Differential Privacy from Locally Adjustable Graph Algorithms:

k-Core Decomposition, Low Out-Degree Ordering, and Densest Subgraphs

Laxman Dhulipala, Quanquan C. Liu, Sofya Raskhodnikova, Jessica Shi, Julian Shun, Shangdi Yu

Publishing Sensitive Graph Information

- Potentially sensitive connections between individuals published as graphs
 - Financial transactions
 - Relationship information
 - Email and cell phone communications
 - Search data
 - Disease network data

Publishing Sensitive Graph Information

- Potentially sensitive connections between individuals published as graphs
 - Financial transactions
 - Relationship information
 - Email and cell phone communications
 - Search data
 - Disease network data

Anonymization \neq Privacy!

Publishing Sensitive Graph Information

- Potentially sensitive connections between individuals published as graphs
 - Financial transactions
 - Relationship information
 - Email and cell phone communications
 - Search data
 - Disease network data
 - COVID transmission data

Anonymization \neq Privacy!

Private Analysis of Graph Data

Private Analysis of Graph Data

Data privacy

Private Analysis of Graph Data

• Data privacy

• Neighboring inputs differ in some information we'd like to hide

Differential Privacy [Dwork-McSherry-Nissim-Smith '06]

An algorithm \mathcal{A} is ε -differentially private if for all pairs of neighbors Gand G' and all sets of possible outputs S: $\Pr[\mathcal{A}(G) \in S] \leq e^{\varepsilon} \cdot \Pr[\mathcal{A}(G') \in S].$

Edge-Neighboring Graphs

• Edge-neighboring graphs: differ in one edge

• Edge-neighboring graphs: differ in one edge

Differential Privacy [Dwork-McSherry-Nissim-Smith '06]

An algorithm \mathcal{A} is ε -differentially private if for all pairs of neighbors Gand G' and all sets of possible outputs S: $\Pr[\mathcal{A}(G) \in S] \leq e^{\varepsilon} \cdot \Pr[\mathcal{A}(G') \in S].$

https://www.npr.org/2021/04/09/98600582 0/after-data-breach-exposes-530-millionfacebook-says-it-will-not-notify-users https://www.bleepingcomputer.com/news/s ecurity/marriott-confirms-another-databreach-after-hotel-got-hacked/

FOCS 2022

https://www.malwarebytes.com/blog/news/ 2021/06/second-colossal-linkedin-breach-in-3-months-almost-all-users-affected

- Each node publishes privatized output
- Curator computes aggregated statistics using outputs

- Each node publishes privatized output
- Curator computes aggregated statistics using outputs

- Each node publishes privatized output
- Curator computes aggregated statistics using outputs

- Each node publishes privatized output
- Curator computes aggregated statistics using outputs

- Each node publishes privatized output
- Curator computes aggregated statistics using outputs

Local Randomizer

[Adapted from Kasiviswanathan-Lee-Nissim-Raskhodnikova-Smith '11]

An ε -local randomizer \mathcal{R} is an ε -differentially private algorithm that takes as input an adjacency list a and public information.

Local Edge Differential Privacy

[Adapted from Kasiviswanathan-Lee-Nissim-Raskhodnikova-Smith '11]

Let algorithm \mathcal{A} use (potentially different) local randomizers $\mathcal{R}_1^u, \ldots, \mathcal{R}_j^u$ and $\mathcal{R}_1^v, \ldots, \mathcal{R}_\ell^v$ on nodes u, v with privacy parameters $\varepsilon_1^u, \ldots, \varepsilon_j^u$ and $\varepsilon_1^v, \ldots, \varepsilon_\ell^v$.

 \mathcal{A} is ε -local edge differentially private (ε -LEDP) if for every edge {u, v}, $\varepsilon_1^u + \dots + \varepsilon_j^u + \varepsilon_1^v \dots + \varepsilon_\ell^v \leq \varepsilon$.

Local edge differentially private algorithms:

- Relatively new direction
- Triangle and other subgraph counting: [Imola-Murakami-Chaudhuri '21, '22; Eden-Liu-Raskhodnikova-Smith '22]
- Other graph problems in empirical settings in "decentralized" privacy models [Sun-Xiao-Khalil-Yang-Qin-Wang-Yu '19; Qin-Yu-Yang-Khalil-Xiao-Ren '17; Gao-Li-Chen-Zou '18; Ye-Hu-Au-Meng-Xiao '20]

Central DP vs. LEDP

Natural Question: Does there exist ε -LEDP algorithms where multiplicative error matches best distributed algorithm and with $\frac{\operatorname{polylog}(n)}{\varepsilon}$ additive error?

Natural Question: Does there exist ε -LEDP algorithms where multiplicative error matches best distributed algorithm and with $\frac{\operatorname{polylog}(n)}{\varepsilon}$ additive error?

Yes!

