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(Central Model of) Differential Privacy
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* Neighboring inputs differ in some information we’d like to

Differential Privacy [Dwork-McSherry-Nissim-Smith ‘06]

nNide

An algorithm A is e-differentially private if for all pairs of neighbors G

and G’ and all sets of possible outputs S:
Pr[A(G) € S] < e® - Pr[A(G') € S].
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Edge-Neighboring Graphs

- Edge-neighboring graphs: differ in one edge
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Marriott confirms another data breach after hotel got hacked

After Data Breach Exposes 530 Million,
Facebook Says It Will Not Notify Users By Sergiu Gat fan

B ovs comm

Linked [[1)

Second colossal Linkedin "breach" in
3 months, almost all users affected

https://www.npr.org/2021/04/09/98600582  https://www.bleepingcomputer.com/news/s https://www.malwarebytes.com/blog/news/
0/after-data-breach-exposes-530-million- ecurity/marriott-confirms-another-data- 2021/06/second-colossal-linkedin-breach-in-
facebook-says-it-will-not-notify-users breach-after-hotel-got-hacked/ 3-months-almost-all-users-affected
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Local Edge Differential Privacy (LEDP)

Local Randomizer
[Adapted from Kasiviswanathan-Lee-Nissim-Raskhodnikova-Smith ‘11]

An &-local randomizer R is an &-differentially private algorithm that
takes as input an adjacency list a and public information.

e © a=(8,C,E) >

Public Information>
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Local Edge Differential Privacy (LEDP)
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Local Edge Differential Privacy (LEDP)

Local Edge Differential Privacy
[Adapted from Kasiviswanathan-Lee-Nissim-Raskhodnikova-Smith ‘11]

Let algorithm A use (potentially different) local randomizers RY, ..., R}" and
1, ..., R7 on nodes u, v with privacy parameters £, ..., &{* and €7, ..., €.

A is e-local edge differentially private (e-LEDP) if for every edge {u, v},
e +otg tef e Se

u u u u

v | o R @\@ >
1% 1%
e | [ Re &g
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Related Work

* Local edge differentially private algorithms:
* Relatively new direction

 Triangle and other subgraph counting: [Imola-Murakami-
Chaudhuri ‘21, '22; Eden-Liu-Raskhodnikova-Smith ‘22]

* Other graph problems in empirical settings in
“decentralized” privacy models [Sun-Xiao-Khalil-Yang-Qin-Wang-
Yu ‘19; Qin-Yu-Yang-Khalil-Xiao-Ren ‘17; Gao-Li-Chen-Zou ‘18; Ye-Hu-
Au-Meng-Xiao ‘20]

FOCS 2022



Related Work

Central DP vs. LEDP

FOCS 2022



Related Work

Central DP vs. LEDP

DP Upper Bound LEDP Lower Bound
. 3/2
Triangle Q (nT) additive error
Counting o (g) additive error (multiple rounds)
(trivial) n?
Q (?) additive error
(one round)
[Eden-Liu-Raskhodnikova-Smith]
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Related Work

Natural Question: Does there exist e-LEDP algorithms
where multiplicative error matches best distributed

: . lyl .\
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Related Work

Natural Question: Does there exist e-LEDP algorithms

where multiplicative error matches best distributed
h polylog(n)
&

additive error?

algorithm and wit

Yes!
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Our contributions and previous work

Our Results Best Previous Non-Private Best Previous Private
All polylog(n) /e additive Results Results
k-core decomposition: (2 + n)-mult.
LEDP (2 + n)-mult. O(log n) rounds
O(log n) rounds [Chan-Sozio-Sun ‘21] NONE

Low out-degree ordering:
Same as above

FOCS 2022



Our contributions and previous work

Our Results Best Previous Non-Private Best Previous Private
All polylog(n)/« additive Results Results
k-core decomposition: (2 + 17)-mult.

(2 + n)-mult. O(log n) rounds

LEDP .

