
Shiri Antaki
Tel Aviv University

Quanquan C. Liu
MIT

Shay Solomon
Tel Aviv University
Graph Algorithms

- Traditionally in **sequential, centralized** setting
Graph Algorithms

• Traditionally in **sequential, centralized** setting

• **Static** algorithms recompute the solution each time
Graph Algorithms

- Traditionally in **sequential, centralized** setting
- **Static** algorithms recompute the solution each time

 - facebook ~ 92.5 million edges
 - Twitter ~ 2 billion edges
 - Common Crawl ~ 128 billion edges

Example Sizes of Publicly Available Datasets
Graph Algorithms

- Traditionally in **sequential, centralized** setting

![Graph Example]

Large Graphs Too Expensive to Rerun Even Linear Time Static Algorithms After Updates

- ~ 92.5 million edges
- ~ 2 billion edges
- ~ 128 billion edges

Example Sizes of Publicly Available Datasets

Graphs Topology Dynamically Changing with Edge Insertions and Deletions
Dynamic Graph Algorithms

- Traditionally in *sequential, centralized* setting
Dynamic Graph Algorithms

• Traditionally in **sequential, centralized** setting

• **Dynamic** algorithms recompute part of the solution after each update
Dynamic Graph Algorithms

- Traditionally in **sequential, centralized** setting
- **Dynamic** algorithms recompute part of the solution after each update
- Quality measure is **update time**, time to recompute solution
Dynamic Graph Algorithms

- Traditionally in **sequential, centralized** setting
- **Dynamic** algorithms recompute part of the solution after each update
- Quality measure is **update time**, time to recompute solution

Goal (**Sequential, Centralized Setting**): Minimize Update Time

Example Maximal Independent Set Updated After Edge Insertions/Deletions
Dynamic Graph Algorithms

- Traditionally in **sequential, centralized** setting
- **Dynamic** algorithms recompute part of the solution after each update
- Quality measure is **update time**, time to recomputate solution

Goal *(Sequential, Centralized Setting):* Minimize Update Time

Example Maximal Independent Set Updated After Edge Insertions/Deletions

Look at Direct Neighbors to Update MIS
Dynamic Graph Algorithms

- Traditionally in *sequential, centralized* setting
- **Dynamic** algorithms recompute part of the solution after each update
- Quality measure is *update time*, time to recompute solution

Goal *(Sequential, Centralized Setting): Minimize Update Time*

Example Maximal Independent Set
Updated After Edge Insertions/Deletions

Look at Direct Neighbors to Update MIS
Dynamic Graph Algorithms

- Traditionally in **sequential, centralized** setting
- **Dynamic** algorithms recompute part of the solution after each update
- Quality measure is **update time**, time to recompute solution

Goal *(Sequential, Centralized Setting)*: Minimize Update Time

Example Maximal Independent Set Updated After Edge Insertions/Deletions

Look at Direct Neighbors to Update MIS
Dynamic Graph Algorithms

• Traditionally in **sequential, centralized** setting

• **Dynamic** algorithms recompute part of the solution after each update

• Quality measure is **update time**, time to recompute solution

Goal (**Sequential, Centralized Setting**): Minimize Update Time

Example Maximal Independent Set Updated After Edge Insertions/Deletions

Look at Direct Neighbors to Update MIS
Dynamic Graph Algorithms

- Traditionally in **sequential, centralized** setting
- **Dynamic** algorithms recompute part of the solution after each update
- Quality measure is **update time**, time to recompute solution

Goal *(Sequential, Centralized Setting): Minimize Update Time*

Example Maximal Independent Set Updated After Edge Insertions/Deletions
Dynamic Graph Algorithms

- Traditionally in **sequential, centralized** setting
- **Dynamic** algorithms recompute part of the solution after each update
- Quality measure is update time, time to recompute solution

Goal (**Sequential, Centralized Setting**): Minimize Update Time

Example Maximal Independent Set Updated After Edge Insertions/Deletions

Billions or Even Trillions of Edges

Graph Too Large to Fit and Too Much Time
Process Sequentially on One Machine

Look at Direct Neighbors to Update MIS
Split the Large Graph Among Many Different Processors/Machines
Distributed Algorithms and Networks

Split the Large Graph Among Many Different Processors/Machines

Each Node is a Processor/Machine
Distributed Algorithms and Networks

Split the Large Graph Among Many Different Processors/Machines

Each Node is a Processor/Machine

Edges are Communication Links
Nodes Send **Messages** to Other Nodes Via Edges
Nodes Can Choose to Send to Some/All Neighbors
Nodes Use Multiple **Rounds** of Communication to Send Messages
Distributed Algorithms and Networks

Each **Round** Nodes Can Send to Same or Different Neighbors
Distributed Algorithms and Networks

CONGEST Model:
Messages have $O(\log n)$ size

Message Complexity
Number of Messages Sent in Total
Distributed Algorithms and Networks

Too many messages: \textit{overwhelms bandwidth}

CONGEST Model: Messages have $O(\log n)$ size

Message Complexity
Number of Messages Sent in Total
Distributed Algorithms and Networks

Round Complexity
Multiple Rounds of Communication

CONGEST Model:
Messages have $O(\log n)$ size

Message Complexity
Number of Messages Sent in Total
Distributed Algorithms and Networks

Round Complexity
Multiple Rounds of Communication

Too many rounds:
takes too long and sends too many messages

Message Complexity
Number of Messages Sent in Total
Dynamic Distributed Networks

Round Complexity
Multiple Rounds of Communication

Message Complexity
Number of Messages Sent in Total

Edges Can be Added and Deleted from the Network Changes Network Communication Topology
Dynamic Distributed Networks

Grand Prize:

• message complexity matches update time of best-known sequential, centralized algorithm
• round complexity is $O(1)$

Edges Can be Added and Deleted from the Network Changes Network Communication Topology

Message Complexity
Number of Messages Sent in Total
Dynamic Distributed Networks

Grand Prize:
- message complexity matches update time of best-known sequential, centralized algorithm
- round complexity is $O(1)$

Robust against adaptive adversaries
Previous Work: Dynamic Distributed Algorithms

- Most previous work focused on minimizing \textit{round complexity} [BEG18, BKM19, CDKPS20, CHK16, KW13, LPR09, PPS16]
Previous Work: Dynamic Distributed Algorithms

• Most previous work focused on minimizing round complexity [BEG18, BKM19, CDKPS20, CHK16, KW13, LPR09, PPS16]
 • Dynamically changing distributed networks
Previous Work: Dynamic Distributed Algorithms

- Most previous work focused on minimizing round complexity [BEG18, BKM19, CDKPS20, CHK16, KW13, LPR09, PPS16]
 - Dynamically changing distributed networks
 - Very recently, [BKM19] and [CDKPS20] also studied simultaneously handling many concurrent updates

\[\Omega(\Delta) \] messages for \(\Delta \) = max degree

Can be as large as \(\Omega(\Delta^2) \) for sparse graphs
Previous Work: Dynamic Distributed Algorithms

- Most previous work focused on minimizing round complexity [BEG18, BKM19, CDKPS20, CHK16, KW13, LPR09, PPS16]
 - Dynamically changing distributed networks
 - Very recently, [BKM19] and [CDKPS20] also studied simultaneously handling many concurrent updates
- Previous algorithms send messages to all neighbors (broadcast)
Previous Work: Dynamic Distributed Algorithms

• Most previous work focused on minimizing \textit{round complexity} [BEG18, BKM19, CDKPS20, CHK16, KW13, LPR09, PPS16]
 • Dynamically changing distributed networks
 • Very recently, [BKM19] and [CDKPS20] also studied \textit{simultaneously} handling \textit{many concurrent updates}

