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Graph Algorithms

Graphs Topology Dynamically Changing 
with Edge Insertions and Deletions 

~ 2 billion edges

~ 92.5 million edges

~ 128 billion edges

Example Sizes of Publicly Available Datasets

• Traditionally in sequential, 
centralized setting

• Static algorithms recompute 
the solution each time

Large Graphs Too Expensive to Rerun Even 
Linear Time Static Algorithms After Updates
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Dynamic Graph Algorithms
• Traditionally in sequential, 

centralized setting

• Dynamic algorithms recompute 
part of the solution after each 
update

• Quality measure is update time, 
time to recompute solution 𝑤

𝑥

Example Maximal Independent Set 
Updated After Edge Insertions/Deletions

Goal (Sequential, Centralized Setting): 
Minimize Update Time

Look at Direct Neighbors to Update MIS

Billions or Even Trillions of Edges

Graph Too Large to Fit and Too Much Time 
Process Sequentially on One Machine
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Distributed Algorithms and Networks
Split the Large Graph Among Many 

Different Processors/Machines

Each Node is a Processor/Machine Edges are Communication Links
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Nodes Send Messages to Other Nodes Via Edges
Nodes Can Choose to Send to Some/All Neighbors
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Distributed Algorithms and Networks

Each Round Nodes Can Send to Same or Different Neighbors
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Distributed Algorithms and Networks

Message Complexity
Number of Messages 

Sent in Total

Round Complexity
Multiple Rounds of 

Communication

Too many rounds: 
takes too long and sends 

too many messages
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Dynamic Distributed Networks

Message Complexity
Number of Messages 

Sent in Total

Round Complexity
Multiple Rounds of 

Communication

Edges Can be Added and Deleted from the Network
Changes Network Communication Topology

Robust against adaptive adversaries

Grand Prize: 
• message complexity matches update time of 

best-known sequential, centralized algorithm
• round complexity is 𝑶(𝟏)
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• [AOSS18, PS16] studied message complexity for certain problems

• [AOSS18] gave 𝑂 𝑚*/, amortized messages and 𝑂 1 round 
algorithm for MIS

• [PS16] gave an 𝑂 𝛼/𝜖 amortized messages and 𝑂 1 round algorithm 
for 1 + 𝜖 -maximum cardinality matching

• 𝛼 is a graph property, arboricity
• 𝛼 could be as large as 𝑂 𝑚

• [KS18] gave an 𝑂 log 𝑛 amortized messages low out-degree 
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• Send messages to specific subsets of neighbors, not all (multicast)
• [AOSS18, PS16, KS18] studied message complexity for certain problems

• [AOSS18] gave 𝑂 𝑚*/, amortized messages and 𝑂 1 round 
algorithm for MIS

• [PS16] gave an 𝑂 𝛼/𝜖 amortized messages and 𝑂 1 round algorithm 
for 1 + 𝜖 -maximum cardinality matching

• 𝛼 is a graph property, arboricity
• 𝛼 could be as large as 𝑚

• [KS18] gave an 𝑂 log 𝑛 amortized messages low out-degree 
orientation algorithm in 𝑂 1 amortized rounds for constant 𝛼

Message Complexity for Dynamic Distributed Algorithms

Grand Prize: 
• message complexity matches update time of 

best-known sequential, centralized algorithm
• round complexity is 𝑶(𝟏)
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Challenges with Adapting Centralized Algorithms

Determining Number of 
Edges After Insertions 

and Deletions

𝑚 = 16𝑚 = 17𝑚 = 16𝑚 = 15𝑚 = 16𝑚 = 15𝑚 = 16𝑚 = 17𝑚 = 16𝑚 = 17𝑚 = 16𝑚 = 17𝑚 = 16
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Solution: Consider 
Partial Local 

Neighborhood

Partial Neighborhood: 
reduces message complexity

Local Neighborhood: 
reduces round complexity

Challenges with Adapting Centralized Algorithms
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Classic Symmetry-Breaking Problems

• (Δ + 1)-Coloring
• Maximal Matching and 3/2-Approximate Maximum Matching
• Maximal Independent Set

Grand Prize: 
• message complexity matches update time of 

best-known sequential, centralized algorithm
• round complexity is 𝑶(𝟏)
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Our Deterministic Algorithm Results
𝚫 + 𝟏 -Vertex Coloring