0(log n) rounds [Chan-Sozio-Sun ‘21] NONE
Low out-degree ordering:

Same as above

. (1 + n)-multiplicative

Densest subgraph: [Bahmani-Goel-Munagala ‘14]

(4 + n)-mult. [Ghaffari-Lattanzi-Mitrovié ‘19] NONE

[Su-Vu 20]

FOCS 2022




Our contributions and previous work

Our Results Best Previous Non-Private Best Previous Private
All polylog(n) /e additive Results Results
k-core decomposition: (2 + n)-mult.
LEDP (2 + n)-mult. O(log n) rounds

O(log n) rounds [Chan-Sozio-Sun ‘21] NONE
Low out-degree ordering:

Same as above

. (1 + n)-multiplicative

Densest SUbgraph' [Bahmani-Goel-Munagala ‘14]

(4 + n)-mult. [Ghaffari-Lattanzi-Mitrovié ‘19] NONE

[Su-Vu 20]
(2 + n)-mult.

Densest subgraph:

DP (1 + n)-mult.

(1 + n)-multiplicative
[Bahmani-Goel-Munagala ‘14]
[Chekuri-Quanrud-Torres 22]

FOCS 2022

poly(log n)/e-additive
[Nguyen-Vullikanti 21]
[Farhadi-Hajiaghayi-Shi 22]

e ":"A"’ "'1‘. e,



Our contributions and previous work

Our Results
All polylog(n) /& additive
k-core decomposition:
(2 + n)-mult.
O(log n) rounds
Low out-degree ordering:
Same as above

LEDP

Densest subgraph:
(4 + n)-mult.

Densest subgraph:

DP (1 + n)-mult.

Best Previous Non-Private
Results

(2 + n)-mult.
O(log n) rounds
[Chan-Sozio-Sun ‘21]

Best Previous Private
Results

NONE

Privacy Framework
OPEN: Framework Approximation Guarantee

| Ghatftari-Lattanzi-Mitrovic ‘19|
[Su-Vu 20]

(1 + n)-multiplicative
[Bahmani-Goel-Munagala ‘14]
[Chekuri-Quanrud-Torres 22]

FOCS 2022

NUNELE

(2 + n)-mult.
poly(log n)/e-additive
[Nguyen-Vullikanti 21]
[Farhadi-Hajiaghayi-Shi 22]



Our contributions and previous work

Our Results
All polylog(n) /& additive
k-core decomposition:
(2 + n)-mult.
O(log n) rounds
Low out-degree ordering:
Same as above

LEDP

Densest subgraph:
(4 + n)-mult.

Densest subgraph:

DP (1 + n)-mult.

Best Previous Non-Private
Results

(2 + n)-mult.
O(log n) rounds
[Chan-Sozio-Sun ‘21]

Best Previous Private
Results

NONE

Privacy Framework
OPEN: Framework Approximation Guarantee

| Ghatftari-Lattanzi-Mitrovic ‘19|
[Su-Vu 20]

(1 + n)-multiplicative
[Bahmani-Goel-Munagala ‘14]
[Chekuri-Quanrud-Torres 22]

FOCS 2022

NUNELE

(2 + n)-mult.
poly(log n)/e-additive
[Nguyen-Vullikanti 21]
[Farhadi-Hajiaghayi-Shi 22]



k-Core

3-Core

FOCS 2022



k-Core Decomposition

Core Number of Node v:
Maximum Core Value of
a Core Containing v

3
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k-Core Decomposition

2 1-Core

Core Number of Node v:
Maximum Core Value of
a Core Containing v

2-Core
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Approximate k-Core Decomposition

Approx. Core
Number : 2

Approx. core number of
every node: 3

(c, d)-Approx. Core Number:
core(v) —d < core(v) <c-core(v) +d
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Approximate k-Core Decomposition
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Approximate k-Core Decomposition

log?(n)
(3/2, 0)- 2+n,0 -
Approx. Core ( b ( e )>

approx

Number : 2 approximations in this

(2, 0)- paper
approx

Approx. core number of
every node: 3

(c, d)-Approx. Core Number:
core(v) —d < core(v) <c-core(v) +d
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Level Data Structure and Core Numbers

