Massively Parallel Algorithms for Small Subgraph Counting

Amartya Shankha Biswas
MIT CSAIL

Talya Eden
Boston University/MIT → Bar-Ilan U

Quanquan C. Liu
Northwestern

Slobodan Mitrović
UC Davis

Ronitt Rubinfeld
MIT CSAIL

To Appear in APPROX 2022
Massively Parallel Computation (MPC)

- Massively parallel systems
 - Distributed cluster of multiple machines
Massively Parallel Computation (MPC)

- Massively parallel systems
 - Distributed cluster of multiple machines
 - Communicate with each other via rounds of communication
Massively Parallel Computation (MPC)

• Massively parallel systems
 • Distributed cluster of multiple machines
 • Communicate with each other via rounds of communication
 • Limited space in each individual machine
Commercial Data Centers

Google Kubernetes Engine
Commercial Data Centers

Google Kubernetes Engine

Machine 1 Machine 2 Machine 3
Massively Parallel Computation (MPC) Model

- Theoretical standard for studying parallel frameworks such as MapReduce, Hadoop, Spark, Dryad, and Google Cloud Dataflow
Graph Algorithms in MPC Model

- Matching and MIS [BBDFHKU19, BHH19, GGKMR19, CLMMOS18, NO21]
- Connectivity [ASSWZ18, BDELM19, DDKPSS19]
- Graph sparsification [GU19, CDP20]
- Vertex cover [Assadi17, GGKMR18]
- MST and 2-edge connectivity [NO21]
- Well-connected components [ASW18, ASW19]
- Coloring [BDHKS19, CFGUZ19]
MPC Model Definition

- M machines
- Synchronous rounds
MPC Model Definition

- \(M \) machines
- Synchronous rounds
MPC Model Definition

- M machines
- Synchronous rounds
MPC Model Definition

• M machines
• **Synchronous** rounds
MPC Model Definition

- M machines
- Synchronous rounds
MPC Model Definition

- M machines
- Synchronous rounds
MPC Model Definition

- M machines
- Synchronous rounds

Total Space: $M \cdot S$
Space per Machine in MPC

• **Strongly sublinear memory:**
 • $S = n^\delta$ for some constant $\delta \in (0, 1)$
Space per Machine in MPC

• **Strongly sublinear memory:**
 • $S = n^\delta$ for some constant $\delta \in (0, 1)$

• **Near-linear memory:**
 • $S = \tilde{\Theta}(n)$ (ignoring $\text{poly}(\log(n))$ factors)
Space per Machine in MPC

- **Strongly sublinear memory:**
 - $S = n^\delta$ for some constant $\delta \in (0, 1)$

- **Near-linear memory:**
 - $S = \Theta(n)$ (ignoring poly$(\log(n))$ factors)

- **Strongly superlinear memory:**
 - $S = n^{1+\delta}$ for some constant $\delta > 0$
Space per Machine in MPC

- **Strongly sublinear memory:**
 - \(S = n^\delta \) for some constant \(\delta \in (0, 1) \)

- **Near-linear memory:**
 - \(S = \tilde{\Theta}(n) \) (ignoring \(\text{poly}(\log(n)) \) factors)

- **Strongly superlinear memory:**
 - \(S = n^{1+\delta} \) for some constant \(\delta > 0 \)

Also want: \(O(\log \log n) \) or \(O(1) \) rounds
Space per Machine in MPC

- **Strongly sublinear memory:**
 - \(S = n^\delta \) for some constant \(\delta \in (0, 1) \)

- **Near-linear memory:**
 - \(S = \tilde{\Theta}(n) \) (ignoring \(\text{poly}(\log(n)) \) factors)

- **Strongly superlinear memory:**
 - \(S = n^{1+\delta} \) for some constant \(\delta > 0 \)

Also want: \(O(\log \log n) \) or \(O(1) \) rounds

Also want: \(\tilde{O}(n + m) \) total space
Space per Machine in MPC

• Strongly sublinear memory:
 • $S = n^\delta$ for some constant $\delta \in (0, 1)$

• Near-linear memory:
 • $S = \tilde{\Theta}(n)$ (ignoring $\text{poly} (\log (n))$ factors)

• Strongly superlinear memory:
 • $S = n^{1+\delta}$ for some constant $\delta > 0$

