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• Neighboring inputs differ in some information we’d like to hide 
Differential Privacy [Dwork-McSherry-Nissim-Smith ‘06]

An algorithm 𝒜 is 𝜺-differentially private if for all pairs of neighbors 𝐺
and 𝐺′ and all sets of possible outputs 𝑆:

Pr 𝒜 𝐺 ∈ 𝑆 ≤ 𝑒! ⋅ Pr 𝒜 𝐺" ∈ 𝑆 .
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Local Edge Differential Privacy (LEDP)

Local Randomizer
[Adapted from Kasiviswanathan-Lee-Nissim-Raskhodnikova-Smith ‘11]

An 𝜺-local randomizer ℛ is an 𝜀-differentially private algorithm that 
takes as input an adjacency list 𝒂 and public information. 

ℛ
𝒂 = (B, C, E)B C

A

E
Public Information
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Local Edge Differential Privacy (LEDP)
Local Edge Differential Privacy 

[Adapted from Kasiviswanathan-Lee-Nissim-Raskhodnikova-Smith ‘11]

Let algorithm𝒜 use (potentially different) local randomizers ℛ%,, … , ℛ-, and 
ℛ%., … , ℛℓ. on nodes 𝑢, 𝑣 with privacy parameters 𝜀%,, … , 𝜀-, and 𝜀%., … , 𝜀ℓ..

𝒜 is 𝜺-local edge differentially private (𝜺-LEDP) if for every edge 𝑢, 𝑣 ,
𝜀%, +⋯+ 𝜀-, + 𝜀%.⋯+ 𝜀ℓ. ≤ 𝜀.

ℛ#$ , 𝜀#$
𝑢

𝑣 ⋯ ℛℓ
$ , 𝜀ℓ$

ℛ#& , 𝜀#& ⋯ ℛ'& , 𝜀'&

𝜀!" +⋯+ 𝜀#" + 𝜀!$⋯+ 𝜀ℓ$ ≤ 𝜀
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• Local edge differentially private algorithms:
• Relatively new direction
• Triangle and other subgraph counting: [Imola-Murakami-

Chaudhuri ‘21, ’22; Eden-Liu-Raskhodnikova-Smith ‘22]
• Other graph problems in empirical settings in 

“decentralized” privacy models [Sun-Xiao-Khalil-Yang-Qin-Wang-
Yu ‘19; Qin-Yu-Yang-Khalil-Xiao-Ren ‘17; Gao-Li-Chen-Zou ‘18; Ye-Hu-
Au-Meng-Xiao ‘20]

Related Work
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Related Work

Central DP vs. LEDP

Triangle 
Counting

DP Upper Bound

𝑶 𝒏
𝜺

additive error
(trivial)

LEDP Lower Bound

𝛀 𝒏𝟑/𝟐

𝜺 additive error
(multiple rounds)

𝛀 𝒏𝟐

𝜺 additive error
(one round)

[Eden-Liu-Raskhodnikova-Smith]



FOCS 2022

Related Work

Natural Question: Does there exist 𝜀-LEDP algorithms 
where multiplicative error matches best distributed 

algorithm and with 𝐩𝐨𝐥𝐲𝐥𝐨𝐠 𝒏
𝜺

additive error?   
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Related Work

Natural Question: Does there exist 𝜀-LEDP algorithms 
where multiplicative error matches best distributed 

algorithm and with 𝐩𝐨𝐥𝐲𝐥𝐨𝐠 𝒏
𝜺

additive error?   
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Our contributions and previous work
Our Results Best Previous Non-Private

Results
Best Previous Private

ResultsAll 𝐩𝐨𝐥𝐲𝐥𝐨𝐠(𝒏)/𝜺 additive 
𝒌-core decomposition:

(𝟐 + 𝜼)-mult.
𝑶 𝐥𝐨𝐠 𝒏 rounds

Low out-degree ordering:
Same as above

(𝟐 + 𝜼)-mult.
𝑶 𝐥𝐨𝐠 𝒏 rounds
[Chan-Sozio-Sun ‘21] NONE

LEDP
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Approximate k-Core Decomposition