• 𝑂 𝑚 messages and 𝑂(1) rounds, 
both worst-case

• Dynamic Edge Orientation Technique

• Matches best-known sequential, 
centralized algorithm of [KNNP20]

Maximal Matching

• 𝑂 𝑚 messages and 𝑂(1) rounds, 
both worst-case

• Dynamic Edge Orientation Technique

• Matches best-known sequential, 
centralized algorithm of [NS13]

(3/2)-Maximum Matching

• 𝑂 𝑚 amortized messages and 
𝑂(log Δ) rounds, worst case

• High-Degree/Low-Degree Partitioning 
Using Surrogates

• Matches best-known sequential, 
centralized algorithm of [NS13]

Maximal Independent Set

• 𝑂 𝑚!/# log! 𝑛 messages and 
𝑂(log! 𝑛) rounds, amortized

• High-Degree/Low-Degree Partitioning 
Using 6-Hop Neighborhood

• Use a small-diameter static algorithm 
to obtain MIS in high-degree and 
dynamic MIS for low-degree

• Matches best-known sequential, 
centralized [GK21] up to 5𝑂 1 factor
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Dynamic Edge Orientation Technique

• Each vertex maintains 
counter 𝑝! ← 1

• After degree of a vertex falls 
outside "6

#
, 2𝑝! , ask 

neighbors for degree
• Orient edges towards 

smaller degree endpoint
• Reset counter 𝑝! ← deg(𝑣)
• Repeat under future updates

𝑣

0
0

0

Invariant: at most 𝟒 𝒎 outgoing 
𝒎 is the current 
number of edges
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Dynamic Edge Orientation Technique

• Round complexity: 𝑂(1)
worst-case

• Message complexity: 𝑂(1)
amortized
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Dynamic Edge Orientation Technique

• Round complexity: 𝑂(1)
worst-case

• Message complexity: 𝑂(1)
amortized

• 𝑶(𝟏) worst-case
• Gradually 20 

reorientations per update 
for the next 𝑝!/10
updates

𝑣

0
0

0

Invariant: at most 𝟒 𝒎 outgoing 
𝒎 is the current 
number of edges
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Dynamic Distributed (Δ + 1)-Coloring

• Hard case: edge insertions

𝑤

𝑣

𝑢

Invariant: at most 𝟒 𝒎 outgoing 
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Dynamic Distributed (Δ + 1)-Coloring

• Hard case: edge insertions
• Perform edge orientation 

algorithm; reorient if 
necessary

𝑤

𝑣

𝑢

Invariant: at most 𝟒 𝒎 outgoing 

(𝑢, 𝑣) edge insertion
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Dynamic Distributed (Δ + 1)-Coloring

• Hard case: edge insertions
• Perform edge orientation 

algorithm; reorient if 
necessary

𝑤

𝑣

𝑢

Invariant: at most 𝟒 𝒎 outgoing 

(𝑢, 𝑣) edge insertion
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Dynamic Distributed (Δ + 1)-Coloring

• Hard case: edge insertions
• Perform edge orientation 

algorithm; reorient if 
necessary

• Each flipped edge, update 
neighbor about color

𝑤

𝑣

𝑢

Invariant: at most 𝟒 𝒎 outgoing 

color

color

𝑢 sends color to 𝑣 and 𝑤
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Dynamic Distributed (Δ + 1)-Coloring

• Hard case: edge insertions
• Perform edge orientation 

algorithm; reorient if 
necessary

• Each flipped edge, update 
neighbor about color

• Ask outgoing neighbors their 
colors

𝑤

𝑣

𝑢

Invariant: at most 𝟒 𝒎 outgoing 

color

color

outgoing send colors to 𝑢

color

color
color

color
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Dynamic Distributed (Δ + 1)-Coloring

• Hard case: edge insertions
• Perform edge orientation 

algorithm; reorient if 
necessary

• Each flipped edge, update 
neighbor about color

• Ask outgoing neighbors their 
colors

• Arbitrarily pick vertex recolor

𝑤

𝑣

𝑢

Invariant: at most 𝟒 𝒎 outgoing 

𝑢 recolors itself
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Dynamic Distributed (Δ + 1)-Coloring