• Previous algorithms send messages to \textit{all neighbors (broadcast)}
 • Results in $\Omega(\Delta)$ messages for $\Delta = \text{max degree}$
Previous Work: Dynamic Distributed Algorithms

• Most previous work focused on minimizing round complexity [BEG18, BKM19, CDKPS20, CHK16, KW13, LPR09, PPS16]
 • Dynamically changing distributed networks
 • Very recently, [BKM19] and [CDKPS20] also studied simultaneously handling many concurrent updates

• Previous algorithms send messages to all neighbors (broadcast)
 • Results in $\Omega(\Delta)$ messages for $\Delta = \text{max degree}$
 • Can be as large as $\Omega(m)$ for sparse graphs
Previous Work: Dynamic Distributed Algorithms

- Most previous work focused on minimizing round complexity
 \cite{BEG18, BKM19, CDKPS20, CHK16, KW13, LPR09, PPS16}
- Dynamically changing distributed networks
- Very recently, \cite{BKM19} and \cite{CDKPS20} also studied simultaneously handling many concurrent updates
- Previous algorithms send messages to all neighbors (broadcast)
 \- Results in $\Omega(\Delta)$ messages for $\Delta = \text{max degree}$
 \- Can be as large as $\Omega(m)$ for sparse graphs

Very few previous works consider number of messages sent
Previous Work: Dynamic Distributed Algorithms

- Most previous work focused on minimizing round complexity [BEG18, BKM19, CDKPS20, CHK16, KW13, LPR09, PPS16]
- Dynamically changing distributed networks
- Very recently, [BKM19] and [CDKPS20] also studied simultaneously handling many concurrent updates
- Previous algorithms send messages to all neighbors (broadcast)
- Results in $\Omega(\Delta)$ messages for $\Delta = \max$ degree
- Can be as large as $\Omega(\Delta)$ for sparse graphs

Very few previous works consider number of messages sent
Many practical real-world situations require few messages:
Previous Work: Dynamic Distributed Algorithms

- Most previous work focused on minimizing round complexity [BEG18, BKM19, CDKPS20, CHK16, KW13, LPR09, PPS16]
- Dynamically changing distributed networks
- Very recently, [BKM19] and [CDKPS20] also studied simultaneously handling many concurrent updates
- Previous algorithms send messages to all neighbors (broadcast)
 - Results in $\Omega(\Delta)$ messages for $\Delta = \max$ degree
 - Can be as large as $\Omega(\Delta)$ for sparse graphs
- Very few previous works consider number of messages sent
- Many practical real-world situations require few messages:
 - **Systems with poor wireless connections**
Previous Work: Dynamic Distributed Algorithms

• Most previous work focused on minimizing round complexity
 \[\text{[BEG18, BKM19, CDKPS20, CHK16, KW13, LPR09, PPS16]} \]

• Dynamically changing distributed networks

• Very recently, \[\text{[BKM19, CDKPS20]} \] also studied simultaneously handling many concurrent updates

• Previous algorithms send messages to all neighbors (broadcast)

• Results in \(\Omega \Delta \) messages for \(\Delta = \text{max degree} \)

• Can be as large as \(\Omega \Delta \) for sparse graphs

Very few previous works consider number of messages sent

Many practical real-world situations require few messages:

• Systems with poor wireless connections
• Over-saturated network with many independent agents
Previous Work: Dynamic Distributed Algorithms

- Most previous work focused on minimizing round complexity \([\text{BEG18, BKM19, CDKPS20, CHK16, KW13, LPR09, PPS16}]\).
- Dynamically changing distributed networks.
- Very recently, \([\text{BKM19, CDKPS20}]\) also studied simultaneously handling many concurrent updates.
- Previous algorithms send messages to all neighbors (broadcast).
- Results in \(\Omega(\Delta)\) messages for \(\Delta = \text{max degree}\).
- Can be as large as \(\Omega(\Delta^2)\) for sparse graphs.

Very few previous works consider number of messages sent.

Many practical real-world situations require few messages:

- Systems with poor wireless connections
- Over-saturated network with many independent agents
- Mobile data network in poorly connected area
Message Complexity for Dynamic Distributed Algorithms

• Send messages to specific \textit{subsets of neighbors, not all (multicast)}
Message Complexity for Dynamic Distributed Algorithms

• Send messages to specific **subsets of neighbors, not all (multicast)**
• [AOSS18, PS16, KS18] studied message complexity for certain problems
Message Complexity for Dynamic Distributed Algorithms

- Send messages to specific **subsets of neighbors, not all (multicast)**
- [AOSS18, PS16, KS18] studied message complexity for certain problems
 - [AOSS18] gave $O(m^{3/4})$ amortized messages and $O(1)$ round algorithm for MIS
Message Complexity for Dynamic Distributed Algorithms

• Send messages to specific subsets of neighbors, not all (multicast)

• [AOSS18, PS16, KS18] studied message complexity for certain problems
 • [AOSS18] gave $O(m^{3/4})$ amortized messages and $O(1)$ round algorithm for MIS
 • [PS16] gave an $O(\alpha/\epsilon)$ worst-case messages and $O(1)$ round algorithm for $(1 + \epsilon)$-maximum cardinality matching
Message Complexity for Dynamic Distributed Algorithms

• Send messages to specific subsets of neighbors, not all (multicast)

• [AOSS18, PS16, KS18] studied message complexity for certain problems
 • [AOSS18] gave $O(m^{3/4})$ amortized messages and $O(1)$ round algorithm for MIS
 • [PS16] gave an $O(\alpha/\epsilon)$ worst-case messages and $O(1)$ round algorithm for $(1 + \epsilon)$-maximum cardinality matching
 • α is a graph property, arboricity
Message Complexity for Dynamic Distributed Algorithms

• Send messages to specific **subsets of neighbors, not all (multicast)**
• [AOSS18, PS16, KS18] studied message complexity for certain problems
 • [AOSS18] gave $O(m^{3/4})$ amortized messages and $O(1)$ round algorithm for MIS
 • [PS16] gave an $O(\alpha/\epsilon)$ worst-case messages and $O(1)$ round algorithm for $(1 + \epsilon)$-maximum cardinality matching
 • α is a graph property, **arboricity**
 • α could be as large as \sqrt{m}
Message Complexity for Dynamic Distributed Algorithms

- Send messages to specific **subsets of neighbors, not all (multicast)**
- [AOSS18, PS16, KS18] studied message complexity for certain problems
 - [AOSS18] gave $O(m^{3/4})$ amortized messages and $O(1)$ round algorithm for MIS
 - [PS16] gave an $O(\alpha/\epsilon)$ worst-case messages and $O(1)$ round algorithm for $(1 + \epsilon)$-maximum cardinality matching
 - α is a graph property, arboricity
 - α could be as large as \sqrt{m}
 - [KS18] gave an $O(\log n)$ amortized messages low out-degree orientation algorithm in $O(1)$ amortized rounds for constant α
Message Complexity for Dynamic Distributed Algorithms

- Send messages to specific subsets of neighbors, not all (multicast)
- [AOS18, PS16, KS18] studied message complexity for certain problems
 - [AOS18] gave $O(m^*) / \alpha$ amortized messages and $O(1)$ round algorithm for MIS
 - [PS16] gave an $O(\alpha / \epsilon)$ amortized messages and $O(1)$ round algorithm for $1 + \epsilon$-maximum cardinality matching
 - α is a graph property, arboricity
 - α could be as large as \sqrt{m}
 - [KS18] gave an $O(\log n)$ amortized messages low out-degree orientation algorithm in $O(1)$ amortized rounds for constant α