Non-private sequential and parallel level
data structures for dynamic problem:

[Bhattacharya-Henzinger-Nanongkai-Tsourakakis ‘15;
Henzinger-Neumann-Wiese 20;
Liu-Shi-Yu-Dhulipala-Shun 22]
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Level Data Structure and Core Numbers

Move up if induced
degree in active
vertices > (1 + n)

In this example:
n=0.1

4logq44(n) Initially all vertices

are active
e

N

[Bhattacharya-Henzinger-Nanongkai-Tsourakakis ‘15, Henzinger-Neumann-Wiese ‘20, Liu-Shi-Yu-Dhulipala-Shun 22]
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Level Data Structure and Core Numbers
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Non-Private Core Number Approximation

n=0.1 Set cutoffs (1 + 1) forall i € [log14+y(n)]

[Bhattacharya-Henzinger-Nanongkai-Tsourakakis ‘15, Henzinger-Neumann-Wiese ‘20, Liu-Shi-Yu-Dhulipala-Shun 22]
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Non-Private Core Number Approximation

n=0.1 Set cutoffs (1 + 1) forall i € [log14+y(n)]
O O
— T <
/ /
/ /
[ [
| |
II II )—0\\‘ \
/ , AL
‘,(‘ ‘,‘»‘ ‘«‘ 7’
Cutoff: (1 + 1) Cutoff: (1 + 1) Cutoff: (1 + 17)®

Give approx core number 2 - (1 + n)"
using largest cutoff where node is on the topmost level

FOCS 2022 J——



Non-Private Core Number Approximation

n=0.1 Set cutoffs (1 + 1) forall i € [log14+y(n)]
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/ /
/ /
[ [
| |
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Cutoff: (1 + 1) Cutoff: (1 + 1) Cutoff: (1 + 17)®
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Non-Private Core Number Approximation

n=0.1

Set cutoffs (1 + n)* for all i € [logy,(n)]

Q

N

/
/
/
/
/
|
/
/

/
/
/
/
/
|
/
/

Top level means adjacent to many
neighbors of sufficiently high degree

Largest cutoff gives largest such degree

‘,(‘

‘,(‘

Cutoff: (1 + 1)

Cutoff: (1 +n)7

Approximation: 2- (1 +1n)’ =2-1.17 =2-1.95 = 3.9
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Non-Private Core Number Approximation

n=0.1 Set cutoffs (1 + 1) forall i € [log14+y(n)]
@) @)
| N~ | N
/ /
/ II Top level means adjacent to many
/ ] neighbors of sufficiently high degree
| |
| |
O,(dl O,(dl Largest cutoff gives largest such degree
Cutoff: (1 +n) Cutoff: (1 + 1)’

Approximation: 1
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s-LEDP Core Numbers

4 ) .. N Release and move
Each active vertex draws i.i.d. )
up degree + noise

noise from symmetric : i :
e e L. in active vertices
geometric distribution
N / >(1+n)
Distribution Geom(b)

b_
PMF: & . e~1XID
eb+1

T

N
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s-LEDP Core Numbers

4 ) .. N Release and move
Each active vertex draws i.i.d. )
up degree + noise

noise from symmetric : i :
el in active vertices
geometric distribution

N Y, >(1+n)
Distribution Geom(b) In this example:
PMF: &=L . o= IXI n=0.1
eb+1
If deg(i) + N; > (1 +n),
move up 1+1
Qi EeRy e

. N
Where N; ~ Geom (8log§+n(n))
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s-LEDP Core Numbers

4 ) .. N Release and move
Each active vertex draws i.i.d. )
up degree + noise

noise from symmetric : i :
e e L. in active vertices
geometric distribution
N / >(1+n)
Distribution Geom(b)

b_
PMF: & . e~1XID
eb+1

If deg(i) + N; > (1 +n), 1+1
move up 0 A
\
N
&E
810g§+n(n))

