝑂 1 round
algorithm for 1 + 𝜖 -maximum cardinality matching

• 𝛼 is a graph property, arboricity
• 𝛼 could be as large as 𝑂 𝑚

• [KS18] gave an 𝑂 log 𝑛 amortized messages low out-degree
orientation algorithm in 𝑂 1 amortized rounds when 𝛼 is constant

ITCS 2022

Message Complexity for Dynamic Distributed Algorithms

• Send messages to specific subsets of neighbors, not all (multicast)
• [AOSS18, PS16, KS18] studied message complexity for certain problems

• [AOSS18] gave 𝑂 𝑚*/, amortized messages and 𝑂 1 round
algorithm for MIS

• [PS16] gave an 𝑂 𝛼/𝜖 worst-case messages and 𝑂 1 round
algorithm for 1 + 𝜖 -maximum cardinality matching

• 𝛼 is a graph property, arboricity
• 𝛼 could be as large as 𝑚

• [KS18] gave an 𝑂 log 𝑛 amortized messages low out-degree
orientation algorithm in 𝑂 1 amortized rounds when 𝛼 is constant

ITCS 2022

Message Complexity for Dynamic Distributed Algorithms

• Send messages to specific subsets of neighbors, not all (multicast)
• [AOSS18, PS16, KS18] studied message complexity for certain problems

• [AOSS18] gave 𝑂 𝑚*/, amortized messages and 𝑂 1 round
algorithm for MIS

• [PS16] gave an 𝑂 𝛼/𝜖 worst-case messages and 𝑂 1 round
algorithm for 1 + 𝜖 -maximum cardinality matching

• 𝛼 is a graph property, arboricity
• 𝛼 could be as large as 𝑚

• [KS18] gave an 𝑂 log 𝑛 amortized messages low out-degree
orientation algorithm in 𝑂 1 amortized rounds for constant 𝛼

ITCS 2022

• Send messages to specific subsets of neighbors, not all (multicast)
• [AOSS18, PS16, KS18] studied message complexity for certain problems

• [AOSS18] gave 𝑂 𝑚*/, amortized messages and 𝑂 1 round
algorithm for MIS

• [PS16] gave an 𝑂 𝛼/𝜖 amortized messages and 𝑂 1 round algorithm
for 1 + 𝜖 -maximum cardinality matching

• 𝛼 is a graph property, arboricity
• 𝛼 could be as large as 𝑚

• [KS18] gave an 𝑂 log 𝑛 amortized messages low out-degree
orientation algorithm in 𝑂 1 amortized rounds for constant 𝛼

Message Complexity for Dynamic Distributed Algorithms

Grand Prize:
• message complexity matches update time of

best-known sequential, centralized algorithm
• round complexity is 𝑶(𝟏)

ITCS 2022

Challenges with Adapting Centralized Algorithms

Determining Number of
Edges After Insertions

and Deletions

𝑚 = 16𝑚 = 17𝑚 = 16𝑚 = 15𝑚 = 16𝑚 = 15𝑚 = 16𝑚 = 17𝑚 = 16𝑚 = 17𝑚 = 16𝑚 = 17𝑚 = 16

ITCS 2022

Challenges with Adapting Centralized Algorithms

Many Centralized Algorithms use Global
Restarts (Large Part of Graph Restarts)

ITCS 2022

Challenges with Adapting Centralized Algorithms

Many Centralized Algorithms use Global
Restarts (Large Part of Graph Restarts)

Global Restarts Must Be
Propagated to a Large

Portion of Network

ITCS 2022

Challenges with Adapting Centralized Algorithms

High Round and High
Message Complexity

Many Centralized Algorithms use Global
Restarts (Large Part of Graph Restarts)

Global Restarts Must Be
Propagated to a Large

Portion of Network

ITCS 2022

Challenges with Adapting Centralized Algorithms

High Round and High
Message Complexity

Many Centralized Algorithms use Global
Restarts (Large Part of Graph Restarts)

Global Restarts Must Be
Propagated to a Large

Portion of Network

ITCS 2022

Challenges with Adapting Centralized Algorithms

High Round and High
Message Complexity

Many Centralized Algorithms use Global
Restarts (Large Part of Graph Restarts)

Global Restarts Must Be
Propagated to a Large

Portion of Network

ITCS 2022

Challenges with Adapting Centralized Algorithms

High Round and High
Message Complexity

Many Centralized Algorithms use Global
Restarts (Large Part of Graph Restarts)

Global Restarts Must Be
Propagated to a Large

Portion of Network

ITCS 2022

Challenges with Adapting Centralized Algorithms

High Round and High
Message Complexity

Many Centralized Algorithms use Global
Restarts (Large Part of Graph Restarts)

Global Restarts Must Be
Propagated to a Large

Portion of Network

ITCS 2022

Solution: Consider
Partial Local

Neighborhood

Partial Neighborhood:
reduces message complexity

Local Neighborhood:
reduces round complexity

Challenges with Adapting Centralized Algorithms

ITCS 2022

Classic Symmetry-Breaking Problems

• (Δ + 1)-Coloring
• Maximal Matching and 3/2-Approximate Maximum Matching
• Maximal Independent Set

ITCS 2022

Classic Symmetry-Breaking Problems

• (Δ + 1)-Coloring
• Maximal Matching and 3/2-Approximate Maximum Matching
• Maximal Independent Set

Grand Prize:
• message complexity matches update time of

best-known sequential, centralized algorithm
• round complexity is 𝑶(𝟏)

ITCS 2022

Our Deterministic Algorithm Results
𝚫 + 𝟏 -Vertex Coloring

• 𝑂 𝑚 messages and 𝑂(1) rounds,
both worst-case

• Dynamic Edge Orientation Technique

• Matches best-known sequential,
centralized algorithm of [KNNP20]

Maximal Matching

• 𝑂 𝑚 messages and 𝑂(1) rounds,
both worst-case

• Dynamic Edge Orientation Technique

• Matches best-known sequential,
centralized algorithm of [NS13]

(3/2)-Maximum Matching

• 𝑂 𝑚 amortized messages and
𝑂(log Δ) rounds, worst case

• High-Degree/Low-Degree Partitioning
Using Surrogates

• Matches best-known sequential,
centralized algorithm of [NS13]

Maximal Independent Set

• 𝑂 𝑚!/# log! 𝑛 messages and
𝑂(log! 𝑛) rounds, amortized

• High-Degree/Low-Degree Partitioning
Using 6-Hop Neighborhood

• Use a small-diameter static algorithm
to obtain MIS in high-degree and
dynamic MIS for low-degree

• Matches best-known sequential,
centralized [GK21] up to 5𝑂 1 factor

ITCS 2022

(Δ + 1)-Coloring

No two adjacent nodes have
same color

Uses at most (Δ + 1) colors

Δ:maximum degree

ITCS 2022

(Δ + 1)-Coloring

No two adjacent nodes have
same color

Uses at most (Δ + 1) colors

Δ:maximum degree

Edge Insertions May Result in
Conflicts

ITCS 2022

(Δ + 1)-Coloring

No two adjacent nodes have
same color

Uses at most (Δ + 1) colors

Δ:maximum degree

Edge Insertions May Result in
Conflicts

ITCS 2022

(Δ + 1)-Coloring

No two adjacent nodes have
same color

Uses at most (Δ + 1) colors

Δ:maximum degree

Edge Insertions May Result in
Conflicts

ITCS 2022

(Δ + 1)-Coloring

No two adjacent nodes have
same color

Uses at most (Δ + 1) colors

Δ:maximum degree

Edge Insertions May Result in
Conflicts

ITCS 2022

Dynamic Edge Orientation Technique

• Each vertex maintains
counter 𝑝! ← deg(𝑣)