• Hard case: edge insertions
• Perform edge orientation 

algorithm; reorient if 
necessary

• Each flipped edge, update 
neighbor about color

• Ask outgoing neighbors their 
colors

• Arbitrarily pick vertex recolor
• Send new color to outgoing

𝑤

𝑣

𝑢

Invariant: at most 𝟒 𝒎 outgoing 

color

color

𝑢 recolors itself
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Dynamic Distributed (Δ + 1)-Coloring

• Correctness: 𝑢 knows all 
neighbor colors 

• Can pick free color

𝑤

𝑣

𝑢

Invariant: at most 𝟒 𝒎 outgoing 

color

color

𝑢 recolors itself



ITCS 2022

Dynamic Distributed (Δ + 1)-Coloring

• Correctness: 𝑢 knows all 
neighbor colors 

• Can pick free color
• Message Complexity: 
𝑂 𝑚 worst-case

• Due to edge-orientation
𝑤

𝑣

𝑢

Invariant: at most 𝟒 𝒎 outgoing 

color

color

𝑢 recolors itself
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Dynamic Distributed (Δ + 1)-Coloring

• Correctness: 𝑢 knows all 
neighbor colors 

• Can pick free color
• Message Complexity: 
𝑂 𝑚 worst-case

• Due to edge-orientation
• Round Complexity: 𝑂 1

worst-case

𝑤

𝑣

𝑢

Invariant: at most 𝟒 𝒎 outgoing 

color

color

𝑢 recolors itself
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Maximal Matching

Each vertex matched to at 
most one neighbor

All vertices which can be 
matched are matched
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Maximal Matching

Each vertex matched to at 
most one neighbor

All vertices which can be 
matched are matched

Edge Insertions and Deletions May 
Violating Matching Maximality
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Dynamic Distributed Maximal Matching

• Easy case: edge insertions

𝑤

𝑥

𝑦

𝑣

𝑢

Invariant: at most 𝟒 𝒎 outgoing 
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• Easy case: edge insertions
• Orient edges as needed

𝑤

𝑥

𝑦

𝑣

𝑢

Invariant: at most 𝟒 𝒎 outgoing 

Dynamic Distributed Maximal Matching
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• Easy case: edge insertions
• Orient edges as needed
• Match if both endpoints 

not matched
𝑤

𝑥

𝑦

𝑣

𝑢

Invariant: at most 𝟒 𝒎 outgoing 

Dynamic Distributed Maximal Matching
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• Harder case: edge deletions

𝑤

𝑥

𝑦

𝑣

𝑢

Invariant: at most 𝟒 𝒎 outgoing 

Dynamic Distributed Maximal Matching
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• Harder case: edge deletions
• Match to incoming neighbor 

if any unmatched

𝑤

𝑥

𝑦

𝑣

𝑢

Invariant: at most 𝟒 𝒎 outgoing 

𝑢 is matched

Dynamic Distributed Maximal Matching
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• Harder case: edge deletions
• Match to incoming neighbor 

if any unmatched
• Otherwise ask outgoing 

neighbors if they are 
matched

𝑤

𝑥

𝑦

𝑣

𝑢

Invariant: at most 𝟒 𝒎 outgoing 

𝑣 is not matched

not 
matched

Dynamic Distributed Maximal Matching
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• Harder case: edge deletions
• Match to incoming neighbor 

if any unmatched
• Otherwise ask outgoing 

neighbors if they are 
matched

• Match to unmatched 
outgoing neighbor

𝑤

𝑥

𝑦

𝑣

𝑢

Invariant: at most 𝟒 𝒎 outgoing 

(𝑣,𝑤) are now matched

Dynamic Distributed Maximal Matching
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• Harder case: edge deletions
• Match to incoming neighbor 

if any unmatched
• Otherwise ask outgoing 

neighbors if they are 
matched

• Match to unmatched 
outgoing neighbor

• Inform outgoing neighbors 

𝑤

𝑥

𝑦

𝑣

𝑎

𝑢

Invariant: at most 𝟒 𝒎 outgoing 

𝑤 tells 𝑣 and 𝑎 it is matched

matched

matched

Dynamic Distributed Maximal Matching
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Maximal Independent Set

• 𝑂 𝑚!/# log! 𝑛 messages and 
𝑂(log! 𝑛) rounds, amortized

• High-Degree/Low-Degree Partitioning 
Using 6-Hop Neighborhood

• Use a small-diameter static algorithm 
to obtain MIS in high-degree and 
dynamic MIS for low-degree