Approx. core number of 
every node: 3

Approx. Core 
Number : 2

(𝒄, 𝒅)-Approx. Core Number:
𝐜𝐨𝐫𝐞 𝒗 − 𝒅 ≤ P𝐜𝐨𝐫𝐞 𝒗 ≤ 𝒄 ⋅ 𝐜𝐨𝐫𝐞 𝒗 + 𝒅
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Approximate k-Core Decomposition

Approx. core number of 
every node: 3

Approx. Core 
Number : 2

(3/2, 0)-
approx

(2, 0)-
approx

2 + 𝜂, 𝑂 345$ 6
7 -

approximations in this 
paper

(𝒄, 𝒅)-Approx. Core Number:
𝐜𝐨𝐫𝐞 𝒗 − 𝒅 ≤ P𝐜𝐨𝐫𝐞 𝒗 ≤ 𝒄 ⋅ 𝐜𝐨𝐫𝐞 𝒗 + 𝒅
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Level Data Structure and Core Numbers

Non-private sequential and parallel level 
data structures for dynamic problem:

[Bhattacharya-Henzinger-Nanongkai-Tsourakakis ‘15; 
Henzinger-Neumann-Wiese ‘20; 
Liu-Shi-Yu-Dhulipala-Shun ‘22]
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Level Data Structure and Core Numbers

In this example: 
𝜼 = 𝟎. 𝟏

Move up if induced 
degree in active 

vertices > 1 + 𝜂

Initially all vertices 
are active

[Bhattacharya-Henzinger-Nanongkai-Tsourakakis ‘15, Henzinger-Neumann-Wiese ‘20, Liu-Shi-Yu-Dhulipala-Shun ‘22]

4log%89(𝑛)



FOCS 2022
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Non-Private Core Number Approximation
𝜼 = 𝟎. 𝟏 Set cutoffs 𝟏 + 𝜼 𝒊 for all 𝒊 ∈ [𝐥𝐨𝐠𝟏8𝜼 𝒏 ]

[Bhattacharya-Henzinger-Nanongkai-Tsourakakis ‘15, Henzinger-Neumann-Wiese ‘20, Liu-Shi-Yu-Dhulipala-Shun ‘22]
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Non-Private Core Number Approximation
𝜼 = 𝟎. 𝟏

Cutoff: 𝟏 + 𝜼

…

Cutoff: 𝟏 + 𝜼 𝟕 Cutoff: 𝟏 + 𝜼 𝟖

…

Set cutoffs 𝟏 + 𝜼 𝒊 for all 𝒊 ∈ [𝐥𝐨𝐠𝟏8𝜼 𝒏 ]

Give approx core number 𝟐 ⋅ 𝟏 + 𝜼 𝒊

using largest cutoff where node is on the topmost level
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Top level means adjacent to many 
neighbors of sufficiently high degree

Largest cutoff gives largest such degree
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Non-Private Core Number Approximation
𝜼 = 𝟎. 𝟏

Cutoff: 𝟏 + 𝜼

…

Cutoff: 𝟏 + 𝜼 𝟕

Approximation: 𝟏

Set cutoffs 𝟏 + 𝜼 𝒊 for all 𝒊 ∈ [𝐥𝐨𝐠𝟏8𝜼 𝒏 ]

Top level means adjacent to many 
neighbors of sufficiently high degree

Largest cutoff gives largest such degree
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𝜀-LEDP Core Numbers
Each active vertex draws i.i.d.

noise from symmetric 
geometric distribution

Release and move 
up degree + noise
in active vertices 

> 1 + 𝜂

Distribution 𝑮𝒆𝒐𝒎 𝒃

PMF: ?
%@%
?%8%

⋅ 𝑒@ A ⋅C
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𝜀-LEDP Core Numbers