Also want: $O(\log \log n)$ or $O(1)$ rounds

Also want: $\tilde{\Theta}(n + m)$ total space

All are sublinear in number of edges m in graph
Triangle Counting in MPC Model

<table>
<thead>
<tr>
<th>Previous Work</th>
<th>MPC Rounds</th>
<th>Space Per Machine</th>
<th>Total Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>[SV11]</td>
<td>1</td>
<td>$O(m/\rho^2)$</td>
<td>$O(\rho m)$</td>
</tr>
<tr>
<td>[CC11]</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
<td>$O(m)$</td>
</tr>
<tr>
<td>Folklore [CN85]</td>
<td>$O(\log n)$</td>
<td>$O(\alpha^2)$</td>
<td>$O(m\alpha)$</td>
</tr>
<tr>
<td>BELMR22</td>
<td>$O(\log \log n)$</td>
<td>$O(n^\delta)$</td>
<td>$O(m\alpha)$</td>
</tr>
</tbody>
</table>

$\delta > 0$ is any constant

- [SV11]: Suri and Vassilvitski, WWW ‘11
- [CC11]: Chu and Cheng KDD ’11
- [CN85]: Chiba and Nishizeki SICOMP ‘85
Triangle Counting in MPC Model

<table>
<thead>
<tr>
<th>Previous Work</th>
<th>MPC Rounds</th>
<th>Space Per Machine</th>
</tr>
</thead>
<tbody>
<tr>
<td>[SV11]</td>
<td>1</td>
<td>$O(m/\delta')$</td>
</tr>
<tr>
<td>[CC11]</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>Folklore [CN85]</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$</td>
</tr>
<tr>
<td>BELMR22</td>
<td>$O(\log \log n)$</td>
<td>$O(1)$</td>
</tr>
</tbody>
</table>

Arboricity α: number of forests that edges can be partitioned into

Real-world graphs: arboricity generally $\text{poly}(\log n)$

$\delta > 0$ is any constant

[SV11]: Suri and Vassilvitski, WWW ’11
[CC11]: Chu and Cheng KDD ’11
[CN85]: Chiba and Nishizeki SICOMP ’85
Triangle Counting in MPC Model

<table>
<thead>
<tr>
<th>Exact Setting</th>
<th>Previous Work</th>
<th>MPC Rounds</th>
<th>Space Per Machine</th>
<th>Total Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>[SV11]</td>
<td>1</td>
<td>$O(m/\rho^2)$</td>
<td>$O(\rho m)$</td>
<td></td>
</tr>
<tr>
<td>[CC11]</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
<td>$O(m)$</td>
<td></td>
</tr>
<tr>
<td>Folklore [CN85]</td>
<td>$O(\log n)$</td>
<td>$O(\alpha^2)$</td>
<td>$O(m\alpha)$</td>
<td></td>
</tr>
<tr>
<td>BELMR22</td>
<td>$O(\log \log n)$</td>
<td>$O(n^\delta)$</td>
<td>$O(m\alpha)$</td>
<td></td>
</tr>
</tbody>
</table>

Better space per machine or better total space when $\alpha \leq m^{1/2-\varepsilon}$, but worse number of rounds
Triangle Counting in MPC Model

<table>
<thead>
<tr>
<th>Previous Work</th>
<th>MPC Rounds</th>
<th>Space Per Machine</th>
<th>Total Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>[SV11]</td>
<td>1</td>
<td>$O(m/\rho^2)$</td>
<td>$O(\rho m)$</td>
</tr>
<tr>
<td>[CC11]</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
<td>$O(m)$</td>
</tr>
<tr>
<td>Folklore [CN85]</td>
<td>$O(\log n)$</td>
<td>$O(\alpha^2)$</td>
<td>$O(m\alpha)$</td>
</tr>
<tr>
<td>BELMR22</td>
<td>$O(\log \log n)$</td>
<td>$O(n^{\delta})$</td>
<td>$O(m\alpha)$</td>
</tr>
</tbody>
</table>

Arboricity α: number of forests that edges can be partitioned into

Better rounds and space per machine, but total space when $\alpha = \omega(1)$
Triangle Counting in MPC Model

Exact Setting

<table>
<thead>
<tr>
<th>Previous Work</th>
<th>MPC Rounds</th>
<th>Space Per Machine</th>
<th>Total Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>[SV11]</td>
<td>1</td>
<td>$O(m/\rho^2)$</td>
<td>$O(\rho m)$</td>
</tr>
<tr>
<td>[CC11]</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
<td>$O(m)$</td>
</tr>
<tr>
<td>Folklore [CN85]</td>
<td>$O(\log n)$</td>
<td>$O(\alpha^2)$</td>
<td>$O(m\alpha)$</td>
</tr>
<tr>
<td>BELMR22</td>
<td>$O(\log \log n)$</td>
<td>$O(n^\delta)$</td>
<td>$O(m\alpha)$</td>
</tr>
</tbody>
</table>