• Matches best-known sequential, 
centralized [GK21] up to 5𝑂 1 factor

Our Deterministic Algorithm Results
𝚫 + 𝟏 -Vertex Coloring

• 𝑂 𝑚 messages and 𝑂(1) rounds, 
both worst-case

• Dynamic Edge Orientation Technique

• Matches best-known sequential, 
centralized algorithm of [KNNP20]

Maximal Matching

• 𝑂 𝑚 messages and 𝑂(1) rounds, 
both worst-case

• Dynamic Edge Orientation Technique

• Matches best-known sequential, 
centralized algorithm of [NS13]

(3/2)-Maximum Matching

• 𝑂 𝑚 amortized messages and 
𝑂(log Δ) rounds, worst case

• High-Degree/Low-Degree Partitioning 
Using Surrogates

• Matches best-known sequential, 
centralized algorithm of [NS13]
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(3/2)-Approximate Maximum Matching

(3/2)-Approximation of 
Maximum Matching
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Maximum Matching

Edge Insertions and Deletions May 
Change Size of Maximum Matching
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(3/2)-Approximate Maximum Matching

(3/2)-Approximation of 
Maximum Matching

Edge Insertions and Deletions May 
Change Size of Maximum Matching

Maximum matching 
increased by 1
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Sequential, Centralized Dynamic (3/2)-
Maximum Matching
• Neiman and Solomon (STOC 2013):

• Any (3/2)-maximum matching does not have an augmenting 
path of length 3 or longer
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• Any (3/2)-maximum matching does not have an augmenting 
path of length 3 or longer

• Path that starts and ends on unmatched vertices and 
alternate between edges in matching and not
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Maximum Matching
• Neiman and Solomon (STOC 2013):

• Any (3/2)-maximum matching does not have an augmenting 
path of length 3 or longer

• Path that starts and ends on unmatched vertices and 
alternate between edges in matching and not

• Partition vertices into high-degree (≥ 𝑚) and low-degree 
• Always match high-degree vertices
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• Any (3/2)-maximum matching does not have an augmenting 
path of length 3 or longer

• Path that starts and ends on unmatched vertices and 
alternate between edges in matching and not

• Partition vertices into high-degree (≥ 𝑚) and low-degree 
• Always match high-degree vertices
• Look for augmenting paths through surrogates
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Sequential, Centralized Dynamic (3/2)-
Maximum Matching
• Neiman and Solomon (STOC 2013):

• Any (3/2)-maximum matching does not have an augmenting 
path of length 3 or longer

• Path that starts and ends on unmatched vertices and 
alternate between edges in matching and not

• Partition vertices into high-degree (≥ 𝑚) and low-degree 
• Always match high-degree vertices
• Look for augmenting paths through surrogates
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Distributed, Dynamic (3/2)-Maximum 
Matching 

• Key Idea: Degree doubling 
to find augmenting paths

𝑢 𝑣
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Distributed, Dynamic (3/2)-Maximum 
Matching 

𝑢 𝑣

Edge Insertion (𝑢, 𝑣)

• Key Idea: Degree doubling 
to find augmenting paths

• On update, search neighbors 
for free vertex or surrogate

• Start with 1 neighbor
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Distributed, Dynamic (3/2)-Maximum 
Matching 

𝑢 𝑣

Edge Insertion (𝑢, 𝑣)

• Key Idea: Degree doubling 
to find augmenting paths

• On update, search neighbors 
for free vertex or surrogate

• Start with 1 neighbor
• Successively double 

neighbors searched, 𝟐𝒊
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Distributed, Dynamic (3/2)-Maximum 
Matching 

• Key Idea: Degree doubling 
to find augmenting paths

• On update, search neighbors 
for free vertex or surrogate

• Start with 1 neighbor
• Successively double 

neighbors searched, 𝟐𝒊

• Surrogate: matched 
neighbor whose mate has 
degree ≤ 2%

𝑢 𝑣

Edge Insertion (𝑢, 𝑣)
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Distributed, Dynamic (3/2)-Maximum 
Matching 

• Key Idea: Degree doubling 
to find augmenting paths

• On update, search neighbors 
for free vertex or surrogate

• Start with 1 neighbor
• Successively double 

neighbors searched, 𝟐𝒊

• Surrogate: matched 
neighbor whose mate has 
degree ≤ 2%

𝑢 𝑣

𝑣 searches 1 neighbor
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Distributed, Dynamic (3/2)-Maximum 
Matching 

