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Massively Parallel Computation (MPC)

• Massively parallel systems
• Distributed cluster of 

multiple machines
• Communicate with each 

other via rounds of 
communication

• Limited space in each 
individual machine
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Massively Parallel Computation (MPC) Model

• Theoretical standard for studying parallel frameworks such as 
MapReduce, Hadoop, Spark, Dryad, and Google Cloud Dataflow
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Graph Algorithms in MPC Model

• Matching and MIS [BBDFHKU19, BHH19, GGKMR19, 
CLMMOS18, NO21]

• Connectivity [ASSWZ18, BDELM19, DDKPSS19]
• Graph sparsification [GU19, CDP20]
• Vertex cover [Assadi17, GGKMR18]
• MST and 2-edge connectivity [NO21]
• Well-connected components [ASW18, ASW19]
• Coloring [BDHKS19, CFGUZ19]
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MPC Model Definition

𝑆 𝑆 𝑆

• M machines
• Synchronous rounds Total Space: 𝑴 ⋅ 𝑺
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Space per Machine in MPC

• Strongly sublinear memory: 
• 𝑆 = 𝑛$ for some constant 𝛿 ∈ (0, 1)

• Near-linear memory:
• 𝑆 = +Θ 𝑛 (ignoring poly(log 𝑛 ) factors)

• Strongly superlinear memory: 
• 𝑆 = 𝑛%&$ for some constant 𝛿 > 0

Also want: 𝑶 log log 𝒏 or 
𝑶 𝟏 rounds  

All are sublinear in number of edges m in graph

Also want: +𝑶 𝒏 +𝒎
total space
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Triangle Counting in MPC Model

𝜹 > 𝟎 is any constant

Exact Setting
Previous Work MPC Rounds Space Per Machine Total Space

[SV11] 1 𝑂(𝑚/𝜌') 𝑂 𝜌𝑚
[CC11] 𝑂(𝑛) 𝑂(𝑛) 𝑂(𝑚)

Folklore [CN85] 𝑂(log 𝑛) 𝑂(𝛼') 𝑂(𝑚𝛼)
BELMR22 𝑶(𝐥𝐨𝐠 𝐥𝐨𝐠 𝒏) 𝑶(𝒏𝜹) 𝑶(𝒎𝜶)

[SV11]: Suri and Vassilvitski, WWW ‘11
[CC11]: Chu and Cheng KDD ’11

[CN85]: Chiba and Nishizeki SICOMP ‘85
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Triangle Counting in MPC Model

𝜹 > 𝟎 is any constant

Exact Setting
Previous Work MPC Rounds Space Per Machine Total Space

[SV11] 1 𝑂(𝑚/𝜌') 𝑂 𝜌𝑚
[CC11] 𝑂(𝑛) 𝑂(𝑛) 𝑂(𝑚)
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BELMR22 𝑶(𝐥𝐨𝐠 𝐥𝐨𝐠 𝒏) 𝑶(𝒏𝜹) 𝑶(𝒎𝜶)

Arboricity 𝜶: number of 
forests that edges can be 

partitioned into

Real-world graphs: 
arboricity generally 

poly(log 𝒏)

[SV11]: Suri and Vassilvitski, WWW ‘11
[CC11]: Chu and Cheng KDD ’11

[CN85]: Chiba and Nishizeki SICOMP ‘85
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Triangle Counting in MPC Model

Better space per machine or better total space 
when 𝜶 ≤ 𝒎𝟏/𝟐$𝜺, but worse number of rounds

Exact Setting
Previous Work MPC Rounds Space Per Machine Total Space

[SV11] 1 𝑂(𝑚/𝜌') 𝑂 𝜌𝑚
[CC11] 𝑂(𝑛) 𝑂(𝑛) 𝑂(𝑚)

Folklore [CN85] 𝑂(log 𝑛) 𝑂(𝛼') 𝑂(𝑚𝛼)
BELMR22 𝑶(𝐥𝐨𝐠 𝐥𝐨𝐠 𝒏) 𝑶(𝒏𝜹) 𝑶(𝒎𝜶)