Arboricity α: number of forests that edges can be partitioned into

Smaller number of rounds, but worse space per machine when $\alpha < n^{o(1)}$
Triangle Counting in MPC Model

<table>
<thead>
<tr>
<th>Previous Work</th>
<th>MPC Rounds</th>
<th>Space Per Machine</th>
<th>Total Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>[SV11]</td>
<td>1</td>
<td>$O(m/\rho^2)$</td>
<td>$O(\rho m)$</td>
</tr>
<tr>
<td>[CC11]</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
<td>$O(m)$</td>
</tr>
<tr>
<td>Folklore [CN85]</td>
<td>$O(\log n)$</td>
<td>$O(\alpha^2)$</td>
<td>$O(m\alpha)$</td>
</tr>
<tr>
<td>BELMR22</td>
<td>$O(\log \log n)$</td>
<td>$O(n^\delta)$</td>
<td>$O(m\alpha)$</td>
</tr>
</tbody>
</table>

Arboricity α: number of forests that edges can be partitioned into

Strictly sublinear setting
Triangle Counting in MPC Model

<table>
<thead>
<tr>
<th>Previous Work</th>
<th>MPC Rounds</th>
<th>Space Per Machine</th>
<th>Total Space</th>
<th>Triangles Lower Bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>[PT12]</td>
<td>$O(1)$</td>
<td>$O\left(\frac{m\Delta e}{T}\right)$</td>
<td>$O(m)$</td>
<td>$\Omega(d_{avg})$</td>
</tr>
<tr>
<td>[SPK13]</td>
<td>$O(1)$</td>
<td>$O(n^\delta)$</td>
<td>$O(m)$</td>
<td>$\Omega\left(\sum_{v \in V} \deg(v)^2\right)$</td>
</tr>
<tr>
<td>BELMR22</td>
<td>$O(1)$</td>
<td>$\tilde{O}(n)$</td>
<td>$\tilde{O}(m)$</td>
<td>$\Omega(\sqrt{d_{avg}})$</td>
</tr>
</tbody>
</table>

[PT12]: Pagh and Tsourakakis, IPL ‘12
[SPK13]: Seshadhri, Pinar, Kolda, ICDM ‘13
Triangle Counting in MPC Model

<table>
<thead>
<tr>
<th>Previous Work</th>
<th>MPC Rounds</th>
<th>Space Per Machine</th>
<th>Total Space</th>
<th>Triangles Lower Bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>[PT12]</td>
<td>$O(1)$</td>
<td>$O\left(\frac{m\Delta e}{T}\right)$</td>
<td>$O(m)$</td>
<td>$\Omega(d_{avg})$</td>
</tr>
<tr>
<td>[SPK13]</td>
<td>$O(1)$</td>
<td>$O(n^{\delta})$</td>
<td>$O(m)$</td>
<td>$\Omega\left(\sum_{v \in V}\deg(v)^2\right)$</td>
</tr>
<tr>
<td>BELMR22</td>
<td>$O(1)$</td>
<td>$\tilde{O}(n)$</td>
<td>$\tilde{O}(m)$</td>
<td>$\Omega\left(\sqrt{d_{avg}}\right)$</td>
</tr>
</tbody>
</table>

Better triangle lower bounds, but slightly worse total space
Triangle Counting in MPC Model

(1 + \varepsilon)-Approximate Setting

<table>
<thead>
<tr>
<th>Previous Work</th>
<th>MPC Rounds</th>
<th>Space Per Machine</th>
<th>Total Space</th>
<th>Triangles Lower Bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>[PT12]</td>
<td>(O(1))</td>
<td>(O\left(\frac{m\Delta e}{T}\right))</td>
<td>(O(m))</td>
<td>(\Omega(d_{avg}))</td>
</tr>
<tr>
<td>[SPK13]</td>
<td>(O(1))</td>
<td>(O(n^\delta))</td>
<td>(O(m))</td>
<td>(\Omega\left(\sum_{v \in V}\deg(v)^2\right))</td>
</tr>
<tr>
<td>BELMR22</td>
<td>(O(1))</td>
<td>(\tilde{O}(n))</td>
<td>(\tilde{O}(m))</td>
<td>(\Omega\left(\sqrt{d_{avg}}\right))</td>
</tr>
</tbody>
</table>