Grand Prize:
- message complexity matches update time of best-known sequential, centralized algorithm
- round complexity is $O(1)$
Challenges with Adapting Centralized Algorithms

Determining Number of Edges After Insertions and Deletions

\[m = 16 \]
Challenges with Adapting Centralized Algorithms

Many Centralized Algorithms use Global Restarts (Large Part of Graph Restarts)
Challenges with Adapting Centralized Algorithms

Many Centralized Algorithms use Global Restarts (Large Part of Graph Restarts)

Global Restarts Must Be Propagated to a Large Portion of Network
Challenges with Adapting Centralized Algorithms

Many Centralized Algorithms use **Global Restarts** (Large Part of Graph Restarts)

Global Restarts Must Be Propagated to a Large Portion of Network

High Round and High Message Complexity
Challenges with Adapting Centralized Algorithms

Many Centralized Algorithms use **Global Restarts** (Large Part of Graph Restarts)

Global Restarts Must Be Propagated to a Large Portion of Network

High Round and High Message Complexity
Challenges with Adapting Centralized Algorithms

Many Centralized Algorithms use Global Restarts (Large Part of Graph Restarts)

Global Restarts Must Be Propagated to a Large Portion of Network

High Round and High Message Complexity
Challenges with Adapting Centralized Algorithms

Many Centralized Algorithms use **Global Restarts** (Large Part of Graph Restarts)

Global Restarts Must Be Propagated to a Large Portion of Network

High Round and High Message Complexity
Challenges with Adapting Centralized Algorithms

Many Centralized Algorithms use Global Restarts (Large Part of Graph Restarts)

Global Restarts Must Be Propagated to a Large Portion of Network

High Round and High Message Complexity
Challenges with Adapting Centralized Algorithms

Solution: Consider Partial Local Neighborhood

Local Neighborhood: reduces round complexity

Partial Neighborhood: reduces message complexity
Classic Symmetry-Breaking Problems

- $(\Delta + 1)$-Coloring
- Maximal Matching and 3/2-Approximate Maximum Matching
- Maximal Independent Set
Classic Symmetry-Breaking Problems

• \((\Delta + 1)\)-Coloring
• Maximal Matching and 3/2-Approximate Maximum Matching
• Maximal Independent Set

Grand Prize:
• message complexity matches update time of best-known sequential, centralized algorithm
• round complexity is \(O(1)\)
Our Deterministic Algorithm Results

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Cost</th>
<th>Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Δ + 1)-Vertex Coloring</td>
<td>(O(\sqrt{m})) messages and (O(1)) rounds, both worst-case</td>
<td>Dynamic Edge Orientation Technique \nMatches best-known sequential, centralized algorithm of [KNNP20]</td>
</tr>
<tr>
<td>Maximal Matching</td>
<td>(O(\sqrt{m})) messages and (O(1)) rounds, both worst-case</td>
<td>Dynamic Edge Orientation Technique \nMatches best-known sequential, centralized algorithm of [NS13]</td>
</tr>
<tr>
<td>((3/2))-Maximum Matching</td>
<td>(O(\sqrt{m})) amortized messages and (O(\log \Delta)) rounds, worst case</td>
<td>High-Degree/Low-Degree Partitioning Using 6-Hop Neighborhood \nUse a small-diameter static algorithm to obtain MIS in high-degree and dynamic MIS for low-degree \nMatches best-known sequential, centralized [GK21] up to (O(1)) factor</td>
</tr>
<tr>
<td>Maximal Independent Set</td>
<td>(O(m^{2/3} \log^2 n)) messages and (O(\log^2 n)) rounds, amortized</td>
<td>High-Degree/Low-Degree Partitioning Using Surrogates \nMatches best-known sequential, centralized algorithm of [NS13]</td>
</tr>
</tbody>
</table>
$$(\Delta + 1)$$-Coloring

No two adjacent nodes have the same color.

Uses at most $(\Delta + 1)$ colors.

Δ: maximum degree.
$(\Delta + 1)$-Coloring

No two adjacent nodes have the same color.

Uses at most $(\Delta + 1)$ colors.

Δ: maximum degree

Edge Insertions May Result in Conflicts
\((\Delta + 1)\)-Coloring

No two adjacent nodes have the same color
Uses at most \((\Delta + 1)\) colors

\(\Delta\): maximum degree

Edge Insertions May Result in Conflicts
(Δ + 1)-Coloring

No two adjacent nodes have the same color.

Uses at most (Δ + 1) colors.

Δ: maximum degree

Edge Insertions May Result in Conflicts
$(\Delta + 1)$-Coloring

No two adjacent nodes have the same color.

Uses at most $(\Delta + 1)$ colors.

Δ: maximum degree.

Edge Insertions May Result in Conflicts
Dynamic Edge Orientation Technique

• Each vertex maintains counter $p_v \leftarrow \deg(v)$
Dynamic Edge Orientation Technique

- Each vertex maintains counter $p_v \leftarrow 1$
- After degree of a vertex falls outside $\left[\frac{p_v}{2}, 2p_v \right]$, ask neighbors for degree
Dynamic Edge Orientation Technique

• Each vertex maintains counter $p_v \leftarrow 1$
• After degree of a vertex falls outside $\left[\frac{p_v}{2}, 2p_v \right]$, ask neighbors for degree
Dynamic Edge Orientation Technique

- Each vertex maintains counter $p_v \leftarrow 1$
- After degree of a vertex falls outside $\left[\frac{p_v}{2}, 2p_v \right]$, ask neighbors for degree
Dynamic Edge Orientation Technique

- Each vertex maintains counter $p_v \leftarrow 1$
- After degree of a vertex falls outside $\left[\frac{p_v}{2}, 2p_v \right]$ ask neighbors for degree
Dynamic Edge Orientation Technique

- Each vertex maintains counter $p_v \leftarrow 1$
- After degree of a vertex falls outside $\left[\frac{p_v}{2}, 2p_v \right]$, ask neighbors for degree
- Orient edges towards smaller degree endpoint
Dynamic Edge Orientation Technique

- Each vertex maintains counter $p_v \leftarrow 1$
- After degree of a vertex falls outside $\left[\frac{p_v}{2}, 2p_v \right]$, ask neighbors for degree
- Orient edges towards smaller degree endpoint
- Reset counter $p_v \leftarrow \deg(v)$
- Repeat under future updates
Dynamic Edge Orientation Technique

Invariant: at most $4\sqrt{m}$ outgoing

- Each vertex maintains counter $p_v \leftarrow 1$
- After degree of a vertex falls outside $\left[\frac{p_v}{2}, 2p_v\right]$, ask neighbors for degree
- Orient edges towards smaller degree endpoint
- Reset counter $p_v \leftarrow \text{deg}(v)$
- Repeat under future updates
Dynamic Edge Orientation Technique

Invariant: at most $4\sqrt{m}$ outgoing

- Each vertex maintains counter $p_v \leftarrow 1$
- After degree of a vertex falls outside $\left[\frac{p_v}{2}, 2p_v \right]$, ask neighbors for degree
- Orient edges towards smaller degree endpoint
- Reset counter $p_v \leftarrow \text{deg}(v)$
- Repeat under future updates

m is the current number of edges
Dynamic Edge Orientation Technique

Invariant: at most \(4\sqrt{m}\) outgoing

\(m\) is the current number of edges

- Round complexity: \(O(1)\) worst-case
- Message complexity: \(O(1)\) amortized
Dynamic Edge Orientation Technique