Arboricity 𝜶: number of forests that edges can 
be partitioned into



FODSI Sublinear Algorithms Workshop 2022

Triangle Counting in MPC Model

Better rounds and space per machine, 
but total space when 𝛼 = 𝜔(1)

Exact Setting
Previous Work MPC Rounds Space Per Machine Total Space

[SV11] 1 𝑂(𝑚/𝜌') 𝑂 𝜌𝑚
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Triangle Counting in MPC Model

Smaller number of rounds, but worse 
space per machine when 𝛼 < 𝑛& '

Exact Setting
Previous Work MPC Rounds Space Per Machine Total Space

[SV11] 1 𝑂(𝑚/𝜌') 𝑂 𝜌𝑚
[CC11] 𝑂(𝑛) 𝑂(𝑛) 𝑂(𝑚)

Folklore [CN85] 𝑂(log 𝑛) 𝑂(𝛼') 𝑂(𝑚𝛼)
BELMR22 𝑶(𝐥𝐨𝐠 𝐥𝐨𝐠 𝒏) 𝑶(𝒏𝜹) 𝑶(𝒎𝜶)

Arboricity 𝜶: number of forests that edges can 
be partitioned into
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Triangle Counting in MPC Model

Strictly sublinear setting

Exact Setting
Previous Work MPC Rounds Space Per Machine Total Space

[SV11] 1 𝑂(𝑚/𝜌') 𝑂 𝜌𝑚
[CC11] 𝑂(𝑛) 𝑂(𝑛) 𝑂(𝑚)

Folklore [CN85] 𝑂(log 𝑛) 𝑂(𝛼') 𝑂(𝑚𝛼)
BELMR22 𝑶(𝐥𝐨𝐠 𝐥𝐨𝐠 𝒏) 𝑶(𝒏𝜹) 𝑶(𝒎𝜶)

Arboricity 𝜶: number of forests that edges can 
be partitioned into
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Triangle Counting in MPC Model

[PT12]: Pagh and Tsourakakis, IPL ‘12
[SPK13]: Seshadhri, Pinar, Kolda, ICDM ‘13

(𝟏 + 𝜺)-Approximate Setting
Previous Work MPC Rounds Space Per 

Machine
Total Space Triangles Lower 

Bound

[PT12] 𝑂(1) 𝑂 )*!
+

𝑂 𝑚 Ω 𝑑,-.

[SPK13] 𝑂(1) 𝑂(𝑛$) 𝑂(𝑚) Ω 0
!∈#

deg 𝑣 $

BELMR22 𝑶(𝟏) +𝑶(𝒏) +𝑶(𝒎) Ω 𝑑,-.
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Triangle Counting in MPC Model

Better triangle lower bounds,
but slightly worse total space 

(𝟏 + 𝜺)-Approximate Setting
Previous Work MPC Rounds Space Per 

Machine
Total Space Triangles Lower 

Bound

[PT12] 𝑂(1) 𝑂 )*!
+

𝑂 𝑚 Ω 𝑑,-.
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Triangle Counting in MPC Model

Worse space per machine than SPK13

(𝟏 + 𝜺)-Approximate Setting
Previous Work MPC Rounds Space Per 

Machine
Total Space Triangles Lower 

Bound

[PT12] 𝑂(1) 𝑂 )*!
+

𝑂 𝑚 Ω 𝑑,-.

[SPK13] 𝑂(1) 𝑂(𝑛$) 𝑂(𝑚) Ω 0
!∈#

deg 𝑣 $

BELMR22 𝑶(𝟏) +𝑶(𝒏) +𝑶(𝒎) Ω 𝑑,-.
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Triangle Counting in MPC Model

Better space per machine than PT12 when 𝒏 = 𝒐 𝒎𝜟𝒆
𝑻

(𝟏 + 𝜺)-Approximate Setting
Previous Work MPC Rounds Space Per 

Machine
Total Space Triangles Lower 

Bound

[PT12] 𝑂(1) 𝑂 )*!
+

𝑂 𝑚 Ω 𝑑,-.