𝑗 𝑏𝑘𝑖 𝑐𝑎 𝑑

Each active vertex draws i.i.d.
noise from symmetric 
geometric distribution

Release and move 
up degree + noise
in active vertices 

> 1 + 𝜂

Distribution 𝑮𝒆𝒐𝒎 𝒃

PMF: ?
%@%
?%8%

⋅ 𝑒@ A ⋅C
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𝜀-LEDP Core Numbers

𝑗 𝑏𝑘𝑖 𝑐𝑎 𝑑

1 + 1

In this example: 
𝜼 = 𝟎. 𝟏

Each active vertex draws i.i.d.
noise from symmetric 
geometric distribution

Release and move 
up degree + noise
in active vertices 

> 1 + 𝜂

If 𝐝𝐞𝐠 𝒊 + 𝑵𝒊 > 𝟏 + 𝜼 , 
move up

Where 𝑁D ∼ 𝐺𝑒𝑜𝑚 7
E345+,-. 6

Distribution 𝑮𝒆𝒐𝒎 𝒃

PMF: ?
%@%
?%8%

⋅ 𝑒@ A ⋅C
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𝜀-LEDP Core Numbers

𝑗 𝑏𝑘

𝑖

𝑐𝑎 𝑑

If 𝐝𝐞𝐠 𝒊 + 𝑵𝒊 > 𝟏 + 𝜼 , 
move up

Where 𝑁D ∼ 𝐺𝑒𝑜𝑚 7
E345+,-. 6

1 + 1

Each active vertex draws i.i.d.
noise from symmetric 
geometric distribution

Release and move 
up degree + noise
in active vertices 

> 1 + 𝜂

Distribution 𝑮𝒆𝒐𝒎 𝒃

PMF: ?
%@%
?%8%

⋅ 𝑒@ A ⋅C
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𝜀-LEDP Core Numbers

𝑗 𝑏

𝑘𝑖 𝑐𝑎 𝑑

4 - 1

1 + 2
4 - 3

2 + 0

2 + 1

2 - 1

Each active vertex draws i.i.d.
noise from symmetric 
geometric distribution

Release and move 
up degree + noise
in active vertices 

> 1 + 𝜂

Redraw new noise 
each time vertex 
remains active

If 𝐝𝐞𝐠 𝒊 + 𝑵𝒊 > 𝟏 + 𝜼 , 
move up

Where 𝑁D ∼ 𝐺𝑒𝑜𝑚 7
E345+,-. 6

Distribution 𝑮𝒆𝒐𝒎 𝒃

PMF: ?
%@%
?%8%

⋅ 𝑒@ A ⋅C



FOCS 2022

𝜀-LEDP Core Numbers

𝑗 𝑏

𝑘

𝑖

𝑐

𝑎

𝑑2 + 3 2 + 0 2 + 1

Each active vertex draws i.i.d.
noise from symmetric 
geometric distribution

Release and move 
up degree + noise
in active vertices 

> 1 + 𝜂

Redraw new noise 
each time vertex 
remains active

Approx. as before 
𝟐 𝟏 + 𝜼 𝒊 using 

topmost level

If 𝐝𝐞𝐠 𝒊 + 𝑵𝒊 > 𝟏 + 𝜼 , 
move up

Where 𝑁D ∼ 𝐺𝑒𝑜𝑚 7
E345+,-. 6

Distribution 𝑮𝒆𝒐𝒎 𝒃

PMF: ?
%@%
?%8%

⋅ 𝑒@ A ⋅C
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𝜀-LEDP Core Numbers

𝑗 𝑏

𝑘

𝑖

𝑐

𝑎

𝑑If 𝐝𝐞𝐠 𝒌 + 𝑵𝒌 > 𝟏 + 𝜼 , 
move up

Where 𝑁G ∼ 𝐺𝑒𝑜𝑚 7
E345+,-. 6

Redraw new noise 
each time vertex 
remains active

Approx. as before 
𝟐 𝟏 + 𝜼 𝒊 using 

topmost level

Each active vertex draws i.i.d.
noise from symmetric 
geometric distribution

Release and move 
up degree + noise
in active vertices 

> 1 + 𝜂

Distribution 𝑮𝒆𝒐𝒎 𝒃

PMF: ?
%@%
?%8%

⋅ 𝑒@ A ⋅C
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Distribution 𝑮𝒆𝒐𝒎 𝒃