Where N; ~ Geom(
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s-LEDP Core Numbers

4 ) .. N Release and move
Each active vertex draws i.i.d. )
up degree + noise

noise from symmetric : i :
el in active vertices
geometric distribution

Distribution Geom(b) Redraw new noise
PME: o=L . o= IXI'D each time vertex
eb+1 remains active
If deg(i) + N; > (1 + 1), 22
move up ® [ D 4-3 © @2+1
\ @2.1\ 1+2 3+ 0
) >
Where N; ~ Geom (810g§+,7(n))
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s-LEDP Core Numbers

4 ) .. N Release and move
Each active vertex draws i.i.d. )
up degree + noise

noise from symmetric : i :
el in active vertices
geometric distribution

Distribution Geom(b) Redraw new noise
PME: o=L . o= IXI'D each time vertex
eb+1 remains active
— o~
Ifdeg(i) + N; > (1 +n), ® 2+3 /Q-;\D 2 +O/@ @ 2+1 Approx. as before
move up &\ ‘\‘// 2(1 +n)* using

\_ N~ topmost level
)

Where N; ~ Geom (8log§+n(n)
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s-LEDP Core Numbers

¢ : ) Release and move
Each active vertex draws i.i.d. @\\ up degree + noise
noise from symmetric A o e A e e
geometric distribution [\ AN > (141n)
N / [\ \ L
Distribution Geom(b) / \\ \\ Redraw new noise
PME: eZ—l . e~ |XI'b / \ each time vertex
eb+1 I \ remains active
If deg(k) + N;, > (1 +n), / \ @ Approx. as before
move up ’\ ‘/ ‘\\‘//-/ 2(1 +n)" using

topmost level

e ) ~

Where N,, ~ Geom (810g%+n(n)
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Privacy Proof

» Can be implemented via local randomizers R
* R takes as input a (adjacency list) and public set of active vertices 4

* R computes size of intersection |a N A| Sensitivity of 1

* Then, add symmetric geometric noise X ~ Geom( 28 )
8log1 ., (n)

Global Sensitivity:

Ar = max £(6) — (G

edge—neighbors G and G'

(a,A) = |la N A]
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Privacy Proof

» Can be implemented via local randomizers R
* R takes as input a (adjacency list) and public set of active vertices 4

* R computes size of intersection |a N A| Sensitivity of 1

* Then, add symmetric geometric noise X ~ Geom( 28 )
8log1 ., (n)

Geometric Mechanism:
[Chan-Shi-Song ‘11; Balcer-Vadhan ‘18]

M(a,A) = f(a,A) + Geom (Aif)
M is e-DP
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* R takes as input a (adjacency list) and public set of active vertices 4
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Privacy Proof

» Can be implemented via local randomizers R
* R takes as input a (adjacency list) and public set of active vertices 4

* R computes size of intersection |a N A| Sensitivity of 1

* Then, add symmetric geometric noise X ~ Geom( 28 )
8log1 ., (n)

*Ris — - LR by privacy of Geometric Mechanism [Chan-Shi-Song ‘11;
810g1+n(n)

Balcer-Vadhan ‘18]
« Same LR called for all vertices 4log%+n(n) times
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Privacy Proof

» Can be implemented via local randomizers R
* R takes as input a (adjacency list) and public set of active vertices 4

* R computes size of intersection |a N A| Sensitivity of 1

* Then, add symmetric geometric noise X ~ Geom( 28 )
8log1 ., (n)

*Ris — - LR by privacy of Geometric Mechanism [Chan-Shi-Song ‘11;
810g1+n(n)

Balcer-Vadhan ‘18]
« Same LR called for all vertices 4log%+n(n) times

 For each edge, called 810g%+n(n); then, 8log?,, (n) - 810g2€ =€ and so ¢-LEDP
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Approximation Proof Sketch

« With high probability, magnitude of each drawn noise is upper bounded by
0 (log3 n)
&
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Approximation Proof Sketch