Worse space per machine than SPK13
Triangle Counting in MPC Model

(1 + \(\varepsilon\))-Approximate Setting

<table>
<thead>
<tr>
<th>Previous Work</th>
<th>MPC Rounds</th>
<th>Space Per Machine</th>
<th>Total Space</th>
<th>Triangles Lower Bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>[PT12]</td>
<td>(O(1))</td>
<td>(O\left(\frac{m \Delta \epsilon}{T}\right))</td>
<td>(O(m))</td>
<td>(\Omega(d_{avg}))</td>
</tr>
<tr>
<td>[SPK13]</td>
<td>(O(1))</td>
<td>(O(n^\delta))</td>
<td>(O(m))</td>
<td>(\Omega\left(\sum_{v \in V} \deg(v)^2\right))</td>
</tr>
<tr>
<td>BELMR22</td>
<td>(O(1))</td>
<td>(\tilde{O}(n))</td>
<td>(\tilde{O}(m))</td>
<td>(\Omega(\sqrt{d_{avg}}))</td>
</tr>
</tbody>
</table>

Better space per machine than PT12 when \(n = o\left(\frac{m \Delta \epsilon}{T}\right)\)
Results in This Presentation

• Strongly sublinear memory:
 • **Exact** triangle counting:
 • Bounded arboricity
 • $O(\log \log n)$ rounds
 • $O(m\alpha)$ total space
Results in This Presentation

• Strongly sublinear memory:
 • **Exact** triangle counting:
 • Bounded arboricity
 • $O(\log \log n)$ rounds
 • $O(m^\alpha)$ total space
• Near-linear memory:
 • **Approximate** triangle counting
 • $(1 + \varepsilon)$-approximation when $T \geq \sqrt{m/n}$
 • $O(1)$ rounds, $\tilde{O}(n + m)$ total space
Results in This Presentation

- **Strongly sublinear memory:**
 - *Exact* triangle counting:
 - Bounded arboricity
 - $O(\log \log n)$ rounds
 - $O(m\alpha)$ total space
 - Near-linear memory:
 - *Approximate* triangle counting
 - $(1 + \varepsilon)$-approximation when $T \geq \sqrt{m/n}$
 - $O(1)$ rounds, $\tilde{O}(n + m)$ total space

Results in Our Paper

- **Strongly sublinear memory:**
 - Extensions to clique counting
Results in This Presentation

- **Strongly sublinear memory:**
 - **Exact** triangle counting:
 - Bounded arboricity
 - $O(\log \log n)$ rounds
 - $O(m^{\alpha})$ total space

- **Near-linear memory:**
 - **Approximate** triangle counting
 - $(1 + \varepsilon)$-approximation when $T \geq \sqrt{m/n}$
 - $O(1)$ rounds, $\tilde{O}(n + m)$ total space

Results in Our Paper

- **Strongly sublinear memory:**
 - Extensions to clique counting

- **Linear memory:**
 - Extensions to clique counting
Results in This Presentation

<table>
<thead>
<tr>
<th>Strongly sublinear memory:</th>
<th>Near-linear memory:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exact triangle counting:</td>
<td>Approximate triangle counting</td>
</tr>
<tr>
<td>Bounded arboricity</td>
<td>$(1 + \varepsilon)$-approximation when $T \geq \sqrt{m/n}$</td>
</tr>
<tr>
<td>$O(\log \log n)$ rounds</td>
<td>$O(1)$ rounds, $\tilde{O}(n + m)$ total space</td>
</tr>
</tbody>
</table>

Results in Our Paper

<table>
<thead>
<tr>
<th>Strongly sublinear memory:</th>
<th>Linear memory:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extensions to clique counting</td>
<td>Extensions to clique counting</td>
</tr>
<tr>
<td>Counting all small subgraphs of size at most 5 using Bera, Pashanasangi and Seshadhri [ITCS 2020]</td>
<td></td>
</tr>
</tbody>
</table>
Results in This Presentation

- **Strongly sublinear memory:**
 - **Exact** triangle counting:
 - Bounded arboricity
 - $O(\log \log n)$ rounds
 - $O(m\alpha)$ total space
 - **Near-linear memory:**
 - **Approximate** triangle counting
 - $(1 + \epsilon)$-approximation when $T \geq \sqrt{m/n}$
 - $O(1)$ rounds, $\tilde{O}(n + m)$ total space

Results in Our Paper

- **Strongly sublinear memory:**
 - Extensions to clique counting
- **Linear memory:**
 - Extensions to clique counting
- Counting **all** small subgraphs of size at most 5 using Bera, Pashanasangi and Seshadhri [ITCS 2020]
- Simulations on real-world graphs:
 - Improvements in number of rounds
 - Improvements in approximation
Results in This Presentation