ITCS 2022

Dynamic Edge Orientation Technique

• Each vertex maintains
counter 𝑝! ← 1

• After degree of a vertex falls
outside "6

#
, 2𝑝! , ask

neighbors for degree𝑣

ITCS 2022

Dynamic Edge Orientation Technique

• Each vertex maintains
counter 𝑝! ← 1

• After degree of a vertex falls
outside "6

#
, 2𝑝! , ask

neighbors for degree𝑣

ITCS 2022

Dynamic Edge Orientation Technique

• Each vertex maintains
counter 𝑝! ← 1

• After degree of a vertex falls
outside "6

#
, 2𝑝! , ask

neighbors for degree𝑣

ITCS 2022

Dynamic Edge Orientation Technique

• Each vertex maintains
counter 𝑝! ← 1

• After degree of a vertex falls
outside "6

#
, 2𝑝! , ask

neighbors for degree𝑣

0
0

0

ITCS 2022

Dynamic Edge Orientation Technique

• Each vertex maintains
counter 𝑝! ← 1

• After degree of a vertex falls
outside "6

#
, 2𝑝! , ask

neighbors for degree
• Orient edges towards

smaller degree endpoint

𝑣

0
0

0

ITCS 2022

Dynamic Edge Orientation Technique

• Each vertex maintains
counter 𝑝! ← 1

• After degree of a vertex falls
outside "6

#
, 2𝑝! , ask

neighbors for degree
• Orient edges towards

smaller degree endpoint
• Reset counter 𝑝! ← deg(𝑣)
• Repeat under future updates

𝑣

0
0

0

ITCS 2022

Dynamic Edge Orientation Technique

• Each vertex maintains
counter 𝑝! ← 1

• After degree of a vertex falls
outside "6

#
, 2𝑝! , ask

neighbors for degree
• Orient edges towards

smaller degree endpoint
• Reset counter 𝑝! ← deg(𝑣)
• Repeat under future updates

𝑣

0
0

0

Invariant: at most 𝟒 𝒎 outgoing

ITCS 2022

Dynamic Edge Orientation Technique

• Each vertex maintains
counter 𝑝! ← 1

• After degree of a vertex falls
outside "6

#
, 2𝑝! , ask

neighbors for degree
• Orient edges towards

smaller degree endpoint
• Reset counter 𝑝! ← deg(𝑣)
• Repeat under future updates