• Key Idea: Degree doubling 
to find augmenting paths

• On update, search neighbors 
for free vertex or surrogate

• Start with 1 neighbor
• Successively double 

neighbors searched, 𝟐𝒊

• Surrogate: matched 
neighbor whose mate has 
degree ≤ 2%

𝑢

𝑥
𝑥′

𝑣

𝑥 does not have degree 1
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Distributed, Dynamic (3/2)-Maximum 
Matching 

• Key Idea: Degree doubling 
to find augmenting paths

• On update, search neighbors 
for free vertex or surrogate

• Start with 1 neighbor
• Successively double 

neighbors searched, 𝟐𝒊

• Surrogate: matched 
neighbor whose mate has 
degree ≤ 2%

𝑢

𝑥
𝑥′

𝑣

𝑣 searches two additional neighbors
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Distributed, Dynamic (3/2)-Maximum 
Matching 

• Key Idea: Degree doubling 
to find augmenting paths

• On update, search neighbors 
for free vertex or surrogate

• Start with 1 neighbor
• Successively double 

neighbors searched, 𝟐𝒊

• Surrogate: matched 
neighbor whose mate has 
degree ≤ 2%

𝑢

𝑥

𝑢$

𝑥′

𝑣

𝑢 has a mate 𝑢: with degree ≤ 2
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Distributed, Dynamic (3/2)-Maximum 
Matching 

• Key Idea: Degree doubling 
to find augmenting paths

• On update, search neighbors 
for free vertex or surrogate

• Start with 1 neighbor
• Successively double 

neighbors searched, 𝟐𝒊

• Surrogate: matched 
neighbor whose mate has 
degree ≤ 2%

𝑢

𝑥

𝑢$

𝑥′

𝑣

𝒖: is a surrogate
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Distributed, Dynamic (3/2)-Maximum 
Matching 

• Match with neighbor if 
surrogate found

𝑢

𝑥

𝑢$

𝑥′

𝑣

𝑣 matches with 𝑢
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Distributed, Dynamic (3/2)-Maximum 
Matching 

• Match with neighbor if 
surrogate found

• Surrogate matches with 
free neighbor if exists

𝑎

𝑢

𝑥

𝑢$

𝑥′

𝑣

𝑢′matches with 𝑎
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Distributed, Dynamic (3/2)-Maximum 
Matching 

• Match with neighbor if 
surrogate found

• Surrogate matches with 
free neighbor if exists

• Similar procedure for 
deletions

𝑎

𝑢

𝑥

𝑢$

𝑥′

𝑣

𝑢′matches with 𝑎
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Distributed, Dynamic (3/2)-Maximum 
Matching 

• Round complexity: 𝑂(logΔ)
worst-case𝑎

𝑢

𝑥

𝑢$

𝑥′

𝑣

𝑢′matches with 𝑎
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Distributed, Dynamic (3/2)-Maximum 
Matching 

• Round complexity: 𝑂(logΔ)
worst-case

• Search at most Δ
neighbors, doubling

𝑎

𝑢

𝑥

𝑢$

𝑥′

𝑣

𝑢′matches with 𝑎
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Distributed, Dynamic (3/2)-Maximum 
Matching 

• Round complexity: 𝑂(logΔ)
worst-case

• Search at most Δ
neighbors, doubling

• Message complexity: 𝑂 𝑚
amortized

𝑎

𝑢

𝑥

𝑢$

𝑥′

𝑣

𝑢′matches with 𝑎
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Distributed, Dynamic (3/2)-Maximum 
Matching 

• Round complexity: 𝑂(logΔ)
worst-case

• Search at most Δ
neighbors, doubling

• Message complexity: 𝑂 𝑚
amortized

• At most 𝒎 matched 
neighbors with mates ≥
𝒎 degree

𝑎

𝑢

𝑥

𝑢$

𝑥′

𝑣

𝑢′matches with 𝑎



ITCS 2022

Distributed, Dynamic (3/2)-Maximum 
Matching 

• Round complexity: 𝑂(logΔ)
worst-case

• Search at most Δ
neighbors, doubling

• Message complexity: 𝑂 𝑚
amortized

• At most 𝒎 matched 
neighbors with mates ≥
𝒎 degree

• Need to search at most 
2 𝑚 neighbors

𝑎

𝑢

𝑥

𝑢$

𝑥′

𝑣

𝑢′matches with 𝑎
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Our Deterministic Algorithm Results
𝚫 + 𝟏 -Vertex Coloring