Invariant: at most $4\sqrt{m}$ outgoing

m is the current number of edges

- Round complexity: $O(1)$ worst-case
- Message complexity: $O(1)$ amortized
 - $O(1)$ worst-case
 - Gradually 20 reorientations per update for the next $p_v/10$ updates
Dynamic Distributed \((\Delta + 1)\)-Coloring

Invariant: at most \(4\sqrt{m}\) outgoing

- Hard case: edge insertions
Dynamic Distributed \((\Delta + 1)\)-Coloring

Invariant: at most \(4\sqrt{m}\) outgoing

- Hard case: edge insertions
- Perform edge orientation algorithm; reorient if necessary

\((u, v)\) edge insertion
Dynamic Distributed \((\Delta + 1)\)-Coloring

Invariant: at most \(4\sqrt{m}\) outgoing

- Hard case: edge insertions
- Perform edge orientation algorithm; reorient if necessary

\[(u, v)\) edge insertion
Dynamic Distributed \((\Delta + 1)\)-Coloring

Invariant: at most \(4\sqrt{m}\) outgoing

- Hard case: edge insertions
- Perform edge orientation algorithm; reorient if necessary
- Each flipped edge, update neighbor about color

\[u\] sends color to \(v\) and \(w\)
Dynamic Distributed \((\Delta + 1)\)-Coloring

Invariant: at most \(4\sqrt{m}\) outgoing

- Hard case: edge insertions
- Perform edge orientation algorithm; reorient if necessary
- Each flipped edge, update neighbor about color
- Ask outgoing neighbors their colors

outgoing send colors to \(u\)
Dynamic Distributed $(\Delta + 1)$-Coloring

Invariant: at most $4\sqrt{m}$ outgoing

- Hard case: edge insertions
- Perform edge orientation algorithm; reorient if necessary
- Each flipped edge, update neighbor about color
- Ask outgoing neighbors their colors
- Arbitrarily pick vertex recolor

u recolors itself
Dynamic Distributed \((\Delta + 1)\)-Coloring

Invariant: at most \(4\sqrt{m}\) outgoing

- Hard case: edge insertions
- Perform edge orientation algorithm; reorient if necessary
- Each flipped edge, update neighbor about color
- Ask outgoing neighbors their colors
- Arbitrarily pick vertex recolor
- Send new color to outgoing

\[u \text{ recolors itself} \]
Dynamic Distributed $$(\Delta + 1)$$-Coloring

Invariant: at most $4\sqrt{m}$ outgoing

- Correctness: u knows all neighbor colors
 - Can pick free color

u recolors itself
Dynamic Distributed \((\Delta + 1)\)-Coloring

Invariant: at most \(4\sqrt{m}\) outgoing

- Correctness: \(u\) knows all **neighbor colors**
 - Can pick free color
- Message Complexity: \(O(\sqrt{m})\) worst-case
 - Due to edge-orientation

\(u\) recolors itself
Dynamic Distributed $(\Delta + 1)$-Coloring

Invariant: at most $4\sqrt{m}$ outgoing

- **Correctness:** u knows all neighbor colors
 - Can pick free color
- **Message Complexity:** $O(\sqrt{m})$ worst-case
 - Due to edge-orientation
- **Round Complexity:** $O(1)$ worst-case

u recolors itself
Maximal Matching

Each vertex matched to at most one neighbor
All vertices which can be matched are matched
Maximal Matching

Edge Insertions and Deletions May Violating Matching Maximality

Each vertex matched to at most one neighbor

All vertices which can be matched are matched
Maximal Matching

Edge Insertions and Deletions May Violating Matching Maximality

Each vertex matched to at most one neighbor

All vertices which can be matched are matched
Maximal Matching

Edge Insertions and Deletions May Violating Matching Maximality

Each vertex matched to at most one neighbor

All vertices which can be matched are matched
Maximal Matching

Edge Insertions and Deletions May Violating Matching Maximality

- Each vertex matched to at most one neighbor
- All vertices which can be matched are matched
Maximal Matching

- Each vertex matched to at most one neighbor
- All vertices which can be matched are matched
- Edge Insertions and Deletions May Violating Matching Maximality
Dynamic Distributed Maximal Matching

Invariant: at most $4\sqrt{m}$ outgoing

- Easy case: edge insertions
Dynamic Distributed Maximal Matching

Invariant: at most $4\sqrt{m}$ outgoing

- Easy case: edge insertions
 - Orient edges as needed
Dynamic Distributed Maximal Matching

Invariant: at most $4\sqrt{m}$ outgoing

- Easy case: edge insertions
 - Orient edges as needed
 - Match if both endpoints not matched
Dynamic Distributed Maximal Matching

Invariant: at most $4\sqrt{m}$ outgoing

- Harder case: edge deletions
Dynamic Distributed Maximal Matching

Invariant: at most $4\sqrt{m}$ outgoing

- Harder case: edge deletions
- Match to incoming neighbor if any unmatched

u is matched
Dynamic Distributed Maximal Matching

Invariant: at most $4\sqrt{m}$ outgoing

- Harder case: edge deletions
- Match to incoming neighbor if any unmatched
- Otherwise ask outgoing neighbors if they are matched

v is not matched
Dynamic Distributed Maximal Matching

Invariant: at most $4\sqrt{m}$ outgoing

- Harder case: edge deletions
- Match to incoming neighbor if any unmatched
- Otherwise ask outgoing neighbors if they are matched
- Match to unmatched outgoing neighbor

(v, w) are now matched
Dynamic Distributed Maximal Matching

Invariant: at most \(4\sqrt{m}\) outgoing

- Harder case: edge deletions
- Match to incoming neighbor if any unmatched
- Otherwise ask outgoing neighbors if they are matched
- Match to unmatched outgoing neighbor
- Inform outgoing neighbors

\[\begin{align*}
&\text{matched} \\
&\text{matched} \\
&\text{matched} \\
&\text{matched} \\
\end{align*}\]

\(w\) tells \(v\) and \(a\) it is matched
Our Deterministic Algorithm Results

$(\Delta + 1)$-Vertex Coloring
- $O(\sqrt{m})$ messages and $O(1)$ rounds, both worst-case
- Dynamic Edge Orientation Technique
- Matches best-known sequential, centralized algorithm of [KNNP20]

$(3/2)$-Maximum Matching
- $O(\sqrt{m})$ amortized messages and $O(\log \Delta)$ rounds, worst case
- High-Degree/Low-Degree Partitioning Using Surrogates
- Matches best-known sequential, centralized algorithm of [NS13]

Maximal Matching
- $O(\sqrt{m})$ messages and $O(1)$ rounds, both worst-case
- Dynamic Edge Orientation Technique
- Matches best-known sequential, centralized algorithm of [KNNP20]

Maximal Independent Set
- $O\left(m^{2/3} \log^2 n\right)$ messages and $O\left(\log^2 n\right)$ rounds, amortized
- High-Degree/Low-Degree Partitioning Using 6-Hop Neighborhood
- Use a small-diameter static algorithm to obtain MIS in high-degree and dynamic MIS for low-degree
- Matches best-known sequential, centralized [GK21] up to $\tilde{O}(1)$ factor
(3/2)-Approximate Maximum Matching

(3/2)-Approximation of Maximum Matching
(3/2)-Approximate Maximum Matching

(3/2)-Approximation of Maximum Matching

Edge Insertions and Deletions May Change Size of Maximum Matching
(3/2)-Approximate Maximum Matching

(3/2)-Approximation of Maximum Matching

Edge Insertions and Deletions May Change Size of Maximum Matching
(3/2)-Approximate Maximum Matching