PMF: ?
%@%
?%8%

⋅ 𝑒@ A ⋅C

𝜀-LEDP Core Numbers

Move up if induced 
degree + noise in active 

vertices > 1 + 𝜂

𝑗 𝑏

𝑘

𝑖

𝑐

𝑎

𝑑

Each active vertex 
draws i.i.d. noise from 
symmetric geometric 

distribution

If 𝐝𝐞𝐠 𝒌 + 𝑵𝒌 > 𝟏 + 𝜼 , 
move up

Where 𝑁$ ∼ 𝐺𝑒𝑜𝑚 %
&'()!"# *

Redraw new noise each 
time vertex remains 

active and determines 
whether move up 

Approx. as before 
𝟐 𝟏 + 𝜼 𝒊 where 𝑖

largest that vertex is on 
the topmost level

Privacy and Approximation?
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Privacy Proof

• Can be implemented via local randomizers 𝑹
• 𝑅 takes as input 𝒂 (adjacency list) and public set of active vertices 𝑨

• 𝑅 computes size of intersection 𝒂 ∩ 𝑨

• Then, add symmetric geometric noise 𝑋 ∼ 𝐺𝑒𝑜𝑚 7
E345+,-. 6
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Sensitivity of 1

Privacy Proof

• Can be implemented via local randomizers 𝑹
• 𝑅 takes as input 𝒂 (adjacency list) and public set of active vertices 𝑨

• 𝑅 computes size of intersection 𝒂 ∩ 𝑨

• Then, add symmetric geometric noise 𝑋 ∼ 𝐺𝑒𝑜𝑚 7
E345+,-. 6

Global Sensitivity: 
Δ- = max

./0.12.3045678 9 :2/ 9"
𝑓 𝐺 − 𝑓 𝐺;

𝑓 𝒂, 𝐴 = |𝒂 ∩ 𝐴|
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Sensitivity of 1

Privacy Proof

• Can be implemented via local randomizers 𝑹
• 𝑅 takes as input 𝒂 (adjacency list) and public set of active vertices 𝑨

• 𝑅 computes size of intersection 𝒂 ∩ 𝑨

• Then, add symmetric geometric noise 𝑋 ∼ 𝐺𝑒𝑜𝑚 7
E345+,-. 6

Geometric Mechanism: 
[Chan-Shi-Song ‘11; Balcer-Vadhan ‘18]

𝑀 𝒂, 𝐴 = 𝑓 𝒂, 𝐴 + 𝐺𝑒𝑜𝑚 !
)!

𝑴 is	𝜺-DP
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Sensitivity of 1

Privacy Proof

• Can be implemented via local randomizers 𝑹
• 𝑅 takes as input 𝒂 (adjacency list) and public set of active vertices 𝑨

• 𝑅 computes size of intersection 𝒂 ∩ 𝑨

• Then, add symmetric geometric noise 𝑋 ∼ 𝐺𝑒𝑜𝑚 7
E345+,-. 6

• 𝑹 is 𝜺
𝟖𝐥𝐨𝐠𝟏,𝜼

𝟐 𝒏
- LR by privacy of Geometric Mechanism [Chan-Shi-Song ‘11; 

Balcer-Vadhan ‘18]
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Sensitivity of 1

Privacy Proof

• Can be implemented via local randomizers 𝑹
• 𝑅 takes as input 𝒂 (adjacency list) and public set of active vertices 𝑨

• 𝑅 computes size of intersection 𝒂 ∩ 𝑨

• Then, add symmetric geometric noise 𝑋 ∼ 𝐺𝑒𝑜𝑚 7
E345+,-. 6

• 𝑹 is 𝜺
𝟖𝐥𝐨𝐠𝟏,𝜼

𝟐 𝒏
- LR by privacy of Geometric Mechanism [Chan-Shi-Song ‘11; 