• 𝑂 𝑚 messages and 𝑂(1) rounds, 
both worst-case

• Dynamic Edge Orientation Technique

• Matches best-known sequential, 
centralized algorithm of [KNNP20]

Maximal Matching

• 𝑂 𝑚 messages and 𝑂(1) rounds, 
both worst-case

• Dynamic Edge Orientation Technique

• Matches best-known sequential, 
centralized algorithm of [NS13]

(3/2)-Maximum Matching

• 𝑂 𝑚 amortized messages and 
𝑂(log Δ) rounds, worst case

• High-Degree/Low-Degree Partitioning 
Using Surrogates

• Matches best-known sequential, 
centralized algorithm of [NS13]

Maximal Independent Set

• 𝑂 𝑚!/# log! 𝑛 messages and 
𝑂(log! 𝑛) rounds, amortized

• High-Degree/Low-Degree Partitioning 
Using 6-Hop Neighborhood

• Use a small-diameter static algorithm 
to obtain MIS in high-degree and 
dynamic MIS for low-degree

• Matches best-known sequential, 
centralized [GK21] up to 5𝑂 1 factor
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independent set are neighbors

All vertices that can be added to 
the independent set are added
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Maximal Independent Set (MIS)

No two vertices in the 
independent set are neighbors

All vertices that can be added to 
the independent set are added

Edge Deletions May Violate 
Maximality
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Previous Deterministic Dynamic Distributed MIS

• Assadi, Onak, Schieber, and Solomon (STOC ‘18) provides a 
deterministic, dynamic, distributed MIS algorithm

• 𝑂 𝑚*/, amortized messages, 𝑂 1 amortized rounds
• Assumes graph remains connected throughout updates
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• Assadi, Onak, Schieber, and Solomon (STOC ‘18) provides a 
deterministic, dynamic, distributed MIS algorithm

• 𝑂 𝑚*/, amortized messages, 𝑂 1 amortized rounds
• Assumes graph remains connected throughout updates
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Previous Deterministic Dynamic Distributed MIS

• Assadi, Onak, Schieber, and Solomon (STOC ‘18) provides a 
deterministic, dynamic, distributed MIS algorithm

• 𝑂 𝑚*/, amortized messages, 𝑂 1 amortized rounds
• Assumes graph remains connected throughout updates

Our Result: 𝑂 𝑚;/* log; 𝑛 amortized messages, 
𝑂 log; 𝑛 amortized rounds

Does not need connectivity assumption



ITCS 2022

Sequential, Centralized, Dynamic MIS

• Gupta and Khan (SOSA 2021): 

• Partition nodes into high-degree (≥ 𝒎𝟐/𝟑) and low-degree
• Low-degree nodes prioritize membership in MIS

• If no low-degree neighbor in MIS, add self to MIS

• High-degree nodes added to MIS if no low-degree neighbor in MIS 
(and no other high-degree neighbors in MIS)

• Low-degree node exiting MIS causes all high-degree nodes to find 
new MIS in induced subgraph (this is a global restart)
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• Gupta and Khan (SOSA 2021): 

• Partition nodes into high-degree (≥ 𝒎𝟐/𝟑) and low-degree
• Low-degree nodes prioritize membership in MIS

• If no low-degree neighbor in MIS, add self to MIS

• High-degree nodes with no neighbors in MIS are added to MIS after
processing all low-degree nodes

• node exiting MIS causes all high-degree nodes to find new MIS in 
induced subgraph (this is a global restart)
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Sequential, Centralized, Dynamic MIS

• Gupta and Khan (SOSA 2021): 

• Partition nodes into high-degree (≥ 𝒎𝟐/𝟑) and low-degree
• Low-degree nodes prioritize membership in MIS

• If no low-degree neighbor in MIS, add self to MIS

• High-degree nodes with no neighbors in MIS are added to MIS after
processing all low-degree nodes

• Low-degree node entering/exiting MIS causes all high-degree nodes
to find new MIS in induced subgraph (this is a global restart)
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Distributing Challenges

Challenge 1: How do nodes determine if they’re high-degree/low-
degree as 𝒎 changes with updates (for unknown 𝑚)?