(3/2)-Approximation of Maximum Matching

Edge Insertions and Deletions May Change Size of Maximum Matching
(3/2)-Approximate Maximum Matching

Edge Insertions and Deletions May Change Size of Maximum Matching

Maximum matching increased by 1

(3/2)-Approximation of Maximum Matching
Sequential, Centralized Dynamic (3/2)-Maximum Matching

• Neiman and Solomon (STOC 2013):
 • Any (3/2)-maximum matching does not have an augmenting path of length 3 or longer
Sequential, Centralized Dynamic (3/2)-Maximum Matching

- Neiman and Solomon (STOC 2013):
 - Any (3/2)-maximum matching does not have an **augmenting path** of length 3 or longer
 - Path that starts and ends on unmatched vertices and alternate between edges in matching and not
Sequential, Centralized Dynamic (3/2)-Maximum Matching

- Neiman and Solomon (STOC 2013):
 - Any (3/2)-maximum matching does not have an augmenting path of length 3 or longer
 - Path that starts and ends on unmatched vertices and alternate between edges in matching and not
 - Partition vertices into high-degree ($\geq \sqrt{m}$) and low-degree
 - **Always match high-degree vertices**
Sequential, Centralized Dynamic (3/2)-Maximum Matching

• Neiman and Solomon (STOC 2013):
 • Any (3/2)-maximum matching does not have an augmenting path of length 3 or longer
 • Path that starts and ends on unmatched vertices and alternate between edges in matching and not
 • Partition vertices into high-degree ($\geq \sqrt{m}$) and low-degree
 • **Always match high-degree vertices**
 • Look for augmenting paths through surrogates
Sequential, Centralized Dynamic (3/2)-Maximum Matching

• Neiman and Solomon (STOC 2013):
 • Any (3/2)-maximum matching does not have an augmenting path of length 3 or longer
 • Path that starts and ends on unmatched vertices and alternate between edges in matching and not
 • Partition vertices into high-degree ($\geq \sqrt{m}$) and low-degree
 • Always match high-degree vertices
 • Look for augmenting paths through surrogates
Distributed, Dynamic (3/2)-Maximum Matching

- Key Idea: **Degree doubling** to find augmenting paths
Distributed, Dynamic (3/2)-Maximum Matching

• **Key Idea:** Degree doubling to find augmenting paths
 • On update, search neighbors for free vertex or surrogate
 • Start with 1 neighbor

![Diagram showing edge insertion](u, v)
Distributed, Dynamic (3/2)-Maximum Matching

• Key Idea: Degree doubling to find augmenting paths
• On update, search neighbors for free vertex or surrogate
 • Start with 1 neighbor
 • Successively double neighbors searched, 2^i

Edge Insertion (u, v)
Distributed, Dynamic (3/2)-Maximum Matching

- **Key Idea:** Degree doubling to find augmenting paths
- On update, search neighbors for free vertex or surrogate
 - Start with 1 neighbor
 - **Successively double neighbors searched,** \(2^i\)
- **Surrogate:** matched neighbor whose mate has degree \(\leq \sqrt{2^i}\)

Edge Insertion \((u, v)\)
Distributed, Dynamic (3/2)-Maximum Matching

- **Key Idea:** Degree doubling to find augmenting paths
- On update, search neighbors for free vertex or surrogate
 - Start with 1 neighbor
 - Successively double neighbors searched, 2^i
- **Surrogate:** matched neighbor whose mate has degree $\leq \sqrt{2^i}$
Distributed, Dynamic (3/2)-Maximum Matching

- **Key Idea:** Degree doubling to find augmenting paths
- On update, search neighbors for free vertex or surrogate
 - Start with 1 neighbor
 - **Successively double neighbors searched,** 2^i
- **Surrogate:** matched neighbor whose mate has degree $\leq \sqrt{2^i}$

x does not have degree 1
Distributed, Dynamic (3/2)-Maximum Matching

- **Key Idea**: Degree doubling to find augmenting paths
- On update, search neighbors for free vertex or surrogate
 - Start with 1 neighbor
 - **Successively double neighbors searched**, 2^i
- **Surrogate**: matched neighbor whose mate has degree $\leq \sqrt{2^i}$

v searches two additional neighbors
Distributed, Dynamic (3/2)-Maximum Matching

- **Key Idea:** Degree doubling to find augmenting paths
- On update, search neighbors for free vertex or surrogate
 - Start with 1 neighbor
 - Successively double neighbors searched, 2^i
- **Surrogate:** matched neighbor whose mate has degree $\leq \sqrt{2^i}$

u has a mate u' with degree $\leq \sqrt{2}$
Distributed, Dynamic (3/2)-Maximum Matching

- **Key Idea**: Degree doubling to find augmenting paths
- On update, search neighbors for free vertex or surrogate
 - Start with 1 neighbor
 - **Successively double neighbors searched,** 2^i
- **Surrogate**: matched neighbor whose mate has degree $\leq \sqrt{2^i}$

u' is a surrogate
Distributed, Dynamic (3/2)-Maximum Matching

• Match with neighbor if surrogate found

\(\nu \) matches with \(u \)
Distributed, Dynamic (3/2)-Maximum Matching

- Match with neighbor if surrogate found
 - Surrogate matches with free neighbor if exists

\(u' \) matches with \(a \)
Distributed, Dynamic (3/2)-Maximum Matching

• Match with neighbor if surrogate found
 • Surrogate matches with free neighbor if exists
• Similar procedure for deletions

\(u' \) matches with \(a \)
Distributed, Dynamic (3/2)-Maximum Matching

• Round complexity: $O(\log \Delta)$ worst-case

u' matches with a
Distributed, Dynamic (3/2)-Maximum Matching

- Round complexity: $O(\log \Delta)$ worst-case
- Search at most Δ neighbors, doubling

u' matches with a
Distributed, Dynamic (3/2)-Maximum Matching

- Round complexity: $O(\log \Delta)$ worst-case
 - Search at most Δ neighbors, doubling
- Message complexity: $O(\sqrt{m})$ amortized

u' matches with a
Distributed, Dynamic (3/2)-Maximum Matching

- Round complexity: $O(\log \Delta)$ worst-case
 - Search at most Δ neighbors, doubling
- Message complexity: $O(\sqrt{m})$ amortized
 - At most \sqrt{m} matched neighbors with mates $\geq \sqrt{m}$ degree

u' matches with a
Distributed, Dynamic (3/2)-Maximum Matching

- Round complexity: $O(\log \Delta)$ worst-case
 - Search at most Δ neighbors, doubling
- Message complexity: $O(\sqrt{m})$ amortized
 - At most \sqrt{m} matched neighbors with mates $\geq \sqrt{m}$ degree
 - Need to search at most $2\sqrt{m}$ neighbors

u' matches with a
Our Deterministic Algorithm Results

<table>
<thead>
<tr>
<th>Algorithm Category</th>
<th>Description</th>
</tr>
</thead>
</table>
| **(Δ + 1)-Vertex Coloring** | - $O(\sqrt{m})$ messages and $O(1)$ rounds, both worst-case
- Dynamic Edge Orientation Technique
- Matches best-known sequential, centralized algorithm of [KNNP20] |
| **Maximal Matching** | - $O(\sqrt{m})$ messages and $O(1)$ rounds, both worst-case
- Dynamic Edge Orientation Technique
- Matches best-known sequential, centralized algorithm of [NS13] |
| **(3/2)-Maximum Matching** | - $O(\sqrt{m})$ amortized messages and $O(\log \Delta)$ rounds, worst case
- High-Degree/Low-Degree Partitioning Using Surrogates
- Matches best-known sequential, centralized algorithm of [NS13] |
| **Maximal Independent Set** | - $O(m^{2/3} \log^2 n)$ messages and $O(\log^2 n)$ rounds, amortized
- High-Degree/Low-Degree Partitioning Using 6-Hop Neighborhood
- Use a small-diameter static algorithm to obtain MIS in high-degree and dynamic MIS for low-degree
- Matches best-known sequential, centralized [GK21] up to $\tilde{O}(1)$ factor |
Maximal Independent Set (MIS)

No two vertices in the independent set are neighbors.
All vertices that can be added to the independent set are added.
Maximal Independent Set (MIS)

No two vertices in the independent set are neighbors
All vertices that can be added to the independent set are added

Edge Insertions May Violate Independence
Maximal Independent Set (MIS)

- No two vertices in the independent set are neighbors.
- All vertices that can be added to the independent set are added.