« With high probability, magnitude of each drawn noise is upper bounded by
0 (log3 n)
&
* Degree Upper Bound: If a vertex v is on level i < 4log,,,(n) at end of
. 3
algorithm, then it has at most (1 +1)! + 0 (log -

. ) neighbors on levels > i
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Approximation Proof Sketch

« With high probability, magnitude of each drawn noise is upper bounded by
0 (log3 n)
&
* Degree Upper Bound: If a vertex v is on level i < 4log,,,(n) at end of
. 3
algorithm, then it has at most (1 + )i + 0 (log

n

. ) neighbors on levels > i

« Degree Lower Bound: If a vergtex v is on level i > 0 at end of algorithm, then
it has at least (1 +7)i — 0 (log ") neighbors on levels > i — 1

@/m

S — - "[log3n
(%)

&
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Approximation Proof Sketch

« With high probability, magnitude of each drawn noise is upper bounded by
0 (log3 n)
&
* Degree Upper Bound: If a vertex v is on level i < 4log,,,(n) at end of
. 3
algorithm, then it has at most (1 + )i + 0 (log

n

. ) neighbors on levels > i

« Degree Lower Bound: If a vergtex v is on level i > 0 at end of algorithm, then
it has at least (1 +7)i — 0 (log ") neighbors on levels > i — 1

[ NN
O .0 0 0 ®

~— - "(log3n
(%)

&
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Approximation Proof Sketch

Key: Largest cutoff
increases/decreases

by additive O (log3 n)

&
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Locally Adjustable Graph Algorithms

* Intuition: Each node’s current state depends on number of
neighbors whose previous state satisfies predicate P

P(Sy) DN
& (55)
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Locally Adjustable Graph Algorithms

* Intuition: Each node’s current state depends on number of
neighbors whose previous state satisfies predicate P

Count(P(Sy), P(Sy))
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Locally Adjustable Graph Algorithms

* Intuition: Each node’s current state depends on number of
neighbors whose previous state satisfies predicate P

* Update new state based on this count

Count(P(Sy), P(Sy))

Sensitivity of Count of P(Sy)
number of neighbors

satisfying P is 1
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Locally Adjustable Graph Algorithms

* Intuition: Each node’s current state depends on number of
neighbors whose previous state satisfies predicate P

* Update new state based on this count

Count(P(Sy), P(Sy))

Sensitivity of Count of P(Sy)
> number of neighbors

satisfying P is 1
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Then, just add geometric noise to
the counts!

Z-rounds)
where rounds is # rounds of

algorithm.

Sample from Geom (




Many distributed/parallel graph
algorithms use small rounds/depth and
may fall under framework

Then, just add geometric noise to

Count(P(Sy"), P(Sp)) the counts!

(S rP(sp)
( //)
0 @ Sample from Geom (z.roindS)

where rounds is # rounds of
algorithm.

Sensitivity of Count of
number of neighbors
satisfying P is 1
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Many distributed/parallel graph
algorithms use small rounds/depth and
may fall under framework

Use small rounds/depth to get small noise
OPEN: approximation bounds for
framework




Additional Open Questions

« Better multiplicative approximation for LEDP densest subgraph
(currently 4 + n for LEDP compared to 1 + n for DP)
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« Better multiplicative approximation for LEDP densest subgraph
(currently 4 + n for LEDP compared to 1 + n for DP)

« Better upper bounds or tight lower bounds for the additive noise
(current best lower bound of [Farhadi-Hajiaghayi-Shi '22] is sub-
logarithmic)
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Additional Open Questions

« Better multiplicative approximation for LEDP densest subgraph
(currently 4 + n for LEDP compared to 1 + n for DP)

« Better upper bounds or tight lower bounds for the additive noise
(current best lower bound of [Farhadi-Hajiaghayi-Shi '22] is sub-
logarithmic)

* Node privacy for k-core decomposition (deleting one node changes the
core number of any node by at most 1)

Node-neighboring graphs: differ in one node and adjacent edges