- Strongly sublinear memory:
 - **Exact** triangle counting:
 - Bounded arboricity
 - $O(\log \log n)$ rounds
 - $O(m\alpha)$ total space
- Near-linear memory:
 - **Approximate** triangle counting
 - $(1 + \varepsilon)$-approximation when $T \geq \sqrt{m/n}$
 - $O(1)$ rounds, $\tilde{O}(n + m)$ total space

Results in Our Paper

- Strongly sublinear memory:
 - Extensions to clique counting
- Linear memory:
 - Extensions to clique counting
 - Counting all small subgraphs of size at most 5
- Simulations on real-world graphs:
 - Improvements in number of rounds
 - Improvements in approximation
Exact Triangle Counting Bounded Arboricity

Arboricity α: number of forests that edges can be partitioned into
There exists a MPC algorithm that outputs the exact count of triangles in a graph with arboricity α in $O(\log \log n)$ rounds, $O(n^\delta)$ space per machine for any constant $\delta > 0$ and $O(m\alpha)$ total space.

Massively Parallel Algorithms for Small Subgraph Counting
Amartya Shankha Biswas, Talya Eden, Quanquan C. Liu, Slobodan Mitrovic, Ronitt Rubinfeld
[arxiv.org/2002.08299]

Arboricity α: number of forests that edges can be partitioned into
Exact Triangle Counting Bounded Arboricity

There exists a MPC algorithm that outputs the exact count of triangles in a graph with arboricity α in $O(\log \log n)$ rounds, $O(n^\delta)$ space per machine for any constant $\delta > 0$ and $O(m\alpha)$ total space.

Massively Parallel Algorithms for Small Subgraph Counting
Amartya Shankha Biswas, Talya Eden, Quanquan C. Liu, Slobodan Mitrovic, Ronitt Rubinfeld
[arxiv.org/2002.08299]

Standard Triangle Counting:
$O(\log n)$ rounds
$\Omega(\alpha^2)$ space per machine
$O(m\alpha)$ total space

Arboricity α: number of forests that edges can be partitioned into

$\alpha \leq \sqrt{m}$
Sequential Triangle Algorithms Directly to MPC

\[\alpha = 2 \]

- Successively remove vertices with degree less than \(2\alpha\) and count number of triangles adjacent to the removed vertices
 - Maintain total count
Sequential Triangle Algorithms Directly to MPC

- Successively remove vertices with degree less than 2α and count number of triangles adjacent to the removed vertices
- Maintain total count

$\alpha = 2$
Sequential Triangle Algorithms Directly to MPC

- Successively remove vertices with degree less than 2α and count number of triangles adjacent to the removed vertices
 - Maintain total count
Sequential Triangle Algorithms Directly to MPC

\[\alpha = 2 \]

- Successively remove vertices with degree less than \(2\alpha\) and count number of triangles adjacent to the removed vertices.
- Maintain total count.

Triangles: 2
Sequential Triangle Algorithms Directly to MPC

$\alpha = 2$

- Successively remove vertices with degree less than 2α and count number of triangles adjacent to the removed vertices
- Maintain total count

Triangles: 4
Sequential Triangle Algorithms Directly to MPC

Maximum number of edges in the graph: \(m \leq n\alpha \)

Number of vertices remaining: \(\frac{n\alpha}{2\alpha} = \frac{n}{2} \)

Number of rounds needed: \(O(\log n) \)

• Successively remove vertices with degree less than \(2\alpha \) and count number of triangles adjacent to the removed vertices
 • Maintain total count
Sequential Triangle Algorithms Directly to MPC

Maximum number of edges in the graph: \(m \leq n\alpha \)

Number of vertices remaining: \(\frac{n\alpha}{2\alpha} = \frac{n}{2} \)

Number of rounds needed: \(O(\log n) \)

• Successively remove vertices with degree less than \(2\alpha \) and count number of triangles adjacent to the removed vertices
 • Maintain total count
Sequential Triangle Algorithms Directly to MPC

- Successively remove vertices with degree less than 2α and count number of triangles adjacent to the removed vertices
 - Maintain total count

Maximum number of edges in the graph: $m \leq n\alpha$

Number of vertices remaining: $\frac{n\alpha}{2\alpha} = \frac{n}{2}$

Number of rounds needed: $O(\log n)$

Total space used: $O(m\alpha)$
Our Exact Triangle Counting Algorithm

\[\alpha \]
Our Exact Triangle Counting Algorithm

\[\deg(v) \leq 2 \left(\frac{3}{2} \right)^i \cdot 2 \alpha \]

\[i = 0 \]
Our Exact Triangle Counting Algorithm

\[\text{deg}(v) \leq 4\alpha \]

\[i = 0 \]
Our Exact Triangle Counting Algorithm

\[\deg(v) \leq 4\alpha \]