𝑣

0
0

0

Invariant: at most 𝟒 𝒎 outgoing
𝒎 is the current
number of edges

ITCS 2022

Dynamic Edge Orientation Technique

• Round complexity: 𝑂(1)
worst-case

• Message complexity: 𝑂(1)
amortized

𝑣

0
0

0

Invariant: at most 𝟒 𝒎 outgoing
𝒎 is the current
number of edges

ITCS 2022

Dynamic Edge Orientation Technique

• Round complexity: 𝑂(1)
worst-case

• Message complexity: 𝑂(1)
amortized

• 𝑶(𝟏) worst-case
• Gradually 20

reorientations per update
for the next 𝑝!/10
updates

𝑣

0
0

0

Invariant: at most 𝟒 𝒎 outgoing
𝒎 is the current
number of edges

ITCS 2022

Dynamic Distributed (Δ + 1)-Coloring

• Hard case: edge insertions

𝑤

𝑣

𝑢

Invariant: at most 𝟒 𝒎 outgoing

ITCS 2022

Dynamic Distributed (Δ + 1)-Coloring

• Hard case: edge insertions
• Perform edge orientation

algorithm; reorient if
necessary

𝑤

𝑣

𝑢

Invariant: at most 𝟒 𝒎 outgoing

(𝑢, 𝑣) edge insertion

ITCS 2022

Dynamic Distributed (Δ + 1)-Coloring

• Hard case: edge insertions
• Perform edge orientation

algorithm; reorient if
necessary

𝑤

𝑣

𝑢

Invariant: at most 𝟒 𝒎 outgoing

(𝑢, 𝑣) edge insertion

ITCS 2022

Dynamic Distributed (Δ + 1)-Coloring

• Hard case: edge insertions
• Perform edge orientation

algorithm; reorient if
necessary

• Each flipped edge, update
neighbor about color

𝑤

𝑣

𝑢

Invariant: at most 𝟒 𝒎 outgoing

color

color

𝑢 sends color to 𝑣 and 𝑤

ITCS 2022

Dynamic Distributed (Δ + 1)-Coloring

• Hard case: edge insertions
• Perform edge orientation

algorithm; reorient if
necessary

• Each flipped edge, update
neighbor about color

• Ask outgoing neighbors their
colors

𝑤

𝑣

𝑢

Invariant: at most 𝟒 𝒎 outgoing

color

color

outgoing send colors to 𝑢

color

color
color

color

ITCS 2022

Dynamic Distributed (Δ + 1)-Coloring

• Hard case: edge insertions
• Perform edge orientation

algorithm; reorient if
necessary

• Each flipped edge, update
neighbor about color

• Ask outgoing neighbors their
colors

• Arbitrarily pick vertex recolor

𝑤

𝑣

𝑢

Invariant: at most 𝟒 𝒎 outgoing

𝑢 recolors itself

ITCS 2022

Dynamic Distributed (Δ + 1)-Coloring

• Hard case: edge insertions
• Perform edge orientation

algorithm; reorient if
necessary

• Each flipped edge, update
neighbor about color

• Ask outgoing neighbors their
colors

• Arbitrarily pick vertex recolor
• Send new color to outgoing

𝑤

𝑣

𝑢

Invariant: at most 𝟒 𝒎 outgoing

color

color

𝑢 recolors itself

ITCS 2022

Dynamic Distributed (Δ + 1)-Coloring

• Correctness: 𝑢 knows all
neighbor colors

• Can pick free color

𝑤

𝑣

𝑢

Invariant: at most 𝟒 𝒎 outgoing

color

color

𝑢 recolors itself

ITCS 2022

Dynamic Distributed (Δ + 1)-Coloring

• Correctness: 𝑢 knows all
neighbor colors

• Can pick free color
• Message Complexity:
𝑂 𝑚 worst-case

• Due to edge-orientation
𝑤

𝑣

𝑢

Invariant: at most 𝟒 𝒎 outgoing

color

color

𝑢 recolors itself

ITCS 2022

Dynamic Distributed (Δ + 1)-Coloring

• Correctness: 𝑢 knows all
neighbor colors

• Can pick free color
• Message Complexity:
𝑂 𝑚 worst-case

• Due to edge-orientation
• Round Complexity: 𝑂 1

worst-case

𝑤

𝑣

𝑢

Invariant: at most 𝟒 𝒎 outgoing

color

color

𝑢 recolors itself

ITCS 2022

Maximal Matching

Each vertex matched to at
most one neighbor

All vertices which can be
matched are matched

ITCS 2022

Maximal Matching
Edge Insertions and Deletions May

Violating Matching Maximality

Each vertex matched to at
most one neighbor

All vertices which can be
matched are matched

ITCS 2022

Maximal Matching
Edge Insertions and Deletions May

Violating Matching Maximality

Each vertex matched to at
most one neighbor

All vertices which can be
matched are matched

ITCS 2022

Maximal Matching
Edge Insertions and Deletions May

Violating Matching Maximality

Each vertex matched to at
most one neighbor

All vertices which can be
matched are matched

ITCS 2022

Maximal Matching
Edge Insertions and Deletions May

Violating Matching Maximality

Each vertex matched to at
most one neighbor

All vertices which can be
matched are matched

ITCS 2022

Maximal Matching

Each vertex matched to at
most one neighbor

All vertices which can be
matched are matched

Edge Insertions and Deletions May
Violating Matching Maximality

ITCS 2022

Dynamic Distributed Maximal Matching

• Easy case: edge insertions

𝑤

𝑥

𝑦

𝑣

𝑢

Invariant: at most 𝟒 𝒎 outgoing

ITCS 2022

• Easy case: edge insertions
• Orient edges as needed

𝑤

𝑥

𝑦

𝑣

𝑢

Invariant: at most 𝟒 𝒎 outgoing

Dynamic Distributed Maximal Matching

ITCS 2022

• Easy case: edge insertions
• Orient edges as needed
• Match if both endpoints

not matched
𝑤

𝑥

𝑦

𝑣

𝑢

Invariant: at most 𝟒 𝒎 outgoing

Dynamic Distributed Maximal Matching

ITCS 2022

• Harder case: edge deletions

𝑤

𝑥

𝑦

𝑣

𝑢

Invariant: at most 𝟒 𝒎 outgoing

Dynamic Distributed Maximal Matching

ITCS 2022

• Harder case: edge deletions
• Match to incoming neighbor

if any unmatched

𝑤

𝑥

𝑦

𝑣

𝑢

Invariant: at most 𝟒 𝒎 outgoing

𝑢 is matched

Dynamic Distributed Maximal Matching

ITCS 2022

• Harder case: edge deletions
• Match to incoming neighbor

if any unmatched
• Otherwise ask outgoing

neighbors if they are
matched

𝑤

𝑥

𝑦

𝑣

𝑢

Invariant: at most 𝟒 𝒎 outgoing

𝑣 is not matched

not
matched

Dynamic Distributed Maximal Matching

ITCS 2022

• Harder case: edge deletions
• Match to incoming neighbor

if any unmatched
• Otherwise ask outgoing

neighbors if they are
matched

• Match to unmatched
outgoing neighbor

𝑤

𝑥

𝑦

𝑣

𝑢

Invariant: at most 𝟒 𝒎 outgoing

(𝑣,𝑤) are now matched

Dynamic Distributed Maximal Matching

ITCS 2022

• Harder case: edge deletions
• Match to incoming neighbor

if any unmatched
• Otherwise ask outgoing

neighbors if they are
matched

• Match to unmatched
outgoing neighbor

• Inform outgoing neighbors

𝑤

𝑥

𝑦

𝑣

𝑎

𝑢

Invariant: at most 𝟒 𝒎 outgoing

𝑤 tells 𝑣 and 𝑎 it is matched

matched

matched

Dynamic Distributed Maximal Matching

ITCS 2022

Maximal Independent Set

• 𝑂 𝑚!/# log! 𝑛 messages and
𝑂(log! 𝑛) rounds, amortized

• High-Degree/Low-Degree Partitioning
Using 6-Hop Neighborhood

• Use a small-diameter static algorithm
to obtain MIS in high-degree and
dynamic MIS for low-degree

• Matches best-known sequential,
centralized [GK21] up to 5𝑂 1 factor

Our Deterministic Algorithm Results
𝚫 + 𝟏 -Vertex Coloring

• 𝑂 𝑚 messages and 𝑂(1) rounds,
both worst-case

• Dynamic Edge Orientation Technique

• Matches best-known sequential,
centralized algorithm of [KNNP20]

Maximal Matching

• 𝑂 𝑚 messages and 𝑂(1) rounds,
both worst-case

• Dynamic Edge Orientation Technique

• Matches best-known sequential,
centralized algorithm of [NS13]

(3/2)-Maximum Matching

• 𝑂 𝑚 amortized messages and
𝑂(log Δ) rounds, worst case

• High-Degree/Low-Degree Partitioning
Using Surrogates

• Matches best-known sequential,
centralized algorithm of [NS13]

ITCS 2022

(3/2)-Approximate Maximum Matching

(3/2)-Approximation of
Maximum Matching

ITCS 2022

(3/2)-Approximate Maximum Matching

(3/2)-Approximation of
Maximum Matching

Edge Insertions and Deletions May
Change Size of Maximum Matching

ITCS 2022

(3/2)-Approximate Maximum Matching

(3/2)-Approximation of
Maximum Matching

Edge Insertions and Deletions May
Change Size of Maximum Matching

ITCS 2022

(3/2)-Approximate Maximum Matching

(3/2)-Approximation of
Maximum Matching

Edge Insertions and Deletions May
Change Size of Maximum Matching

ITCS 2022

(3/2)-Approximate Maximum Matching

(3/2)-Approximation of
Maximum Matching

Edge Insertions and Deletions May
Change Size of Maximum Matching

Maximum matching
increased by 1

ITCS 2022

Sequential, Centralized Dynamic (3/2)-
Maximum Matching
• Neiman and Solomon (STOC 2013):

• Any (3/2)-maximum matching does not have an augmenting
path of length 3 or longer

ITCS 2022

Sequential, Centralized Dynamic (3/2)-
Maximum Matching
• Neiman and Solomon (STOC 2013):

• Any (3/2)-maximum matching does not have an augmenting
path of length 3 or longer

• Path that starts and ends on unmatched vertices and
alternate between edges in matching and not

ITCS 2022

Sequential, Centralized Dynamic (3/2)-
Maximum Matching
• Neiman and Solomon (STOC 2013):

• Any (3/2)-maximum matching does not have an augmenting
path of length 3 or longer

• Path that starts and ends on unmatched vertices and
alternate between edges in matching and not

• Partition vertices into high-degree (≥ 𝑚) and low-degree
• Always match high-degree vertices

ITCS 2022

Sequential, Centralized Dynamic (3/2)-
Maximum Matching
• Neiman and Solomon (STOC 2013):

• Any (3/2)-maximum matching does not have an augmenting
path of length 3 or longer

• Path that starts and ends on unmatched vertices and
alternate between edges in matching and not

• Partition vertices into high-degree (≥ 𝑚) and low-degree
• Always match high-degree vertices
• Look for augmenting paths through surrogates

ITCS 2022

Sequential, Centralized Dynamic (3/2)-
Maximum Matching
• Neiman and Solomon (STOC 2013):

• Any (3/2)-maximum matching does not have an augmenting
path of length 3 or longer

• Path that starts and ends on unmatched vertices and
alternate between edges in matching and not

• Partition vertices into high-degree (≥ 𝑚) and low-degree
• Always match high-degree vertices
• Look for augmenting paths through surrogates

ITCS 2022

Distributed, Dynamic (3/2)-Maximum
Matching

• Key Idea: Degree doubling
to find augmenting paths

𝑢 𝑣

ITCS 2022

Distributed, Dynamic (3/2)-Maximum
Matching

𝑢 𝑣

Edge Insertion (𝑢, 𝑣)

• Key Idea: Degree doubling
to find augmenting paths

• On update, search neighbors
for free vertex or surrogate

• Start with 1 neighbor

ITCS 2022

Distributed, Dynamic (3/2)-Maximum
Matching

𝑢 𝑣

Edge Insertion (𝑢, 𝑣)

• Key Idea: Degree doubling
to find augmenting paths

• On update, search neighbors
for free vertex or surrogate

• Start with 1 neighbor
• Successively double

neighbors searched, 𝟐𝒊

ITCS 2022

Distributed, Dynamic (3/2)-Maximum
Matching

• Key Idea: Degree doubling
to find augmenting paths

• On update, search neighbors
for free vertex or surrogate

• Start with 1 neighbor
• Successively double

neighbors searched, 𝟐𝒊

• Surrogate: matched
neighbor whose mate has
degree ≤ 2%

𝑢 𝑣

Edge Insertion (𝑢, 𝑣)