Easy to achieve if the graph remains connected throughout updates
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Distributing Challenges

Challenge 1: How do nodes determine if they’re high-degree/low-
degree as 𝒎 changes with updates (for unknown 𝑚)?

Easy to achieve if the graph remains connected throughout updates

Challenge 2: How do high-degree nodes compute maximal 
independent set in small number of rounds and few messages?

Global restarts are expensive
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Distributed Dynamic MIS
• Algorithm:

• Low-degree vertices 
prioritize in MIS

• On edge insertion:
• Remove vertices from 

MIS if needed
• Add neighbors into MIS if 

possible, prioritizing low-
degree, then high-
degreeLow-degree High-degree
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• Instead, we use high-degree nodes in local neighborhood (details later) 

But need to know which vertices are low-degree and high-
degree (unknown 𝑚 and potentially disconnected graph)!

Challenge 1: How do nodes determine if they’re high-degree/low-
degree as 𝒎 changes with updates (for unknown 𝑚)?
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• Algorithm:
• Low-degree vertices prioritize 

in MIS
• On edge deletion:

• Prioritize low-degree 
nodes, then high-degree

• Add additional nodes to 
MIS if possible

• Potentially many high-
degree nodes 
added/removed

Distributed Dynamic MIS

Low-degree High-degree

Members of MISMembers of MISImportant Notes:

• Edge insertion/deletion could cause low degree nodes to enter or leave MIS
• Run [AOSS18] on the low-degree node to determine set of low-degree 

neighbors add to MIS; edge deletion removes at most 1 low-degree node
• Low-degree nodes entering MIS can cause many high-degree nodes to 

leave
• Low-degree nodes leaving MIS can cause many high-degree nodes to enter
• [GK21] global restart all high-degree nodes to determine set of high-degree 

nodes that enter/leave at every step
• Instead, do high-degree restart in local neighborhood only when needed

Challenge 2: How do high-degree nodes find maximal independent 
set in small number of rounds and few messages?
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• Make node high-degree
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Distributed Dynamic MIS

• Solving Challenge 1: how 
to determine low/high-
degree

• Initialize counter 𝑝! ← 1
• All vertices initially low-

degree 
• On edge insertions where 

degree exceeds 2𝑝!
• Make node high-degree

𝑣

Low-degree High-degree

𝑣 is now high-degree

Might result in too many high-degree nodes

Don’t deal with them now, make high-degree nodes low-
degree again when we do a local restart (when we need to 
determine which high-degree nodes need to go into MIS)
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• Solving Challenge 2: how to 

determine MIS among high-
degree neighbors

• On edge insertion, when a 
low-degree neighbor leaves 
the MIS:

• High-degree nodes must 
determine MIS in induced 
neighborhood

• First solve Challenge 1 again 
– Some are low-degree

𝑣

𝑥
𝑢

𝑦

Low-degree High-degree

𝑢 must leave MIS𝑥, 𝑦, 𝑣 may not all be high-degree Members of MIS
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𝑣

𝑥
𝑢

𝑦

Low-degree High-degree

Members of MIS
• First solve Challenge 1 again 

– Some are low-degree
• Determine sum of degree in 

1-hop neighborhood (𝑆) of 
low-degree node

• Any vertex with degree <
𝑆!/# becomes low-degree

• Vertices which became low-
degree, priority in going into 
MIS

Sum of degree in 𝑢’s 
neighborhood:  12
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– Some are low-degree
• Determine sum of degree in 

1-hop neighborhood (𝑆) of 
low-degree node
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𝑆!/# becomes low-degree

• Vertices which became low-
degree, priority in joining 
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𝑎, 𝑢, 𝑥, 𝑦 have degree < 12!/#
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• First solve Challenge 1 again 

– Some are low-degree
• Determine sum of degree in 

1-hop neighborhood (𝑆) of 
low-degree node

• Any vertex with degree <
𝑆!/# becomes low-degree

• Vertices which became low-
degree, priority in joining 
MIS

𝑥, 𝑦 join MIS
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• Run the algorithm of 
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induced subgraph

Suppose instead 𝑥, 𝑦 high-degree 
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Suppose instead 𝑥, 𝑦 high-degree 