Balcer-Vadhan ‘18]

• Same LR called for all vertices 𝟒𝐥𝐨𝐠𝟏8𝜼𝟐 𝒏 times
• For each edge, called 𝟖𝐥𝐨𝐠𝟏8𝜼𝟐 𝒏 ; then, 𝟖𝐥𝐨𝐠𝟏"𝜼𝟐 𝒏 ⋅ 𝜺

𝟖𝐥𝐨𝐠𝟏$𝜼
𝟐 𝒏

= 𝜀 and so 𝜀-LEDP



FOCS 2022

Approximation Proof Sketch
• With high probability, magnitude of each drawn noise is upper bounded by 
𝑶 𝐥𝐨𝐠𝟑 𝒏

𝜺
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𝑗 𝑘 𝑐 𝑑

• With high probability, magnitude of each drawn noise is upper bounded by 
𝑶 𝐥𝐨𝐠𝟑 𝒏

𝜺

• Degree Upper Bound: If a vertex 𝑣 is on level 𝑖 < 4log%89(𝑛) at end of 
algorithm, then it has at most 𝟏 + 𝜼 𝒊 +𝑶 𝐥𝐨𝐠𝟑 𝒏

𝜺
neighbors on levels ≥ 𝒊

Approximation Proof Sketch

𝑶
𝐥𝐨𝐠𝟑 𝒏
𝜺
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𝑗 𝑘 𝑐 𝑑

𝑶
𝐥𝐨𝐠𝟑 𝒏
𝜺

• With high probability, magnitude of each drawn noise is upper bounded by 
𝑶 𝐥𝐨𝐠𝟑 𝒏

𝜺

• Degree Upper Bound: If a vertex 𝑣 is on level 𝑖 < 4log%89(𝑛) at end of 
algorithm, then it has at most 𝟏 + 𝜼 𝒊 +𝑶 𝐥𝐨𝐠𝟑 𝒏

𝜺
neighbors on levels ≥ 𝒊

Approximation Proof Sketch
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𝑗 𝑘 𝑐 𝑑

• With high probability, magnitude of each drawn noise is upper bounded by 
𝑶 𝐥𝐨𝐠𝟑 𝒏

𝜺

• Degree Upper Bound: If a vertex 𝑣 is on level 𝑖 < 4log%89(𝑛) at end of 
algorithm, then it has at most 𝟏 + 𝜼 𝒊 +𝑶 𝐥𝐨𝐠𝟑 𝒏

𝜺
neighbors on levels ≥ 𝒊

• Degree Lower Bound: If a vertex 𝑣 is on level 𝑖 > 0 at end of algorithm, then 
it has at least 𝟏 + 𝜼 𝒊 −𝑶 𝐥𝐨𝐠𝟑 𝒏

𝜺 neighbors on levels ≥ 𝒊 − 𝟏

Approximation Proof Sketch

𝑶
𝐥𝐨𝐠𝟑 𝒏
𝜺
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𝑗

𝑘

𝑐 𝑑

• With high probability, magnitude of each drawn noise is upper bounded by 
𝑶 𝐥𝐨𝐠𝟑 𝒏

𝜺

• Degree Upper Bound: If a vertex 𝑣 is on level 𝑖 < 4log%89(𝑛) at end of 
algorithm, then it has at most 𝟏 + 𝜼 𝒊 +𝑶 𝐥𝐨𝐠𝟑 𝒏

𝜺
neighbors on levels ≥ 𝒊

• Degree Lower Bound: If a vertex 𝑣 is on level 𝑖 > 0 at end of algorithm, then 
it has at least 𝟏 + 𝜼 𝒊 −𝑶 𝐥𝐨𝐠𝟑 𝒏

𝜺 neighbors on levels ≥ 𝒊 − 𝟏

Approximation Proof Sketch

𝑶
𝐥𝐨𝐠𝟑 𝒏
𝜺
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Approximation Proof Sketch