ITCS 2022

Distributed, Dynamic (3/2)-Maximum
Matching

• Key Idea: Degree doubling
to find augmenting paths

• On update, search neighbors
for free vertex or surrogate

• Start with 1 neighbor
• Successively double

neighbors searched, 𝟐𝒊

• Surrogate: matched
neighbor whose mate has
degree ≤ 2%

𝑢 𝑣

𝑣 searches 1 neighbor

ITCS 2022

Distributed, Dynamic (3/2)-Maximum
Matching

• Key Idea: Degree doubling
to find augmenting paths

• On update, search neighbors
for free vertex or surrogate

• Start with 1 neighbor
• Successively double

neighbors searched, 𝟐𝒊

• Surrogate: matched
neighbor whose mate has
degree ≤ 2%

𝑢

𝑥
𝑥′

𝑣

𝑥 does not have degree 1

ITCS 2022

Distributed, Dynamic (3/2)-Maximum
Matching

• Key Idea: Degree doubling
to find augmenting paths

• On update, search neighbors
for free vertex or surrogate

• Start with 1 neighbor
• Successively double

neighbors searched, 𝟐𝒊

• Surrogate: matched
neighbor whose mate has
degree ≤ 2%

𝑢

𝑥
𝑥′

𝑣

𝑣 searches two additional neighbors

ITCS 2022

Distributed, Dynamic (3/2)-Maximum
Matching

• Key Idea: Degree doubling
to find augmenting paths

• On update, search neighbors
for free vertex or surrogate

• Start with 1 neighbor
• Successively double

neighbors searched, 𝟐𝒊

• Surrogate: matched
neighbor whose mate has
degree ≤ 2%

𝑢

𝑥

𝑢$

𝑥′

𝑣

𝑢 has a mate 𝑢: with degree ≤ 2

ITCS 2022

Distributed, Dynamic (3/2)-Maximum
Matching

• Key Idea: Degree doubling
to find augmenting paths

• On update, search neighbors
for free vertex or surrogate

• Start with 1 neighbor
• Successively double

neighbors searched, 𝟐𝒊

• Surrogate: matched
neighbor whose mate has
degree ≤ 2%

𝑢

𝑥

𝑢$

𝑥′

𝑣

𝒖: is a surrogate

ITCS 2022

Distributed, Dynamic (3/2)-Maximum
Matching

• Match with neighbor if
surrogate found

𝑢

𝑥

𝑢$

𝑥′

𝑣

𝑣 matches with 𝑢

ITCS 2022

Distributed, Dynamic (3/2)-Maximum
Matching

• Match with neighbor if
surrogate found

• Surrogate matches with
free neighbor if exists

𝑎

𝑢

𝑥

𝑢$

𝑥′

𝑣

𝑢′matches with 𝑎

ITCS 2022

Distributed, Dynamic (3/2)-Maximum
Matching

• Match with neighbor if
surrogate found

• Surrogate matches with
free neighbor if exists

• Similar procedure for
deletions

𝑎

𝑢

𝑥

𝑢$

𝑥′

𝑣

𝑢′matches with 𝑎

ITCS 2022

Distributed, Dynamic (3/2)-Maximum
Matching

• Round complexity: 𝑂(logΔ)
worst-case𝑎

𝑢

𝑥

𝑢$

𝑥′

𝑣

𝑢′matches with 𝑎

ITCS 2022

Distributed, Dynamic (3/2)-Maximum
Matching

• Round complexity: 𝑂(logΔ)
worst-case

• Search at most Δ
neighbors, doubling

𝑎

𝑢

𝑥

𝑢$

𝑥′

𝑣

𝑢′matches with 𝑎

ITCS 2022

Distributed, Dynamic (3/2)-Maximum
Matching

• Round complexity: 𝑂(logΔ)
worst-case

• Search at most Δ
neighbors, doubling

• Message complexity: 𝑂 𝑚
amortized

𝑎

𝑢

𝑥

𝑢$

𝑥′

𝑣

𝑢′matches with 𝑎

ITCS 2022

Distributed, Dynamic (3/2)-Maximum
Matching

• Round complexity: 𝑂(logΔ)
worst-case

• Search at most Δ
neighbors, doubling

• Message complexity: 𝑂 𝑚
amortized

• At most 𝒎 matched
neighbors with mates ≥
𝒎 degree

𝑎

𝑢

𝑥

𝑢$

𝑥′

𝑣

𝑢′matches with 𝑎

ITCS 2022

Distributed, Dynamic (3/2)-Maximum
Matching

• Round complexity: 𝑂(logΔ)
worst-case

• Search at most Δ
neighbors, doubling

• Message complexity: 𝑂 𝑚
amortized

• At most 𝒎 matched
neighbors with mates ≥
𝒎 degree

• Need to search at most
2 𝑚 neighbors

𝑎

𝑢

𝑥

𝑢$

𝑥′

𝑣

𝑢′matches with 𝑎

ITCS 2022

Our Deterministic Algorithm Results
𝚫 + 𝟏 -Vertex Coloring

• 𝑂 𝑚 messages and 𝑂(1) rounds,
both worst-case

• Dynamic Edge Orientation Technique

• Matches best-known sequential,
centralized algorithm of [KNNP20]

Maximal Matching

• 𝑂 𝑚 messages and 𝑂(1) rounds,
both worst-case

• Dynamic Edge Orientation Technique

• Matches best-known sequential,
centralized algorithm of [NS13]

(3/2)-Maximum Matching

• 𝑂 𝑚 amortized messages and
𝑂(log Δ) rounds, worst case

• High-Degree/Low-Degree Partitioning
Using Surrogates

• Matches best-known sequential,
centralized algorithm of [NS13]

Maximal Independent Set

• 𝑂 𝑚!/# log! 𝑛 messages and
𝑂(log! 𝑛) rounds, amortized

• High-Degree/Low-Degree Partitioning
Using 6-Hop Neighborhood

• Use a small-diameter static algorithm
to obtain MIS in high-degree and
dynamic MIS for low-degree

• Matches best-known sequential,
centralized [GK21] up to 5𝑂 1 factor

ITCS 2022

Maximal Independent Set (MIS)

No two vertices in the
independent set are neighbors

All vertices that can be added to
the independent set are added

ITCS 2022

Maximal Independent Set (MIS)

No two vertices in the
independent set are neighbors

All vertices that can be added to
the independent set are added

Edge Insertions May Violate
Independence

ITCS 2022

Maximal Independent Set (MIS)

No two vertices in the
independent set are neighbors

All vertices that can be added to
the independent set are added

Edge Deletions May Violate
Maximality

ITCS 2022

Maximal Independent Set (MIS)

No two vertices in the
independent set are neighbors

All vertices that can be added to
the independent set are added

Edge Deletions May Violate
Maximality

ITCS 2022

Maximal Independent Set (MIS)

No two vertices in the
independent set are neighbors

All vertices that can be added to
the independent set are added

Edge Deletions May Violate
Maximality

ITCS 2022

Previous Deterministic Dynamic Distributed MIS

• Assadi, Onak, Schieber, and Solomon (STOC ‘18) provides a
deterministic, dynamic, distributed MIS algorithm

• 𝑂 𝑚*/, amortized messages, 𝑂 1 amortized rounds
• Assumes graph remains connected throughout updates

ITCS 2022

Previous Deterministic Dynamic Distributed MIS

• Assadi, Onak, Schieber, and Solomon (STOC ‘18) provides a
deterministic, dynamic, distributed MIS algorithm

• 𝑂 𝑚*/, amortized messages, 𝑂 1 amortized rounds
• Assumes graph remains connected throughout updates

ITCS 2022

Previous Deterministic Dynamic Distributed MIS

• Assadi, Onak, Schieber, and Solomon (STOC ‘18) provides a
deterministic, dynamic, distributed MIS algorithm

• 𝑂 𝑚*/, amortized messages, 𝑂 1 amortized rounds
• Assumes graph remains connected throughout updates