[SPK13] 𝑂(1) 𝑂(𝑛$) 𝑂(𝑚) Ω 0
!∈#

deg 𝑣 $

BELMR22 𝑶(𝟏) +𝑶(𝒏) +𝑶(𝒎) Ω 𝑑,-.
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Exact Triangle Counting Bounded Arboricity

There exists a MPC algorithm that outputs the exact count of triangles in a graph 
with arboricity 𝛼 in 𝑶 𝐥𝐨𝐠 𝐥𝐨𝐠 𝒏 rounds, 𝑶 𝒏𝜹 space per machine for any 

constant 𝛿 > 0 and 𝑶(𝒎𝜶) total space.  

Massively Parallel Algorithms for Small Subgraph Counting
Amartya Shankha Biswas, Talya Eden, Quanquan C. Liu, Slobodan Mitrovic, Ronitt Rubinfeld

[arxiv.org/2002.08299]

Arboricity 𝜶: number of forests that edges can 
be partitioned into

https://arxiv.org/abs/2002.08299
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Exact Triangle Counting Bounded Arboricity

There exists a MPC algorithm that outputs the exact count of triangles in a graph 
with arboricity 𝛼 in 𝑶 𝐥𝐨𝐠 𝐥𝐨𝐠 𝒏 rounds, 𝑶 𝒏𝜹 space per machine for any 

constant 𝛿 > 0 and 𝑶(𝒎𝜶) total space.  

Massively Parallel Algorithms for Small Subgraph Counting
Amartya Shankha Biswas, Talya Eden, Quanquan C. Liu, Slobodan Mitrovic, Ronitt Rubinfeld

[arxiv.org/2002.08299]

Standard Triangle Counting:
𝑶 𝐥𝐨𝐠 𝒏 rounds

𝛀 𝜶𝟐 space per machine
𝑶 𝒎𝜶 total space

𝛼 ≤ 𝑚
Arboricity 𝜶: number of forests that edges can 

be partitioned into

https://arxiv.org/abs/2002.08299


FODSI Sublinear Algorithms Workshop 2022

Sequential Triangle Algorithms Directly to MPC 

• Successively remove vertices with degree less than 2𝛼 and 
count number of triangles adjacent to the removed vertices

• Maintain total count

𝛼 = 2



FODSI Sublinear Algorithms Workshop 2022

Sequential Triangle Algorithms Directly to MPC 

• Successively remove vertices with degree less than 2𝛼 and 
count number of triangles adjacent to the removed vertices

• Maintain total count

𝛼 = 2



FODSI Sublinear Algorithms Workshop 2022

Sequential Triangle Algorithms Directly to MPC 

• Successively remove vertices with degree less than 2𝛼 and 
count number of triangles adjacent to the removed vertices

• Maintain total count

𝛼 = 2
Triangles: 2



FODSI Sublinear Algorithms Workshop 2022

Sequential Triangle Algorithms Directly to MPC 

• Successively remove vertices with degree less than 2𝛼 and 
count number of triangles adjacent to the removed vertices

• Maintain total count

𝛼 = 2
Triangles: 2



FODSI Sublinear Algorithms Workshop 2022

Sequential Triangle Algorithms Directly to MPC 

• Successively remove vertices with degree less than 2𝛼 and 
count number of triangles adjacent to the removed vertices

• Maintain total count

𝛼 = 2
Triangles: 4
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Sequential Triangle Algorithms Directly to MPC 

• Successively remove vertices with degree less than 2𝛼 and 
count number of triangles adjacent to the removed vertices

• Maintain total count

Maximum number of edges in the graph: 𝑚 ≤ 𝑛𝛼

Number of vertices remaining: #$
%$
= #

%

Number of rounds needed: 𝑂 log 𝑛
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Sequential Triangle Algorithms Directly to MPC 

• Successively remove vertices with degree less than 2𝛼 and 
count number of triangles adjacent to the removed vertices

• Maintain total count

Maximum number of edges in the graph: 𝑚 ≤ 𝑛𝛼

Number of vertices remaining: #$
%$
= #

%

Number of rounds needed: 𝑂 log 𝑛 𝛼'𝛼'