Edge Deletions May Violate Maximality
Maximal Independent Set (MIS)

- No two vertices in the independent set are neighbors.
- All vertices that can be added to the independent set are added.
- Edge deletions may violate maximality.
Maximal Independent Set (MIS)

- No two vertices in the independent set are neighbors.
- All vertices that can be added to the independent set are added.
- Edge deletions may violate maximality.
Previous Deterministic Dynamic Distributed MIS

- Assadi, Onak, Schieber, and Solomon (STOC ‘18) provides a deterministic, dynamic, distributed MIS algorithm
Previous Deterministic Dynamic Distributed MIS

- Assadi, Onak, Schieber, and Solomon (STOC ‘18) provides a deterministic, dynamic, distributed MIS algorithm
 - $O(m^{3/4})$ amortized messages, $O(1)$ amortized rounds
Previous Deterministic Dynamic Distributed MIS

- Assadi, Onak, Schieber, and Solomon (STOC ‘18) provides a deterministic, dynamic, distributed MIS algorithm
 - $O\left(\frac{m^{3/4}}{\epsilon}\right)$ amortized messages, $O(1)$ amortized rounds
 - Assumes graph remains connected throughout updates
Previous Deterministic Dynamic Distributed MIS

• Assadi, Onak, Schieber, and Solomon (STOC ‘18) provides a deterministic, dynamic, distributed MIS algorithm
 • $O\left(\frac{m^{3/4}}{\log n}\right)$ amortized messages, $O(1)$ amortized rounds
 • Assumes graph remains connected throughout updates

Our Result: $O\left(\frac{m^{2/3} \log^2 n}{\log n}\right)$ amortized messages,
$O(\log^2 n)$ amortized rounds

Does **not need connectivity assumption**
Sequential, Centralized, Dynamic MIS

- Gupta and Khan (SOSA 2021):
 - Partition nodes into \textbf{high-degree} \((\geq m^{2/3})\) and \textbf{low-degree}

Sequential, Centralized, Dynamic MIS

• Gupta and Khan (SOSA 2021):
 • Partition nodes into *high-degree* ($\geq m^{2/3}$) and *low-degree*
 • Low-degree nodes *prioritize membership in MIS*
Sequential, Centralized, Dynamic MIS

- Gupta and Khan (SOSA 2021):
 - Partition nodes into high-degree ($\geq m^{2/3}$) and low-degree
 - Low-degree nodes prioritize membership in MIS
 - If no low-degree neighbor in MIS, add self to MIS
Sequential, Centralized, Dynamic MIS

• Gupta and Khan (SOSA 2021):
 • Partition nodes into high-degree ($\geq m^{2/3}$) and low-degree
 • Low-degree nodes prioritize membership in MIS
 • If no low-degree neighbor in MIS, add self to MIS
 • High-degree nodes with no neighbors in MIS are added to MIS after processing all low-degree nodes
Sequential, Centralized, Dynamic MIS

- Gupta and Khan (SOSA 2021):
 - Partition nodes into high-degree ($\geq m^{2/3}$) and low-degree
 - Low-degree nodes prioritize membership in MIS
 - If no low-degree neighbor in MIS, add self to MIS
 - High-degree nodes with no neighbors in MIS are added to MIS after processing all low-degree nodes
 - Low-degree node entering/exiting MIS causes all high-degree nodes to find new MIS in induced subgraph (this is a global restart)
Distributing Challenges

Challenge 1: How do nodes determine if they’re high-degree/low-degree as m changes with updates (for unknown m)?

Easy to achieve if the graph remains connected throughout updates.
Distributing Challenges

Challenge 1: How do nodes determine if they’re high-degree/low-degree as m changes with updates (for unknown m)?

Easy to achieve if the graph remains connected throughout updates.

Challenge 2: How do high-degree nodes compute maximal independent set in small number of rounds and few messages?

Global restarts are expensive.
Distributed Dynamic MIS

• Algorithm:

- Low-degree vertices prioritize in MIS
- On edge insertion:
 - Remove vertices from MIS if needed
 - Add neighbors into MIS if possible, prioritizing low-degree, then high-degree
Distributed Dynamic MIS

- **Algorithm:**
 - Low-degree vertices prioritize in MIS

Members of MIS

Low-degree

High-degree
Distributed Dynamic MIS

Algorithm:
- Low-degree vertices prioritize in MIS
- On edge insertion:

Members of MIS

Low-degree vertices

High-degree vertices
Distributed Dynamic MIS

- **Algorithm:**
 - Low-degree vertices prioritize in MIS
 - On *edge insertion*:
 - Remove vertices from MIS if needed
Distributed Dynamic MIS

- **Algorithm:**
 - Low-degree vertices prioritize in MIS
 - On **edge insertion:**
 - Remove vertices from MIS if needed

![Diagram of Distributed Dynamic MIS]

Members of MIS

Low-degree

High-degree
Distributed Dynamic MIS

- **Algorithm:**
 - Low-degree vertices prioritize in MIS
 - On **edge insertion:**
 - Remove vertices from MIS if needed
 - Add neighbors into MIS if possible, prioritizing low-degree, then high-degree, potentially many
Distributed Dynamic MIS

Algorithm:
- Low-degree vertices prioritize in MIS
- On *edge insertion:*
 - Remove vertices from MIS if needed
 - Add neighbors into MIS if possible, prioritizing low-degree, then high-degree, potentially many
Distributed Dynamic MIS

Algorithm:
- Low-degree vertices prioritize in MIS
- On **edge insertion:**
 - Remove vertices from MIS if needed
 - Add neighbors into MIS if possible, prioritizing low-degree, then high-degree, potentially many
Distributed Dynamic MIS

• **Algorithm:**
 - Low-degree vertices prioritize in MIS
 - On **edge insertion:**
 - Remove vertices from MIS if needed
 - Add neighbors into MIS if possible, prioritizing low-degree, then high-degree, potentially many
Distributed Dynamic MIS

Algorithm:
- Low-degree vertices prioritize in MIS
- On **edge deletion:**

Members of MIS

Low-degree

High-degree
Distributed Dynamic MIS

• Algorithm:
 • Low-degree vertices prioritize in MIS
 • On edge deletion:
 • Prioritize low-degree nodes, then high-degree
 • Add additional nodes to MIS if possible
Distributed Dynamic MIS

- **Algorithm:**
 - Low-degree vertices prioritize in MIS
 - On *edge deletion*:
 - Prioritize low-degree nodes, then high-degree
 - Add additional nodes to MIS if possible
 - Potentially many high-degree nodes added/removed
Distributed Dynamic MIS

Important Notes:

- Edge insertion/deletion could cause nodes to **switch low/high-degree**

- Edge insertion/deletion could cause low degree node to enter or leave MIS

- Run [AOSS18] on the low degree node to determine set of low degree neighbors add to MIS; edge deletion removes at most 1 low degree node

- Low degree nodes entering MIS can cause many high degree nodes to enter

- High degree nodes leaving MIS can cause many high degree nodes to enter

- Instead, we use high degree nodes in local neighborhood (details later)
Distributed Dynamic MIS

Important Notes:

- Edge insertion/deletion could cause nodes to *switch low/high-degree*
- Edge insertion/deletion could cause *low degree node* to enter or leave MIS

Members of MIS

Members of MIS

Run [AOSS18] on the low-degree node to determine set of low-degree neighbors add to MIS; edge deletion removes at most 1 low-degree node

Low-degree nodes entering MIS can cause many high-degree nodes to enter

Low-degree nodes leaving MIS can cause many high-degree nodes to enter

[AGK21] restarts all high-degree nodes to determine set of high-degree nodes that enter/leave

Instead, we use high-degree nodes in local neighborhood (details later)
Distributed Dynamic MIS

Important Notes:

- Edge insertion/deletion could cause nodes to switch low/high-degree
- Edge insertion/deletion could cause low-degree node to enter or leave MIS
- Run [AOSS18] on the low-degree node to determine set of low-degree neighbors add to MIS; edge insertion removes at most 1 low-degree node
Distributed Dynamic MIS

Important Notes:

- Edge insertion/deletion could cause nodes to switch low/high-degree.
- Edge insertion/deletion could cause low-degree node to enter or leave MIS.
- Run [AOSS18] on the low-degree node to determine set of low-degree neighbors add to MIS; edge insertion removes at most 1 low-degree node.
- Low-degree nodes entering MIS can cause many high-degree nodes to enter.
- Low-degree nodes leaving MIS can cause many high-degree nodes to enter.

[AOSS18] refers to the works of Alon, Oren, Segev, and Solomon.
Distributed Dynamic MIS

Important Notes:

- Edge insertion/deletion could cause nodes to switch low/high-degree.
- Edge insertion/deletion could cause low-degree node to enter or leave MIS.
- Run [AOSS18] on the low-degree node to determine set of low-degree neighbors add to MIS; edge insertion removes at most 1 low-degree node.
- Low-degree nodes entering MIS can cause many high-degree nodes leave.
- Low-degree nodes leaving MIS can cause many high-degree nodes to enter.
Distributed Dynamic MIS

Important Notes:

- Edge insertion/deletion could cause nodes to switch low/high-degree
- Edge insertion/deletion could cause low-degree node to enter or leave MIS
- Run [AOSS18] on the low-degree node to determine set of low-degree neighbors add to MIS; edge insertion removes at most 1 low-degree node
- Low-degree nodes entering MIS can cause many high-degree nodes leave
- Low-degree nodes leaving MIS can cause many high-degree nodes to enter
- [GK21] global restart all high-degree nodes to determine set of high-degree nodes that enter/leave at every step
Distributed Dynamic MIS

Important Notes:

- Edge insertion/deletion could cause nodes to switch low/high-degree
- Edge insertion/deletion could cause low degree node to enter or leave MIS
- Run [AOSS18] on the low-degree node to determine set of low-degree neighbors add to MIS; edge insertion removes at most 1 low-degree node
- Low-degree nodes entering MIS can cause many high-degree nodes leave
- Low-degree nodes leaving MIS can cause many high-degree nodes to enter
- [GK21] **global restart all** high-degree nodes to determine set of high-degree nodes that enter/leave at every step
- Instead, do high-degree restart in local neighborhood only when needed
Distributed Dynamic MIS

Important Notes:

- Edge insertion/deletion could cause nodes to switch low/high-degree
- Edge insertion/deletion could cause low degree nodes to enter or leave MIS
- But need to know which vertices are low-degree and high-degree (unknown m and potentially disconnected graph)!
- Low-degree nodes entering MIS can cause many high-degree nodes to leave MIS
- Low-degree nodes leaving MIS can cause many high-degree nodes to enter MIS
- Challenge 1: How do nodes determine if they’re high-degree/low-degree as m changes with updates (for unknown m)?
- Instead, we use high-degree nodes in local neighborhood (details later)
Distributed Dynamic MIS

Important Notes:

- Edge insertion/deletion could cause low degree nodes to enter or leave MIS.
- Run [AOSS18] on the low-degree node to determine set of low-degree neighbors to add to MIS; edge deletion removes at most 1 low-degree node.
- Low-degree nodes entering MIS can cause many high-degree nodes to leave.
- Low-degree nodes leaving MIS can cause many high-degree nodes to enter.
- [GK21] global restart all high-degree nodes to determine set of high-degree nodes that enter/leave at every step.
- Instead, do high-degree restart in local neighborhood only when needed.

Challenge 2: How do high-degree nodes find maximal independent set in small number of rounds and few messages?
Distributed Dynamic MIS

- **Solving Challenge 1**: how to determine low/high-degree
 - Initialize counter $p_v \leftarrow 1$
Distributed Dynamic MIS

- **Solving Challenge 1:** how to determine low/high-degree
 - Initialize counter $p_v \leftarrow 1$
 - All vertices initially low-degree
 - On edge insertions where degree exceeds $2p_v$
Distributed Dynamic MIS

• **Solving Challenge 1:** how to determine low/high-degree
 - Initialize counter $p_v \leftarrow 1$
 - All vertices initially low-degree
 - On edge insertions where degree exceeds $2p_v$
Distributed Dynamic MIS

- **Solving Challenge 1**: how to determine low/high-degree
 - Initialize $p_v \leftarrow 1$
 - All vertices initially low-degree
 - On edge insertions where degree *exceeds* $2p_v$
 - Make node high-degree

v is now high-degree
Distributed Dynamic MIS

- **Solving Challenge 1:** how to determine low/high-degree
 - Initialize counter $p_v \leftarrow 1$
 - All vertices initially low-degree
 - On edge insertions where degree exceeds $2p_v$
 - Make node high-degree
 - p_v updates to the current degree when low-degree

v is now high-degree
Distributed Dynamic MIS

- Solving Challenge 1: how to determine low/high-degree

 Initialize counter $p \leftarrow 1$

 All vertices initially low-degree

 On edge insertions where degree exceeds $2p$, make node high-degree

 Might result in too many high-degree nodes

 Don’t deal with them now, make high-degree nodes low-degree again when we do a local restart (when we need to determine which high-degree nodes need to go into MIS)
Distributed Dynamic MIS

- **Solving Challenge 2**: how to determine MIS among high-degree neighbors

Members of MIS

- Low-degree
- High-degree

\[u \rightarrow x \rightarrow v \rightarrow y \rightarrow u \]
Distributed Dynamic MIS

• **Solving Challenge 2**: how to determine MIS among high-degree neighbors
 - On edge insertion, when a low-degree neighbor leaves the MIS:

```
\begin{itemize}
  \item $u$ must leave MIS
  \item Members of MIS
  \item Low-degree
  \item High-degree
\end{itemize}
```
Solving Challenge 2: how to determine MIS among high-degree neighbors

- On edge insertion, when a low-degree neighbor leaves the MIS:
 - High-degree nodes must determine MIS in induced neighborhood

x, y, v must determine MIS

Members of MIS

Low-degree

High-degree

\[u\]

\[x\]

\[y\]

\[v\]
Distributed Dynamic MIS

- **Solving Challenge 2**: how to determine MIS among high-degree neighbors
 - On edge insertion, when a low-degree neighbor leaves the MIS:
 - High-degree nodes must determine MIS in induced neighborhood
 - First solve Challenge 1 again
 - Some are low-degree