ITCS 2022

Previous Deterministic Dynamic Distributed MIS

• Assadi, Onak, Schieber, and Solomon (STOC ‘18) provides a
deterministic, dynamic, distributed MIS algorithm

• 𝑂 𝑚*/, amortized messages, 𝑂 1 amortized rounds
• Assumes graph remains connected throughout updates

Our Result: 𝑂 𝑚;/* log; 𝑛 amortized messages,
𝑂 log; 𝑛 amortized rounds

Does not need connectivity assumption

ITCS 2022

Sequential, Centralized, Dynamic MIS

• Gupta and Khan (SOSA 2021):

• Partition nodes into high-degree (≥ 𝒎𝟐/𝟑) and low-degree
• Low-degree nodes prioritize membership in MIS

• If no low-degree neighbor in MIS, add self to MIS

• High-degree nodes added to MIS if no low-degree neighbor in MIS
(and no other high-degree neighbors in MIS)

• Low-degree node exiting MIS causes all high-degree nodes to find
new MIS in induced subgraph (this is a global restart)

ITCS 2022

Sequential, Centralized, Dynamic MIS

• Gupta and Khan (SOSA 2021):

• Partition nodes into high-degree (≥ 𝒎𝟐/𝟑) and low-degree
• Low-degree nodes prioritize membership in MIS

• If no low-degree neighbor in MIS, add self to MIS

• High-degree nodes added to MIS if no low-degree neighbor in MIS
(and no other high-degree neighbors in MIS)

• Low-degree node exiting MIS causes all high-degree nodes to find
new MIS in induced subgraph (this is a global restart)

ITCS 2022

Sequential, Centralized, Dynamic MIS

• Gupta and Khan (SOSA 2021):

• Partition nodes into high-degree (≥ 𝒎𝟐/𝟑) and low-degree
• Low-degree nodes prioritize membership in MIS

• If no low-degree neighbor in MIS, add self to MIS

• High-degree nodes added to MIS if no low-degree neighbor in MIS
(and no other high-degree neighbors in MIS)

• Low-degree node exiting MIS causes all high-degree nodes to find
new MIS in induced subgraph (this is a global restart)

ITCS 2022

Sequential, Centralized, Dynamic MIS

• Gupta and Khan (SOSA 2021):

• Partition nodes into high-degree (≥ 𝒎𝟐/𝟑) and low-degree
• Low-degree nodes prioritize membership in MIS

• If no low-degree neighbor in MIS, add self to MIS

• High-degree nodes with no neighbors in MIS are added to MIS after
processing all low-degree nodes

• node exiting MIS causes all high-degree nodes to find new MIS in
induced subgraph (this is a global restart)

ITCS 2022

Sequential, Centralized, Dynamic MIS

• Gupta and Khan (SOSA 2021):

• Partition nodes into high-degree (≥ 𝒎𝟐/𝟑) and low-degree
• Low-degree nodes prioritize membership in MIS

• If no low-degree neighbor in MIS, add self to MIS

• High-degree nodes with no neighbors in MIS are added to MIS after
processing all low-degree nodes

• Low-degree node entering/exiting MIS causes all high-degree nodes
to find new MIS in induced subgraph (this is a global restart)

ITCS 2022

Distributing Challenges

Challenge 1: How do nodes determine if they’re high-degree/low-
degree as 𝒎 changes with updates (for unknown 𝑚)?

Easy to achieve if the graph remains connected throughout updates

ITCS 2022

Distributing Challenges

Challenge 1: How do nodes determine if they’re high-degree/low-
degree as 𝒎 changes with updates (for unknown 𝑚)?

Easy to achieve if the graph remains connected throughout updates

Challenge 2: How do high-degree nodes compute maximal
independent set in small number of rounds and few messages?

Global restarts are expensive

ITCS 2022

Distributed Dynamic MIS
• Algorithm:

• Low-degree vertices
prioritize in MIS

• On edge insertion:
• Remove vertices from

MIS if needed
• Add neighbors into MIS if

possible, prioritizing low-
degree, then high-
degreeLow-degree High-degree

ITCS 2022

Distributed Dynamic MIS
• Algorithm:

• Low-degree vertices
prioritize in MIS

• On edge insertion:
• Remove vertices from

MIS if needed
• Add neighbors into MIS if

possible, prioritizing low-
degree, then high-
degreeLow-degree High-degree

Members of MISMembers of MIS

ITCS 2022

Distributed Dynamic MIS
• Algorithm:

• Low-degree vertices
prioritize in MIS

• On edge insertion:
• Remove vertices from

MIS if needed
• Add neighbors into MIS if

possible, prioritizing low-
degree, then high-
degreeLow-degree High-degree

Members of MISMembers of MIS

ITCS 2022

Distributed Dynamic MIS
• Algorithm:

• Low-degree vertices
prioritize in MIS

• On edge insertion:
• Remove vertices from

MIS if needed
• Add neighbors into MIS if

possible, prioritizing low-
degree, then high-
degreeLow-degree High-degree

Members of MISMembers of MIS

ITCS 2022

Distributed Dynamic MIS
• Algorithm:

• Low-degree vertices
prioritize in MIS

• On edge insertion:
• Remove vertices from

MIS if needed
• Add neighbors into MIS if

possible, prioritizing low-
degree, then high-
degreeLow-degree High-degree

Members of MISMembers of MIS

ITCS 2022

Distributed Dynamic MIS
• Algorithm:

• Low-degree vertices
prioritize in MIS

• On edge insertion:
• Remove vertices from

MIS if needed
• Add neighbors into MIS if

possible, prioritizing low-
degree, then high-
degree, potentially manyLow-degree High-degree

Members of MISMembers of MIS

ITCS 2022

Distributed Dynamic MIS
• Algorithm:

• Low-degree vertices
prioritize in MIS

• On edge insertion:
• Remove vertices from

MIS if needed
• Add neighbors into MIS if

possible, prioritizing low-
degree, then high-
degree, potentially manyLow-degree High-degree

Members of MISMembers of MIS

ITCS 2022

Distributed Dynamic MIS
• Algorithm:

• Low-degree vertices
prioritize in MIS

• On edge insertion:
• Remove vertices from

MIS if needed
• Add neighbors into MIS if

possible, prioritizing low-
degree, then high-
degree, potentially manyLow-degree High-degree

Members of MISMembers of MIS

ITCS 2022

Distributed Dynamic MIS
• Algorithm:

• Low-degree vertices
prioritize in MIS

• On edge insertion:
• Remove vertices from

MIS if needed
• Add neighbors into MIS if

possible, prioritizing low-
degree, then high-
degree, potentially manyLow-degree High-degree

Members of MISMembers of MIS

ITCS 2022

Distributed Dynamic MIS

Low-degree High-degree

Members of MISMembers of MIS • Algorithm:
• Low-degree vertices prioritize

in MIS
• On edge deletion:

• Prioritize low-degree
nodes, then high-degree

• Add additional nodes to
MIS if possible

• Potentially many high-
degree nodes
added/removed

ITCS 2022

Distributed Dynamic MIS

Low-degree High-degree

Members of MISMembers of MIS • Algorithm:
• Low-degree vertices prioritize

in MIS
• On edge deletion:

• Prioritize low-degree
nodes, then high-degree

• Add additional nodes to
MIS if possible

• Potentially many high-
degree nodes
added/removed

ITCS 2022

Distributed Dynamic MIS

Low-degree High-degree

Members of MISMembers of MIS • Algorithm:
• Low-degree vertices prioritize

in MIS
• On edge deletion:

• Prioritize low-degree
nodes, then high-degree

• Add additional nodes to
MIS if possible

• Potentially many high-
degree nodes
added/removed

ITCS 2022

• Algorithm:
• Low-degree vertices prioritize

in MIS
• On edge deletion:

• Prioritize low-degree
nodes, then high-degree

• Add additional nodes to
MIS if possible

• Potentially many high-
degree nodes
added/removed

Distributed Dynamic MIS

Low-degree High-degree

Members of MISMembers of MISImportant Notes:

• Edge insertion/deletion could cause nodes to switch low/high-degree
• Edge insertion/deletion could cause low degree node to enter or leave MIS
• Run [AOSS18] on the low-degree node to determine set of low-degree

neighbors add to MIS; edge deletion removes at most 1 low-degree node
• Low-degree nodes entering MIS can cause many high-degree nodes to Low-

degree nodes leaving MIS can cause many high-degree nodes to enter
• [GK21] restarts all high-degree nodes to determine set of high-degree

nodes that enter/leave
• Instead, we use high-degree nodes in local neighborhood (details later)

ITCS 2022

• Algorithm:
• Low-degree vertices prioritize

in MIS
• On edge deletion:

• Prioritize low-degree
nodes, then high-degree

• Add additional nodes to
MIS if possible

• Potentially many high-
degree nodes
added/removed

Distributed Dynamic MIS

Low-degree High-degree

Members of MISMembers of MISImportant Notes:

• Edge insertion/deletion could cause nodes to switch low/high-degree
• Edge insertion/deletion could cause low degree node to enter or leave MIS
• Run [AOSS18] on the low-degree node to determine set of low-degree

neighbors add to MIS; edge deletion removes at most 1 low-degree node
• Low-degree nodes entering MIS can cause many high-degree nodes to Low-

degree nodes leaving MIS can cause many high-degree nodes to enter
• [GK21] restarts all high-degree nodes to determine set of high-degree

nodes that enter/leave
• Instead, we use high-degree nodes in local neighborhood (details later)

ITCS 2022

• Algorithm:
• Low-degree vertices prioritize

in MIS
• On edge deletion:

• Prioritize low-degree
nodes, then high-degree

• Add additional nodes to
MIS if possible

• Potentially many high-
degree nodes
added/removed

Distributed Dynamic MIS

Low-degree High-degree

Members of MISMembers of MISImportant Notes:

• Edge insertion/deletion could cause nodes to switch low/high-degree
• Edge insertion/deletion could cause low-degree node to enter or leave MIS
• Run [AOSS18] on the low-degree node to determine set of low-degree

neighbors add to MIS; edge insertion removes at most 1 low-degree node
• Low-degree nodes entering MIS can cause many high-degree nodes to
• Low-degree nodes leaving MIS can cause many high-degree nodes to enter
• [GK21] restarts all high-degree nodes to determine set of high-degree

nodes that enter/leave
• Instead, we use high-degree nodes in local neighborhood (details later)

ITCS 2022

• Algorithm:
• Low-degree vertices prioritize

in MIS
• On edge deletion:

• Prioritize low-degree
nodes, then high-degree

• Add additional nodes to
MIS if possible

• Potentially many high-
degree nodes
added/removed

Distributed Dynamic MIS

Low-degree High-degree

Members of MISMembers of MISImportant Notes:

• Edge insertion/deletion could cause nodes to switch low/high-degree
• Edge insertion/deletion could cause low-degree node to enter or leave MIS
• Run [AOSS18] on the low-degree node to determine set of low-degree

neighbors add to MIS; edge insertion removes at most 1 low-degree node
• Low-degree nodes entering MIS can cause many high-degree nodes leave
• Low-degree nodes leaving MIS can cause many high-degree nodes to enter
• [GK21] restarts all high-degree nodes to determine set of high-degree

nodes that enter/leave
• Instead, we use high-degree nodes in local neighborhood (details later)

ITCS 2022

• Algorithm:
• Low-degree vertices prioritize

in MIS
• On edge deletion:

• Prioritize low-degree
nodes, then high-degree

• Add additional nodes to
MIS if possible

• Potentially many high-
degree nodes
added/removed

Distributed Dynamic MIS

Low-degree High-degree

Members of MISMembers of MISImportant Notes:

• Edge insertion/deletion could cause nodes to switch low/high-degree
• Edge insertion/deletion could cause low-degree node to enter or leave MIS
• Run [AOSS18] on the low-degree node to determine set of low-degree

neighbors add to MIS; edge insertion removes at most 1 low-degree node
• Low-degree nodes entering MIS can cause many high-degree nodes leave
• Low-degree nodes leaving MIS can cause many high-degree nodes to enter
• [GK21] restarts all high-degree nodes to determine set of high-degree

nodes that enter/leave
• Instead, we use high-degree nodes in local neighborhood (details later)

ITCS 2022

• Algorithm:
• Low-degree vertices prioritize

in MIS
• On edge deletion:

• Prioritize low-degree
nodes, then high-degree

• Add additional nodes to
MIS if possible

• Potentially many high-
degree nodes
added/removed

Distributed Dynamic MIS

Low-degree High-degree

Members of MISMembers of MISImportant Notes:

• Edge insertion/deletion could cause nodes to switch low/high-degree
• Edge insertion/deletion could cause low-degree node to enter or leave MIS
• Run [AOSS18] on the low-degree node to determine set of low-degree

neighbors add to MIS; edge insertion removes at most 1 low-degree node
• Low-degree nodes entering MIS can cause many high-degree nodes leave
• Low-degree nodes leaving MIS can cause many high-degree nodes to enter
• [GK21] global restart all high-degree nodes to determine set of high-degree

nodes that enter/leave at every step
• Instead, we use high-degree nodes in local neighborhood (details later)

ITCS 2022

• Algorithm:
• Low-degree vertices prioritize

in MIS
• On edge deletion:

• Prioritize low-degree
nodes, then high-degree

• Add additional nodes to
MIS if possible

• Potentially many high-
degree nodes
added/removed

Distributed Dynamic MIS

Low-degree High-degree

Members of MISMembers of MISImportant Notes:

• Edge insertion/deletion could cause nodes to switch low/high-degree
• Edge insertion/deletion could cause low degree node to enter or leave MIS
• Run [AOSS18] on the low-degree node to determine set of low-degree

neighbors add to MIS; edge insertion removes at most 1 low-degree node
• Low-degree nodes entering MIS can cause many high-degree nodes leave
• Low-degree nodes leaving MIS can cause many high-degree nodes to enter
• [GK21] global restart all high-degree nodes to determine set of high-degree

nodes that enter/leave at every step
• Instead, do high-degree restart in local neighborhood only when needed

ITCS 2022

• Algorithm:
• Low-degree vertices prioritize

in MIS
• On edge deletion:

• Prioritize low-degree
nodes, then high-degree

• Add additional nodes to
MIS if possible

• Potentially many high-
degree nodes
added/removed

Distributed Dynamic MIS

Low-degree High-degree

Members of MISMembers of MISImportant Notes:

• Edge insertion/deletion could cause nodes to switch low/high-degree
• Edge insertion/deletion could cause low degree nodes to enter or leave MIS
• Run [AOSS18] on the low-degree node to determine set of low-degree

neighbors add to MIS; edge deletion removes at most 1 low-degree node
• Low-degree nodes entering MIS can cause many high-degree nodes to le
• Low-degree nodes leaving MIS can cause many high-degree nodes to enter
• [GK21] restarts all high-degree nodes to determine set of high-degree

nodes that enter/leave
• Instead, we use high-degree nodes in local neighborhood (details later)

But need to know which vertices are low-degree and high-
degree (unknown 𝑚 and potentially disconnected graph)!

Challenge 1: How do nodes determine if they’re high-degree/low-
degree as 𝒎 changes with updates (for unknown 𝑚)?