Total space used: 𝑂 𝑚𝛼



FODSI Sublinear Algorithms Workshop 2022

Our Exact Triangle Counting Algorithm

𝛼



FODSI Sublinear Algorithms Workshop 2022

Our Exact Triangle Counting Algorithm

𝑖 = 0

𝛼

deg 𝑣 ≤ 2
+
,
#

⋅ 2𝛼
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Our Exact Triangle Counting Algorithm

2 Triangles

𝑖 = 0

deg 𝑣 ≤ 4𝛼
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Our Exact Triangle Counting Algorithm

2 Triangles

𝑖 = 1

deg 𝑣 ≤ 6𝛼
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Our Exact Triangle Counting Algorithm

5 Triangles

𝑖 = 1

deg 𝑣 ≤ 6𝛼
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Our Exact Triangle Counting Algorithm

5 Triangles
deg 𝑣 ≤ 10𝛼

𝑖 = 2
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Our Exact Triangle Counting Algorithm

5 Triangles
deg 𝑣 ≤ 10𝛼

𝑖 = 2𝑂 log log 𝑛



FODSI Sublinear Algorithms Workshop 2022

Our Exact Triangle Counting Algorithm

• Number of vertices left after first round: 𝑋



FODSI Sublinear Algorithms Workshop 2022

Our Exact Triangle Counting Algorithm

• Number of vertices left after first round: 𝑋
• Total number of edges left after first round: 

𝑚 ≥
1
2
⋅ 𝑋 ⋅ 4𝛼 = 2𝛼𝑋



FODSI Sublinear Algorithms Workshop 2022

Our Exact Triangle Counting Algorithm

• Number of vertices left after first round: 𝑋
• Total number of edges left after first round: 

𝑚 ≥
1
2
⋅ 𝑋 ⋅ 4𝛼 = 2𝛼𝑋

𝑚% ≤ 𝑋𝛼



FODSI Sublinear Algorithms Workshop 2022

Our Exact Triangle Counting Algorithm

• Number of vertices left after first round: 𝑋
• Total number of edges left after first round: 

𝑚 ≥
1
2
⋅ 𝑋 ⋅ 4𝛼 = 2𝛼𝑋

𝑚% ≤ 𝑋𝛼

𝑚% ≤
𝑚
2
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Our Exact Triangle Counting Algorithm

• Number of vertices left after i-th round: 𝑋
• Total number of edges left after first round: 

𝑚 ≥
1
2
⋅ 𝑋 ⋅ 4𝛼 = 2𝛼𝑋

𝑚' ≤ 𝑋𝛼

𝑚' ≤
𝑚
2

𝒎𝒊$𝟏 ≥
1
2
⋅ 𝑋 ⋅ 𝟐

𝟑
𝟐

𝒊%𝟏

⋅ 𝟐𝜶

𝑚/ ≤ 𝑋 ⋅ 𝛼

𝑚/ ≤
𝑚/$'

2
+
,
# %' <

𝑚

2
+
,
#
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Our Exact Triangle Counting Algorithm
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Exact Triangle Counting Space Per Machine

• Last Challenge: Cannot count on one machine because that is 
too much space

• Solution: Reduce to a problem where we merge several lists, 
sort, and find duplicates

• Every removed node sends its adjacency list to its 
neighbors

• Each neighbor which receives adjacency lists merges 
received lists with its own adjacency list
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Exact Triangle Counting Space Per Machine

• Find duplicates using new MPC primitive

[a, c, c] [c, c, c] [c, d, e] [e, f, g]

[a, 1], [c, 5] [c, 1], [e, 2], [g, 1]

[a, 1], [c, 6], [g, 1]
𝑂 log& 𝑛 = 𝑂 1
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Exact Triangle Counting

There exists a MPC algorithm that outputs the exact count of triangles in a graph with arboricity 𝛼 in 
𝑂 log log 𝑛 rounds, 𝑂 𝑛& space per machine for any constant 𝛿 > 0 and 𝑂(𝑚𝛼) total space.  
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• Challenge: Cannot count on one machine because that is too 
much space