2 Triangles

\[i = 0 \]
Our Exact Triangle Counting Algorithm

\[\deg(v) \leq 6\alpha \]

\[i = 1 \]

2 Triangles
Our Exact Triangle Counting Algorithm

\[\deg(v) \leq 6\alpha \]

5 Triangles

\[i = 1 \]
Our Exact Triangle Counting Algorithm

\[
\text{deg}(\nu) \leq 10\alpha
\]

5 Triangles

\[
i = 2
\]
Our Exact Triangle Counting Algorithm

$O(\log \log n)$

$\deg(v) \leq 10\alpha$

$i = 2$

5 Triangles
Our Exact Triangle Counting Algorithm

• Number of vertices left after first round: X
Our Exact Triangle Counting Algorithm

• Number of vertices left after first round: X
• Total number of edges left after first round:

$$m \geq \frac{1}{2} \cdot X \cdot 4\alpha = 2\alpha X$$
Our Exact Triangle Counting Algorithm

• Number of vertices left after first round: X
• Total number of edges left after first round:

$$m \geq \frac{1}{2} \cdot X \cdot 4\alpha = 2\alpha X$$

$$m_1 \leq X\alpha$$
Our Exact Triangle Counting Algorithm

• Number of vertices left after first round: X
• Total number of edges left after first round:

$$m \geq \frac{1}{2} \cdot X \cdot 4\alpha = 2\alpha X$$

$$m_1 \leq X\alpha$$

$$m_1 \leq \frac{m}{2}$$
Our Exact Triangle Counting Algorithm

- Number of vertices left after i-th round: X
- Total number of edges left after first round:

\[
m \geq \frac{1}{2} \cdot X \cdot 4\alpha = 2\alpha X
\]

\[
m_1 \leq X\alpha
\]

\[
m_1 \leq \frac{m}{2}
\]

\[
m_{i-1} \geq \frac{1}{2} \cdot X \cdot 2^{\left(\frac{3}{2}\right)^{i-1}} \cdot 2\alpha
\]

\[
m_i \leq X \cdot \alpha
\]

\[
m_i \leq \frac{m_{i-1}}{2^{\left(\frac{3}{2}\right)^{i-1}}} < \frac{m}{2^{\left(\frac{3}{2}\right)^i}}
\]
Our Exact Triangle Counting Algorithm

- Number of vertices left after i-th round: X
- Total number of edges left after first round: $m \geq \frac{1}{2} \cdot 2^i \cdot 2\alpha$

\[
m_i \cdot \left(2^{\frac{3}{2}} \cdot 2\alpha\right) \leq \frac{m}{2^i} \cdot \left(2^{\frac{3}{2}} \cdot 2\alpha\right) = 2m\alpha
\]

- $m_1 \leq X\alpha$
- $m_1 \leq \frac{m}{2}$

$m_i \leq \frac{m_{i-1}}{2^{\frac{3}{2}}} < \frac{m}{2^i \cdot 2^{\frac{3}{2}}} = \frac{m}{2^{\frac{3}{2} + i}}$
Our Exact Triangle Counting Algorithm

- Number of vertices left after i-th round: X
- Total number of edges left after first round: m

\[m \geq \frac{1}{2} \]

\[m_1 \leq X \alpha \]
\[m_1 \leq \frac{m}{2} \]

\[m_i \cdot \left(2^{\left(\frac{3}{2} \right)^i} \cdot 2\alpha \right) \leq \frac{m}{2^{\left(\frac{3}{2} \right)^i}} \cdot \left(2^{\left(\frac{3}{2} \right)^i} \cdot 2\alpha \right) = 2m\alpha \]

\[m_i \leq \frac{m_{i-1}}{2^{\left(\frac{3}{2} \right)^{i-1}}} < \frac{m}{2^{\left(\frac{3}{2} \right)^i}} \]
Our Exact Triangle Counting Algorithm

- Number of vertices left after i-th round: X
- Total number of edges left after first round: m ≥ $\frac{1}{2}X \cdot 2\alpha$

$$m \cdot \left(2^{\left(\frac{3}{2}\right)^i} \cdot 2\alpha\right) \leq m \cdot \frac{m}{2^{\left(\frac{3}{2}\right)^i}} \cdot \left(2^{\left(\frac{3}{2}\right)^i} \cdot 2\alpha\right) = 2m\alpha$$

$$m_1 \leq \frac{X\alpha}{2}$$

$$m_1 \leq \frac{m}{2}$$
Exact Triangle Counting Space Per Machine

• Last Challenge: Cannot count on one machine because that is too much space
Exact Triangle Counting Space Per Machine