𝑗

𝑘

𝑐 𝑑

𝑶
𝐥𝐨𝐠𝟑 𝒏
𝜺

𝑗 𝑘 𝑐 𝑑

𝑶
𝐥𝐨𝐠𝟑 𝒏
𝜺

Key: Largest cutoff 
increases/decreases 

by additive 𝑶 𝐥𝐨𝐠𝟑 𝒏
𝜺
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Locally Adjustable Graph Algorithms

• Intuition: Each node’s current state depends on number of 
neighbors whose previous state satisfies predicate 𝑷

𝑆+

𝑆+,
𝑆+,,

𝑷 𝑆+,,
𝑷 𝑆+,
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Locally Adjustable Graph Algorithms

• Intuition: Each node’s current state depends on number of 
neighbors whose previous state satisfies predicate 𝑷

• Update new state based on this count

𝑺𝟏

𝑆+,
𝑆+,,

𝑷 𝑆+,,
𝑷 𝑆+,
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Sensitivity of Count of 
number of neighbors 

satisfying 𝑃 is 1



FOCS 2022

Locally Adjustable Graph Algorithms

• Intuition: Each node’s current state depends on number of 
neighbors whose previous state satisfies predicate 𝑷

• Update new state based on this count

𝑺𝟏

𝑆+,
𝑆+,,

𝑷 𝑆+,,
𝑷 𝑆+,

𝑪𝒐𝒖𝒏𝒕 𝑷 𝑆+,, , 𝑷 𝑆+,
Then, just add geometric noise to 

the counts!

Sample from 𝑮𝒆𝒐𝒎 𝜺
𝟐⋅𝒓𝒐𝒖𝒏𝒅𝒔

where 𝒓𝒐𝒖𝒏𝒅𝒔 is # rounds of 
algorithm. 

Sensitivity of Count of 
number of neighbors 

satisfying 𝑃 is 1
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𝑺𝟏

𝑆+,
𝑆+,,

𝑷 𝑆+,,
𝑷 𝑆+,

𝑪𝒐𝒖𝒏𝒕 𝑷 𝑆+,, , 𝑷 𝑆+,

Many distributed/parallel graph 
algorithms use small rounds/depth and 

may fall under framework
Then, just add geometric noise to 

the counts!

Sample from 𝑮𝒆𝒐𝒎 𝜺
𝟐⋅𝒓𝒐𝒖𝒏𝒅𝒔

where 𝒓𝒐𝒖𝒏𝒅𝒔 is # rounds of 
algorithm. 

Sensitivity of Count of 
number of neighbors 

satisfying 𝑃 is 1
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𝑺𝟏

𝑆-.
𝑆-..

𝑷 𝑆-..
𝑷 𝑆-.

𝑪𝒐𝒖𝒏𝒕 𝑷 𝑆-.. , 𝑷 𝑆-. Then, just add geometric noise 
to the counts!

Sample from 𝑮𝒆𝒐𝒎 𝜺
𝟐⋅𝒓𝒐𝒖𝒏𝒅𝒔

where 𝒓𝒐𝒖𝒏𝒅𝒔 is # rounds of 
algorithm. 

Many distributed/parallel graph 
algorithms use small rounds/depth and 

may fall under framework

Use small rounds/depth to get small noise
OPEN: approximation bounds for 

framework
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• Better multiplicative approximation for LEDP densest subgraph 

(currently 4 + 𝜂 for LEDP compared to 1 + 𝜂 for DP)
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• Better upper bounds or tight lower bounds for the additive noise 
(current best lower bound of [Farhadi-Hajiaghayi-Shi ’22] is sub-
logarithmic)

Additional Open Questions
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• Better multiplicative approximation for LEDP densest subgraph 
(currently 4 + 𝜂 for LEDP compared to 1 + 𝜂 for DP)

• Better upper bounds or tight lower bounds for the additive noise 
(current best lower bound of [Farhadi-Hajiaghayi-Shi ’22] is sub-
logarithmic)

• Node privacy for 𝑘-core decomposition (deleting one node changes the 
core number of any node by at most 1)

Additional Open Questions

Node-neighboring graphs: differ in one node and adjacent edges