• Need to have an MPC specific counting procedure
• Removed nodes send list of neighbors to all neighbors
• MPC sorting algorithm of [GSZ11] to sort lists
• Find duplicates using new MPC primitive

Exact Triangle Counting

Somewhat resembles round compression technique although simpler on 
bounded arboricity graphs and deterministic: do not need to do sampling
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Results in This Presentation Results in Our Paper
• Strongly sublinear memory:

• Extensions to clique counting
• Linear memory:

• Extensions to clique counting
• Counting all small subgraphs of 

size at most 5
• Simulations on real-world graphs:

• Improvements in number of 
rounds

• Improvements in approximation

• Strongly sublinear memory:
• Exact triangle counting:

• Bounded arboricity
• 𝑂 log log 𝑛 rounds
• 𝑂 𝑚𝛼 total space

• Near-linear memory:
• Approximate triangle counting
• 1 + 𝜀 -approximation when     
𝑇 ≥ 𝑚/𝑛

• 𝑂 1 rounds, H𝑂 𝑛 +𝑚 total 
space 
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Advantages and Disadvantages of Approximate Counting

• Main Advantage: 
• Small runtime, fast and requires little space

• Main Disadvantage:
• Requires lower bound on the number of triangles
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Approximate Triangle Counting

There exists a MPC algorithm that outputs a 1 + 𝜖 -approximation for the 
number of triangles if the number of triangles 𝑇 ≥ 𝑑'() and uses ?𝑂 𝑚 total 

space and @Θ 𝑛 space per machine, 𝑂 1 MPC rounds.    

Massively Parallel Algorithms for Small Subgraph Counting
Amartya Shankha Biswas, Talya Eden, Quanquan C. Liu, Slobodan Mitrovic, Ronitt Rubinfeld

[arxiv.org/2002.08299]

https://arxiv.org/abs/2002.08299
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Approximate Triangle Counting

There exists a MPC algorithm that outputs a 1 + 𝜖 -approximation for the 
number of triangles if the number of triangles 𝑇 ≥ 𝑑'() and uses ?𝑂 𝑚 total 

space and @Θ 𝑛 space per machine, 𝑂 1 MPC rounds.    

Massively Parallel Algorithms for Small Subgraph Counting
Amartya Shankha Biswas, Talya Eden, Quanquan C. Liu, Slobodan Mitrovic, Ronitt Rubinfeld

[arxiv.org/2002.08299]

Previous: 𝑇 ≥ 𝑑,-. [Pagh and Tsourakakis ‘12]

[Seshadhri, Pinar, Kolda ’13] can get better 
near-linear space per machine

https://arxiv.org/abs/2002.08299
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Approximate Triangle Counting

𝑝 𝑝
𝑝

𝑂 log 𝑛
…1 2 0
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Challenges

𝑘-wise independent hash function for small 𝑘

Careful setting of 𝑝

Constant probability of success and median trick 

• Challenge 1: Induced subgraphs do not exceed the space per 
machine

• Challenge 2: How to compute the induced subgraph in each 
machine when one vertex can appear on multiple machines? 

• Challenge 3: The number of triangles across the machines 
concentrates
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Open Questions and Future Directions
• Small subgraph counting for a broader class of small subgraphs

• Recent works of Bressan ‘19 and Bera, Pashanasangi, and 
Seshadhri ‘20 use DAG tree decomposition 

• Can we implement in MPC?

• Counting in the adaptive MPC model (AMPC)

• Triangle counting in 𝑂 1 rounds in sparse graphs where 𝑚 = %𝑂(𝑛)
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Open Questions and Future Directions
• Small subgraph counting for a broader class of small subgraphs

• Recent works of Bressan ‘19 and Bera, Pashanasangi, and 
Seshadhri ‘21 use DAG tree decomposition 

• Can we implement in MPC?

• Counting in the adaptive MPC model (AMPC)

• Approximate triangle counting in 𝑂 1 rounds and strictly sublinear 
space in sparse graphs where 𝑚 = %𝑂(𝑛)