• **Last Challenge:** Cannot count on one machine because that is too much space
 • **Solution:** Reduce to a problem where we merge several lists, sort, and find duplicates
Exact Triangle Counting Space Per Machine

• **Last Challenge:** Cannot count on one machine because that is too much space
 • **Solution:** Reduce to a problem where we merge several lists, sort, and find duplicates
 • Every removed node sends its adjacency list to its neighbors
Exact Triangle Counting Space Per Machine

- **Last Challenge**: Cannot count on one machine because that is too much space
 - **Solution**: Reduce to a problem where we merge several lists, sort, and find duplicates
 - Every removed node sends its adjacency list to its neighbors
 - Each neighbor which receives adjacency lists merges received lists with its own adjacency list
Exact Triangle Counting Space Per Machine
Exact Triangle Counting Space Per Machine

\[\{a, b, c, d\} \]
Exact Triangle Counting Space Per Machine

\[a \rightarrow c \rightarrow b \rightarrow d \]
Exact Triangle Counting Space Per Machine

\[\{a, b, d\} \]
Exact Triangle Counting Space Per Machine
Exact Triangle Counting Space Per Machine

\[[a, b, b, c, d] \]
Exact Triangle Counting Space Per Machine

- MPC sorting algorithm of [GSZ11] to sort lists in $\Theta(1)$ rounds
- Find duplicates using new MPC primitive
Exact Triangle Counting Space Per Machine

• Find duplicates using new MPC primitive
Exact Triangle Counting Space Per Machine

- Find duplicates using new MPC primitive
Exact Triangle Counting Space Per Machine

• Find duplicates using new MPC primitive
Exact Triangle Counting Space Per Machine

- Find duplicates using new MPC primitive

```
[a, 1], [c, 6], [g, 1]
[a, 1], [c, 5]
[c, 1], [e, 2], [g, 1]
[a, c, c]
[c, c, c]
[c, d, e]
[e, f, g]
```
Exact Triangle Counting Space Per Machine

- Find duplicates using new MPC primitive

\[O(\log_s n) = O(1) \]
There exists a MPC algorithm that outputs the exact count of triangles in a graph with arboricity α in $O(\log \log n)$ rounds, $O(n^{\delta})$ space per machine for any constant $\delta > 0$ and $O(m\alpha)$ total space.
Exact Triangle Counting

- **Challenge**: Cannot count on one machine because that is too much space
 - Need to have an MPC specific counting procedure
 - Removed nodes send list of neighbors to all neighbors
 - MPC sorting algorithm of [GSZ11] to sort lists
 - Find duplicates using new MPC primitive

Somewhat resembles **round compression** technique although simpler on bounded arboricity graphs and deterministic: do not need to do sampling
<table>
<thead>
<tr>
<th>Results in This Presentation</th>
<th>Results in Our Paper</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Strongly sublinear memory:</td>
<td>• Strongly sublinear memory:</td>
</tr>
<tr>
<td>• Exact triangle counting:</td>
<td>• Extensions to clique counting</td>
</tr>
<tr>
<td>• Bounded arboricity</td>
<td>• Linear memory:</td>
</tr>
<tr>
<td>• $O(\log \log n)$ rounds</td>
<td>• Extensions to clique counting</td>
</tr>
<tr>
<td>• $O(m^\alpha)$ total space</td>
<td>• Counting all small subgraphs of size at most 5</td>
</tr>
<tr>
<td>• Near-linear memory:</td>
<td>• Simulations on real-world graphs:</td>
</tr>
<tr>
<td>• Approximate triangle counting</td>
<td>• Improvements in number of rounds</td>
</tr>
<tr>
<td>• $(1 + \varepsilon)$-approximation when $T \geq \sqrt{m/n}$</td>
<td>• Improvements in approximation</td>
</tr>
<tr>
<td>• $O(1)$ rounds, $\tilde{O}(n + m)$ total space</td>
<td></td>
</tr>
</tbody>
</table>
Advantages and Disadvantages of Approximate Counting

• Main Advantage:
 • Small runtime, fast and requires little space

• Main Disadvantage:
 • Requires lower bound on the number of triangles
Approximate Triangle Counting

There exists a MPC algorithm that outputs a \((1 + \epsilon)\)-approximation for the number of triangles if the number of triangles \(T \geq \sqrt{d_{avg}}\) and uses \(\tilde{O}(m)\) total space and \(\tilde{\Theta}(n)\) space per machine, \(O(1)\) MPC rounds.