ITCS 2022

• Algorithm:
• Low-degree vertices prioritize

in MIS
• On edge deletion:

• Prioritize low-degree
nodes, then high-degree

• Add additional nodes to
MIS if possible

• Potentially many high-
degree nodes
added/removed

Distributed Dynamic MIS

Low-degree High-degree

Members of MISMembers of MISImportant Notes:

• Edge insertion/deletion could cause low degree nodes to enter or leave MIS
• Run [AOSS18] on the low-degree node to determine set of low-degree

neighbors add to MIS; edge deletion removes at most 1 low-degree node
• Low-degree nodes entering MIS can cause many high-degree nodes to

leave
• Low-degree nodes leaving MIS can cause many high-degree nodes to enter
• [GK21] global restart all high-degree nodes to determine set of high-degree

nodes that enter/leave at every step
• Instead, do high-degree restart in local neighborhood only when needed

Challenge 2: How do high-degree nodes find maximal independent
set in small number of rounds and few messages?

ITCS 2022

Distributed Dynamic MIS

• Solving Challenge 1: how
to determine low/high-
degree

• Initialize counter 𝑝! ← 1

𝑣

Low-degree High-degree

ITCS 2022

Distributed Dynamic MIS

• Solving Challenge 1: how
to determine low/high-
degree

• Initialize counter 𝑝! ← 1
• All vertices initially low-

degree
• On edge insertions where

degree exceeds 2𝑝!

𝑣

Low-degree High-degree

ITCS 2022

Distributed Dynamic MIS

• Solving Challenge 1: how
to determine low/high-
degree

• Initialize counter 𝑝! ← 1
• All vertices initially low-

degree
• On edge insertions where

degree exceeds 2𝑝!

𝑣

Low-degree High-degree

ITCS 2022

Distributed Dynamic MIS

• Solving Challenge 1: how
to determine low/high-
degree

• Initialize counter 𝑝! ← 1
• All vertices initially low-

degree
• On edge insertions where

degree exceeds 2𝑝!
• Make node high-degree

𝑣

Low-degree High-degree

𝑣 is now high-degree

ITCS 2022

Distributed Dynamic MIS

• Solving Challenge 1: how
to determine low/high-
degree

• Initialize counter 𝑝! ← 1
• All vertices initially low-

degree
• On edge insertions where

degree exceeds 2𝑝!
• Make node high-degree
• 𝑝! updates to the current

degree when low-degree

𝑣

Low-degree High-degree

𝑣 is now high-degree

ITCS 2022

Distributed Dynamic MIS

• Solving Challenge 1: how
to determine low/high-
degree

• Initialize counter 𝑝! ← 1
• All vertices initially low-

degree
• On edge insertions where

degree exceeds 2𝑝!
• Make node high-degree

𝑣

Low-degree High-degree

𝑣 is now high-degree

Might result in too many high-degree nodes

Don’t deal with them now, make high-degree nodes low-
degree again when we do a local restart (when we need to
determine which high-degree nodes need to go into MIS)

ITCS 2022

Distributed Dynamic MIS
• Solving Challenge 2: how to

determine MIS among high-
degree neighbors

• On edge insertion, when a
low-degree neighbor leaves
the MIS:

• High-degree nodes must
determine MIS in induced
neighborhood

• First solve Challenge 1 again
– Some are low-degree

𝑣

𝑥
𝑢

𝑦

Low-degree High-degree

Members of MIS

ITCS 2022

Distributed Dynamic MIS
• Solving Challenge 2: how to

determine MIS among high-
degree neighbors

• On edge insertion, when a
low-degree neighbor leaves
the MIS:

• High-degree nodes must
determine MIS in induced
neighborhood

• First solve Challenge 1 again
– Some are low-degree

𝑣

𝑥
𝑢

𝑦

Low-degree High-degree

𝑢 must leave MIS Members of MIS

ITCS 2022

Distributed Dynamic MIS
• Solving Challenge 2: how to

determine MIS among high-
degree neighbors

• On edge insertion, when a
low-degree neighbor leaves
the MIS:

• High-degree nodes must
determine MIS in induced
neighborhood

• First solve Challenge 1 again
– Some are low-degree

𝑣

𝑥
𝑢

𝑦

Low-degree High-degree

Members of MIS𝑥, 𝑦, 𝑣 must determine MIS

ITCS 2022

Distributed Dynamic MIS
• Solving Challenge 2: how to

determine MIS among high-
degree neighbors

• On edge insertion, when a
low-degree neighbor leaves
the MIS:

• High-degree nodes must
determine MIS in induced
neighborhood

• First solve Challenge 1 again
– Some are low-degree

𝑣

𝑥
𝑢

𝑦

Low-degree High-degree

𝑢 must leave MIS𝑥, 𝑦, 𝑣 may not all be high-degree Members of MIS

ITCS 2022

𝑎

Distributed Dynamic MIS

𝑣

𝑥
𝑢

𝑦

Low-degree High-degree

Members of MIS
• First solve Challenge 1 again

– Some are low-degree
• Determine sum of degree in

1-hop neighborhood (𝑆) of
low-degree node

• Any vertex with degree <
𝑆!/# becomes low-degree

• Vertices which became low-
degree, priority in going into
MIS

Sum of degree in 𝑢’s
neighborhood: 12

ITCS 2022

𝑎

Distributed Dynamic MIS

𝑣

𝑥
𝑢

𝑦

Low-degree High-degree

Members of MIS
Sum of degree in 𝑢’s
neighborhood: 12 • First solve Challenge 1 again

– Some are low-degree
• Determine sum of degree in

1-hop neighborhood (𝑆) of
low-degree node

• Any vertex with degree <
𝑆!/# becomes low-degree

• Vertices which became low-
degree, priority in going into
MIS

ITCS 2022

𝑎

Distributed Dynamic MIS

𝑣

𝑥
𝑢 𝑦

Low-degree High-degree

Members of MIS
• First solve Challenge 1 again

– Some are low-degree
• Determine sum of degree in

1-hop neighborhood (𝑆) of
low-degree node

• Any vertex with degree <
𝑆!/# becomes low-degree

• Vertices which became low-
degree, priority in going into
MIS

𝑎, 𝑢, 𝑥, 𝑦 have degree < 12!/#

ITCS 2022

𝑎

Distributed Dynamic MIS

𝑣

𝑥
𝑢 𝑦

Low-degree High-degree

Members of MIS
• First solve Challenge 1 again

– Some are low-degree
• Determine sum of degree in

1-hop neighborhood (𝑆) of
low-degree node

• Any vertex with degree <
𝑆!/# becomes low-degree

• Vertices which became low-
degree, priority in joining
MIS

𝑎, 𝑢, 𝑥, 𝑦 have degree < 12!/#

ITCS 2022

𝑎

Distributed Dynamic MIS

𝑣

𝑥
𝑢 𝑦

Low-degree High-degree

Members of MIS
• First solve Challenge 1 again

– Some are low-degree
• Determine sum of degree in

1-hop neighborhood (𝑆) of
low-degree node

• Any vertex with degree <
𝑆!/# becomes low-degree

• Vertices which became low-
degree, priority in joining
MIS

𝑥, 𝑦 join MIS

ITCS 2022

𝑎

Distributed Dynamic MIS

𝑣

𝑥
𝑢

𝑦

Low-degree High-degree

Members of MIS
• Finish Solving Challenge 2:

• Run static, distributed MIS
algorithm on induced
subgraph of high-degree
nodes in local neighborhood

• Run the algorithm of
Censor-Hillel, Parter, and
Schwartzman (2020) on
induced subgraph