• Finish Solving Challenge 2:
• Run static, distributed MIS 

algorithm on induced 
subgraph of high-degree 
nodes in local neighborhood

• Run the small diameter 
algorithm of Censor-Hillel, 
Parter, and Schwartzman 
(2020) on induced subgraph
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Members of MIS
• Finish Solving Challenge 2:

• Run static, distributed MIS 
algorithm on induced 
subgraph of high-degree 
nodes in local neighborhood

• Run the small diameter 
algorithm of Censor-Hillel, 
Parter, and Schwartzman 
(2020) on induced subgraph

𝑢 is leader 
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• Finish Solving Challenge 2:

• Run static, distributed MIS 
algorithm on induced 
subgraph of high-degree 
nodes in local neighborhood

• Run the small diameter 
algorithm of Censor-Hillel, 
Parter, and Schwartzman 
(2020) on induced subgraph

𝑣 picked into MIS by 
static algorithm 
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𝑣 picked into MIS by 

static algorithm • Overall complexity:
• Message complexity:

• 𝑂 𝑚!/# log! 𝑛 amortized
• Low-degree vertices 

have degree 𝑂 𝑚!/#

• At most 𝑂 𝑚!/# high-
degree vertices in local 
neighborhood 

• Round complexity:
• 𝑂 log! 𝑛 amortized
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• Overall complexity:

• Message complexity:
• 𝑂 𝑚!/# log! 𝑛 amortized
• Low-degree vertices 

have degree 𝑂 𝑚!/#

• At most 𝑂 𝑚!/# edges 
in local high-degree 
neighborhood 

• Amortization due to local 
restarts

Finding the low degree nodes in the local 
restart of the high-degree neighborhood 
results in amortized message complexity 

𝑚 is average number of 
edges over all updates
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𝑚 is average number of 
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𝑥
𝑢

𝑦
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Members of MIS

Run [CPS20] on 𝑥, 𝑦, 𝑣, 𝑢, 
diameter = 2 in this example 

• Overall complexity:
• Round complexity:

• 𝑂 log! 𝑛 amortized
• Running [CPS20] requires 
𝑂 log! 𝑛 rounds for 
constant diameter graphs

• We run the algorithm on local 
subgraphs with diameter at 
most 6

• Amortization from running 
[AOSS18] to add low-
neighbors to MIS

𝑚 is average number of 
edges over all updates
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𝑣

𝑥
𝑢

𝑦
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Members of MIS
• Overall complexity:

• Round complexity:
• 𝑂 log! 𝑛 amortized
• Running [CPS20] requires 
𝑂 log! 𝑛 rounds for 
constant diameter graphs

• We run the algorithm on local 
subgraphs with diameter at 
most 6

• Amortization from running 
[AOSS18] to add low-
neighbors to MIS

𝑚 is average number of 
edges over all updates

[AOSS18] requires 𝑂 1
amortized rounds to add low-

degree neighbors to MIS
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Conclusion and Open Questions
• Initialize formal study of message-efficient 

dynamic algorithms in distributed networks

• Achieved for several fundamental symmetry 
breaking problems (up to 𝑂 log! 𝑛 factors 
for MIS, and smaller for other problems)

• Solve several general challenges—
unknown 𝑚 and global restarts

Grand Prize: 
• message complexity matches update time of 

best-known sequential, centralized algorithm
• round complexity is 𝑶(𝟏)
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Conclusion and Open Questions

Question 3: Can we get rid of the 𝑂 log! 𝑛 factors 
especially in round complexity of MIS?

Question 2: Can we achieve worst-case bounds (esp. 
rounds) for MIS?

Question 4: Can our algorithms be modified to handle 
multiple concurrent updates, while maintaining low 

message complexity?

• Initialize formal study of message-efficient 
dynamic algorithms in distributed networks

• Achieved for several fundamental symmetry 
breaking problems (up to 𝑂 log! 𝑛 factors 
for MIS, and smaller for other problems)

• Solve several general challenges—
unknown 𝑚 and global restarts

Grand Prize: 
• message complexity matches update time of 

best-known sequential, centralized algorithm
• round complexity is 𝑶(𝟏)

Question 1: Can our techniques be generalized for a 
wide class of dynamic distributed algorithms?

Question 5: Is there a general purpose compiler which 
takes a centralized dynamic algorithm and outputs a 

message-efficient distributed dynamic algorithm?