Massively Parallel Algorithms for Small Subgraph Counting
Amartya Shankha Biswas, Talya Eden, Quanquan C. Liu, Slobodan Mitrovic, Ronitt Rubinfeld
[arxiv.org/2002.08299]
Approximate Triangle Counting

There exists a MPC algorithm that outputs a \((1 + \epsilon)\)-approximation for the number of triangles if the number of triangles \(T \geq \sqrt{d_{\text{avg}}}\) and uses \(\tilde{O}(m)\) total space and \(\tilde{\Theta}(n)\) space per machine, \(O(1)\) MPC rounds.

Massively Parallel Algorithms for Small Subgraph Counting
Amartya Shankha Biswas, Talya Eden, Quanquan C. Liu, Slobodan Mitrovic, Ronitt Rubinfeld
[arxiv.org/2002.08299]

Previous: \(T \geq d_{\text{avg}}\) [Pagh and Tsourakakis ‘12]
Approximate Triangle Counting

There exists a MPC algorithm that outputs a $(1 + \epsilon)$-approximation for the number of triangles if the number of triangles $T \geq \sqrt{d_{avg}}$ and uses $\tilde{O}(m)$ total space and $\tilde{\Theta}(n)$ space per machine, $O(1)$ MPC rounds.

Massively Parallel Algorithms for Small Subgraph Counting
Amartya Shankha Biswas, Talya Eden, Quanquan C. Liu, Slobodan Mitrovic, Ronitt Rubinfeld
[arxiv.org/2002.08299]

Previous: $T \geq d_{avg}$ [Pagh and Tsourakakis ‘12]

[Seshadhri, Pinar, Kolda ’13] can get better near-linear space per machine
Approximate Triangle Counting

$O(\log n)$
Challenges
Challenges

• Challenge 1: Induced subgraphs do not exceed the space per machine
Challenges

• Challenge 1: Induced subgraphs do not exceed the space per machine

• Challenge 2: How to compute the induced subgraph in each machine when one vertex can appear on multiple machines?
Challenges

• Challenge 1: Induced subgraphs do not exceed the space per machine

• Challenge 2: How to compute the induced subgraph in each machine when one vertex can appear on multiple machines?

• Challenge 3: The number of triangles across the machines concentrates
Challenges

• Challenge 1: Induced subgraphs do not exceed the space per machine

 Careful setting of p

• Challenge 2: How to compute the induced subgraph in each machine when one vertex can appear on multiple machines?

 k-wise independent hash function for small k

• Challenge 3: The number of triangles across the machines concentrates

 Constant probability of success and median trick
Challenges

• Challenge 1: Induced subgraphs do not exceed the space per machine

 Careful setting of p

• Challenge 2: How to compute the induced subgraph in each machine when one vertex \textit{can appear on multiple machines}?

 k-wise independent hash function for small k

• Challenge 3: The number of triangles across the machines concentrates

 Constant probability of success and median trick
Open Questions and Future Directions

• Small subgraph counting for a broader class of small subgraphs
Open Questions and Future Directions

• Small subgraph counting for a **broader class of small subgraphs**

• Recent works of Bressan ‘19 and Bera, Pashanasangi, and Seshadhri ‘21 use **DAG tree decomposition**
Open Questions and Future Directions

• Small subgraph counting for a broader class of small subgraphs

 • Recent works of Bressan ‘19 and Bera, Pashanasangi, and Seshadhri ‘21 use DAG tree decomposition

• Can we implement in MPC?

Triangle counting in $O(1)$ rounds in sparse graphs where $m = O(n)$
Open Questions and Future Directions

• Small subgraph counting for a broader class of small subgraphs
 • Recent works of Bressan ‘19 and Bera, Pashanasangi, and Seshadhri ‘21 use DAG tree decomposition
 • Can we implement in MPC?
 • Counting in the adaptive MPC model (AMPC)
Open Questions and Future Directions

• Small subgraph counting for a broader class of small subgraphs

• Recent works of Bressan ‘19 and Bera, Pashanasangi, and Seshadhri ‘21 use DAG tree decomposition

• Can we implement in MPC?

• Counting in the adaptive MPC model (AMPC)

• Approximate triangle counting in $O(1)$ rounds and strictly sublinear space in sparse graphs where $m = \tilde{O}(n)$