Suppose instead 𝑥, 𝑦 high-degree

ITCS 2022

𝑎

Distributed Dynamic MIS

𝑣

𝑥
𝑢

𝑦

Low-degree High-degree

Members of MIS
Suppose instead 𝑥, 𝑦 high-degree

• Finish Solving Challenge 2:
• Run static, distributed MIS

algorithm on induced
subgraph of high-degree
nodes in local neighborhood

• Run the algorithm of
Censor-Hillel, Parter, and
Schwartzman (2020) on
induced subgraph

ITCS 2022

𝑎

Distributed Dynamic MIS

𝑣

𝑥
𝑢

𝑦

Low-degree High-degree

Members of MIS
Suppose instead 𝑥, 𝑦 high-degree

• Finish Solving Challenge 2:
• Run static, distributed MIS

algorithm on induced
subgraph of high-degree
nodes in local neighborhood

• Run the small diameter
algorithm of Censor-Hillel,
Parter, and Schwartzman
(2020) on induced subgraph

ITCS 2022

𝑎

Distributed Dynamic MIS

𝑣

𝑥
𝑢

𝑦

Low-degree High-degree

Members of MIS
• Finish Solving Challenge 2:

• Run static, distributed MIS
algorithm on induced
subgraph of high-degree
nodes in local neighborhood

• Run the small diameter
algorithm of Censor-Hillel,
Parter, and Schwartzman
(2020) on induced subgraph

𝑢 is leader

ITCS 2022

𝑎

Distributed Dynamic MIS

𝑣

𝑥
𝑢

𝑦

Low-degree High-degree

Members of MIS
• Finish Solving Challenge 2:

• Run static, distributed MIS
algorithm on induced
subgraph of high-degree
nodes in local neighborhood

• Run the small diameter
algorithm of Censor-Hillel,
Parter, and Schwartzman
(2020) on induced subgraph

𝑣 picked into MIS by
static algorithm

ITCS 2022

𝑎

Distributed Dynamic MIS

𝑣

𝑥
𝑢

𝑦

Low-degree High-degree

Members of MIS
𝑣 picked into MIS by

static algorithm • Overall complexity:
• Message complexity:

• 𝑂 𝑚!/# log! 𝑛 amortized
• Low-degree vertices

have degree 𝑂 𝑚!/#

• At most 𝑂 𝑚!/# high-
degree vertices in local
neighborhood

• Round complexity:
• 𝑂 log! 𝑛 amortized

ITCS 2022

𝑎

Distributed Dynamic MIS

𝑣

𝑥
𝑢

𝑦

Low-degree High-degree

Members of MIS
𝑣 picked into MIS by

static algorithm • Overall complexity:
• Message complexity:

• 𝑂 𝑚!/# log! 𝑛 amortized
• Low-degree vertices

have degree 𝑂 𝑚!/#

• At most 𝑂 𝑚!/# high-
degree vertices in local
neighborhood

• Round complexity:
• 𝑂 log! 𝑛 amortized

𝑚 is average number of
edges over all updates

ITCS 2022

𝑎

Distributed Dynamic MIS

𝑣

𝑥
𝑢

𝑦

Low-degree High-degree

Members of MIS
𝑣 picked into MIS by

static algorithm • Overall complexity:
• Message complexity:

• 𝑂 𝑚!/# log! 𝑛 amortized
• Low-degree vertices

have degree 𝑂 𝑚!/#

• At most 𝑂 𝑚!/# high-
degree vertices in local
neighborhood

• Round complexity:
• 𝑂 log! 𝑛 amortized

𝑚 is average number of
edges over all updates

ITCS 2022

𝑎

Distributed Dynamic MIS

𝑣

𝑥
𝑢

𝑦

Low-degree High-degree

Members of MIS
𝑣 picked into MIS by

static algorithm • Overall complexity:
• Message complexity:

• 𝑂 𝑚!/# log! 𝑛 amortized
• Low-degree vertices

have degree 𝑂 𝑚!/#

• At most 𝑂 𝑚!/# edges
in local high-degree
neighborhood

• Round complexity:
• 𝑂 log! 𝑛 amortized

𝑚 is average number of
edges over all updates

ITCS 2022

𝑎

Distributed Dynamic MIS

𝑣

𝑥
𝑢 𝑦

Low-degree High-degree

Members of MIS
• Overall complexity:

• Message complexity:
• 𝑂 𝑚!/# log! 𝑛 amortized
• Low-degree vertices

have degree 𝑂 𝑚!/#

• At most 𝑂 𝑚!/# edges
in local high-degree
neighborhood

• Amortization due to local
restarts

Finding the low degree nodes in the local
restart of the high-degree neighborhood
results in amortized message complexity

𝑚 is average number of
edges over all updates

ITCS 2022

𝑎

Distributed Dynamic MIS

𝑣

𝑥
𝑢

𝑦

Low-degree High-degree

Members of MIS
𝑣 picked into MIS by

static algorithm • Overall complexity:
• Round complexity:

• 𝑂 log! 𝑛 amortized
• Running [CPS20] requires
𝑂 log! 𝑛 rounds for
constant diameter graphs

• We run the algorithm on local
subgraphs with diameter at
most 6

• Amortization from running
[AOSS18] to add low-
neighbors to MIS

𝑚 is average number of
edges over all updates

ITCS 2022

𝑎

Distributed Dynamic MIS

𝑣

𝑥
𝑢

𝑦

Low-degree High-degree

Members of MIS

Run [CPS20] on 𝑥, 𝑦, 𝑣, 𝑢,
diameter = 2 in this example

• Overall complexity:
• Round complexity:

• 𝑂 log! 𝑛 amortized
• Running [CPS20] requires
𝑂 log! 𝑛 rounds for
constant diameter graphs

• We run the algorithm on local
subgraphs with diameter at
most 6

• Amortization from running
[AOSS18] to add low-
neighbors to MIS

𝑚 is average number of
edges over all updates

ITCS 2022

𝑎

Distributed Dynamic MIS

𝑣

𝑥
𝑢

𝑦

Low-degree High-degree

Members of MIS
• Overall complexity:

• Round complexity:
• 𝑂 log! 𝑛 amortized
• Running [CPS20] requires
𝑂 log! 𝑛 rounds for
constant diameter graphs

• We run the algorithm on local
subgraphs with diameter at
most 6

• Amortization from running
[AOSS18] to add low-
neighbors to MIS

𝑚 is average number of
edges over all updates

[AOSS18] requires 𝑂 1
amortized rounds to add low-

degree neighbors to MIS

ITCS 2022

Conclusion and Open Questions
• Initialize formal study of message-efficient

dynamic algorithms in distributed networks

• Achieved for several fundamental symmetry
breaking problems (up to 𝑂 log! 𝑛 factors
for MIS, and smaller for other problems)

• Solve several general challenges—
unknown 𝑚 and global restarts

Grand Prize:
• message complexity matches update time of

best-known sequential, centralized algorithm
• round complexity is 𝑶(𝟏)

ITCS 2022

Conclusion and Open Questions

Question 3: Can we get rid of the 𝑂 log! 𝑛 factors
especially in round complexity of MIS?

Question 2: Can we achieve worst-case bounds (esp.
rounds) for MIS?

Question 4: Can our algorithms be modified to handle
multiple concurrent updates, while maintaining low

message complexity?

• Initialize formal study of message-efficient
dynamic algorithms in distributed networks

• Achieved for several fundamental symmetry
breaking problems (up to 𝑂 log! 𝑛 factors
for MIS, and smaller for other problems)

• Solve several general challenges—
unknown 𝑚 and global restarts

Grand Prize:
• message complexity matches update time of

best-known sequential, centralized algorithm
• round complexity is 𝑶(𝟏)

Question 1: Can our techniques be generalized for a
wide class of dynamic distributed algorithms?

Question 5: Is there a general purpose compiler which
takes a centralized dynamic algorithm and outputs a

message-efficient distributed dynamic algorithm?