Members of MIS

\[x, y, v \text{ may not all be high-degree} \]
Distributed Dynamic MIS

- First solve **Challenge 1** again
 - Some are low-degree
- Determine **sum of degree in 1-hop neighborhood** (S) of low-degree node

Sum of degree in u’s neighborhood: 12

Members of MIS
Distributed Dynamic MIS

- First solve **Challenge 1** again
 - Some are low-degree
 - Determine **sum of degree in 1-hop neighborhood** \((S)\) of low-degree node
 - Any vertex with degree \(< S^{2/3}\) becomes low-degree
Distributed Dynamic MIS

- First solve **Challenge 1** again
 - Some are low-degree
- Determine sum of degree in 1-hop neighborhood (S) of low-degree node
- Any vertex with degree $< S^{2/3}$ becomes low-degree

\[a, u, x, y \text{ have degree } < 12^{2/3} \]
Distributed Dynamic MIS

- First solve **Challenge 1** again
 - Some are low-degree
- Determine sum of degree in 1-hop neighborhood (S) of low-degree node
- Any vertex with degree $< S^{2/3}$ becomes low-degree
- Vertices which became low-degree, priority in joining MIS

a, u, x, y have degree $< 12^{2/3}$
Distributed Dynamic MIS

• First solve **Challenge 1** again
 – Some are low-degree
• Determine sum of degree in 1-hop neighborhood (S) of low-degree node
• Any vertex with degree $< S^{2/3}$ becomes low-degree
• Vertices which became low-degree, priority in joining MIS
Distributed Dynamic MIS

Suppose instead x, y high-degree
Members of MIS

- Finish Solving Challenge 2:
 - Run static, distributed MIS algorithm on induced subgraph of high-degree nodes in local neighborhood
 - Run the algorithm of Censor-Hillel, Parter, and Schwartzman (2020) on induced subgraph

Suppose instead x, y high-degree
Distributed Dynamic MIS

Suppose instead \(x, y \) high-degree

Members of MIS

• **Finish Solving Challenge 2:**
 • Run static, distributed MIS algorithm on induced subgraph of high-degree nodes in local neighborhood
Distributed Dynamic MIS

Suppose instead x, y high-degree

Members of MIS

• Finish Solving Challenge 2:
 • Run static, distributed MIS algorithm on induced subgraph of high-degree nodes in local neighborhood
 • Run the small diameter algorithm of Censor-Hillel, Parter, and Schwartzman (2020) on induced subgraph
Distributed Dynamic MIS

- **Finish Solving Challenge 2:**
 - Run static, distributed MIS algorithm on induced subgraph of high-degree nodes in local neighborhood.
 - Run the small diameter algorithm of Censor-Hillel, Parter, and Schwartzman (2020) on induced subgraph.
Distributed Dynamic MIS

- **Finish Solving Challenge 2:**
 - Run static, distributed MIS algorithm on induced subgraph of high-degree nodes in local neighborhood.
 - Run the small diameter algorithm of Censor-Hillel, Parter, and Schwartzman (2020) on induced subgraph.
Distributed Dynamic MIS

- Overall complexity:
 - Message complexity:
 - $O(m^{2/3} \log^2 n)$ amortized

v picked into MIS by static algorithm

Members of MIS

Low-degree

High-degree
Distributed Dynamic MIS

- Overall complexity:
 - Message complexity:
 - $O(m^{2/3} \log^2 n)$ amortized
Distributed Dynamic MIS

- Members of MIS

\(v \) picked into MIS by static algorithm

\(u \)

\(v \)

\(x \)

\(y \)

\(a \)

\(m \) is average number of edges over all updates

- Overall complexity:
 - Message complexity:
 - \(O\left(m^{2/3} \log^2 n\right) \) amortized
 - Low-degree vertices have degree \(O\left(m^{2/3}\right) \)

\(m \) is average number of edges over all updates
Distributed Dynamic MIS

\(v\) picked into MIS by static algorithm

Members of MIS

- Overall complexity:
 - Message complexity:
 - \(O(m^{2/3} \log^2 n)\) amortized
 - Low-degree vertices have degree \(O(m^{2/3})\)
 - At most \(O(m^{2/3})\) edges in local high-degree neighborhood

\(m\) is average number of edges over all updates

\(m\) is average number of edges over all updates

\(m\) is average number of edges over all updates
Distributed Dynamic MIS

- Overall complexity:
 - Message complexity:
 - $O(m^{2/3} \log^2 n)$ amortized
 - Low-degree vertices have degree $O(m^{2/3})$
 - At most $O(m^{2/3})$ edges in local high-degree neighborhood
 - Amortization due to local restarts

Finding the low degree nodes in the local restart of the high-degree neighborhood results in amortized message complexity

m is average number of edges over all updates
Distributed Dynamic MIS

\(v\) picked into MIS by static algorithm

Members of MIS

- Overall complexity:
 - Round complexity:
 - \(O(\log^2 n)\) amortized
 - Running [CPS20] requires \(O(\log^2 n)\) rounds for constant diameter graphs

\(m\) is average number of edges over all updates

Low-degree

High-degree
Distributed Dynamic MIS

- Overall complexity:
- Round complexity:
 - $O(\log^2 n)$ amortized
 - Running [CPS20] requires $O(\log^2 n)$ rounds for constant diameter graphs
- We run the algorithm on local subgraphs with diameter at most 6

m is average number of edges over all updates
Distributed Dynamic MIS

- **Overall complexity:**
- **Round complexity:**
 - $\mathcal{O}(\log^2 n)$ amortized
 - Running [CPS20] requires $\mathcal{O}(\log^2 n)$ rounds for constant diameter graphs
 - We run the algorithm on local subgraphs with diameter at most 6
 - Amortization from running [AOSS18] to add low-degree neighbors to MIS

m is average number of edges over all updates
Conclusion and Open Questions

• Initialize formal study of message-efficient dynamic algorithms in distributed networks

Grand Prize:

• message complexity matches update time of best-known sequential, centralized algorithm
• round complexity is $O(1)$

• Achieved for several fundamental symmetry breaking problems (up to $O(\log^2 n)$ factors for MIS, and smaller for other problems)

• Solve several general challenges—unknown m and global restarts
Conclusion and Open Questions

- Initialize formal study of message-efficient dynamic algorithms in distributed networks

Grand Prize:
- **message complexity matches update time** of best-known sequential, centralized algorithm
- **round complexity is** $O(1)$

- Achieved for several fundamental symmetry breaking problems (up to $O(\log^2 n)$ factors for MIS, and smaller for other problems)

- Solve several general challenges—unknown m and global restarts

<table>
<thead>
<tr>
<th>Question 1</th>
<th>Can our techniques be generalized for a wide class of dynamic distributed algorithms?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Question 2</td>
<td>Can we achieve worst-case bounds (esp. rounds) for MIS?</td>
</tr>
<tr>
<td>Question 3</td>
<td>Can we get rid of the $O(\log^2 n)$ factors especially in round complexity of MIS?</td>
</tr>
<tr>
<td>Question 4</td>
<td>Can our algorithms be modified to handle multiple concurrent updates, while maintaining low message complexity?</td>
</tr>
<tr>
<td>Question 5</td>
<td>Is there a general purpose compiler which takes a centralized dynamic algorithm and outputs a message-efficient distributed dynamic algorithm?</td>
</tr>
</tbody>
</table>