Our ResultsAll $polylog(n)/\varepsilon$ additivek-core decomposition:(2 + η)-mult.0(log n) roundsLow out-degree ordering:Same as above

Best Previous Non-Private Results

> $(2 + \eta)$ -mult. $O(\log n)$ rounds [Chan-Sozio-Sun '21]

Best Previous Private Results

NONE

	Our Results All $polylog(n)/\varepsilon$ additive	Best Previous Non-Private Results	Best Previous Private Results
LEDP	k-core decomposition: $(2 + \eta)$ -mult. $O(\log n)$ rounds Low out-degree ordering: Same as above	$(2 + \eta)$ -mult. $O(\log n)$ rounds [Chan-Sozio-Sun '21]	NONE
	Densest subgraph: $(4 + \eta)$ -mult.	 (1 + η)-multiplicative [Bahmani-Goel-Munagala '14] [Ghaffari-Lattanzi-Mitrović '19] [Su-Vu '20] 	NONE

	Our Results All $polylog(n)/\varepsilon$ additive	Best Previous Non-Private Results	Best Previous Private Results
LEDP	k-core decomposition: $(2 + \eta)$ -mult. $O(\log n)$ rounds Low out-degree ordering: Same as above	$(2 + \eta)$ -mult. $O(\log n)$ rounds [Chan-Sozio-Sun '21]	NONE
	Densest subgraph: $(4 + \eta)$ -mult.	 (1 + η)-multiplicative [Bahmani-Goel-Munagala '14] [Ghaffari-Lattanzi-Mitrović '19] [Su-Vu '20] 	NONE
DP	Densest subgraph: $(1 + \eta)$ -mult.	$(1 + \eta)$ -multiplicative [Bahmani-Goel-Munagala '14] [Chekuri-Quanrud-Torres '22]	 (2 + η)-mult. poly(log n)/ε-additive [Nguyen-Vullikanti '21] [Farhadi-Hajiaghayi-Shi '22]

Our Results All $polylog(n)/\varepsilon$ additive– *k*-core decomposition: $(2 + \eta)$ -mult. **LEDP O**(log *n*) rounds Low out-degree ordering: Same as above **Densest subgraph:** $(4 + \eta)$ -mult. **Densest subgraph:** DP $(1 + \eta)$ -mult.

Best Previous Non-Private Results

> $(2 + \eta)$ -mult. $O(\log n)$ rounds [Chan-Sozio-Sun '21]

Best Previous Private Results

NONE

Privacy Framework OPEN: Framework Approximation Guarantee

[Ghaffari-Lattanzi-Mitrović '19] [Su-Vu '20]

(1 + η)-multiplicative
 [Bahmani-Goel-Munagala '14]
 [Chekuri-Quanrud-Torres '22]

INUNE

 $(2 + \eta)$ -mult. poly(log n)/ ε -additive [Nguyen-Vullikanti '21] [Farhadi-Hajiaghayi-Shi '22]

Our Results All $polylog(n)/\varepsilon$ additive– *k*-core decomposition: $(2 + \eta)$ -mult. LEDP **O**(log *n*) rounds Low out-degree ordering: Same as above **Densest subgraph:** $(4 + \eta)$ -mult. **Densest subgraph:** DP $(1 + \eta)$ -mult.

Best Previous Non-Private Results

> $(2 + \eta)$ -mult. $O(\log n)$ rounds [Chan-Sozio-Sun '21]

Best Previous Private Results

NONE

Privacy Framework OPEN: Framework Approximation Guarantee

[Ghaffari-Lattanzi-Mitrović '19] [Su-Vu '20]

(1 + η)-multiplicative
 [Bahmani-Goel-Munagala '14]
 [Chekuri-Quanrud-Torres '22]

INUINE

 $(2 + \eta)$ -mult. poly(log n)/ ε -additive [Nguyen-Vullikanti '21] [Farhadi-Hajiaghayi-Shi '22]
k-Core

k-Core Decomposition

Core Number of Node v: Maximum Core Value of a Core Containing v

k-Core Decomposition

Approximate k-Core Decomposition

 $\operatorname{core}(v) - d \le \widehat{\operatorname{core}}(v) \le c \cdot \operatorname{core}(v) + d$

Approximate k-Core Decomposition

 $\operatorname{core}(v) - d \leq \widehat{\operatorname{core}}(v) \leq c \cdot \operatorname{core}(v) + d$

Approximate k-Core Decomposition

Non-private sequential and parallel level data structures for dynamic problem:

[Bhattacharya-Henzinger-Nanongkai-Tsourakakis '15; Henzinger-Neumann-Wiese '20; Liu-Shi-Yu-Dhulipala-Shun '22]

[Bhattacharya-Henzinger-Nanongkai-Tsourakakis '15, Henzinger-Neumann-Wiese '20, Liu-Shi-Yu-Dhulipala-Shun '22]

$\eta = 0.1$ Set cutoffs $(1 + \eta)^i$ for all $i \in [\log_{1+\eta}(n)]$

[Bhattacharya-Henzinger-Nanongkai-Tsourakakis '15, Henzinger-Neumann-Wiese '20, Liu-Shi-Yu-Dhulipala-Shun '22]

 $oldsymbol{\eta}=0.1$

Set cutoffs $(1 + \eta)^i$ for all $i \in [\log_{1+\eta}(n)]$

Give approx core number $2 \cdot (1 + \eta)^i$ using **largest cutoff** where node is on the **topmost level**

 $oldsymbol{\eta}=0.1$

Set cutoffs $(1 + \eta)^i$ for all $i \in [\log_{1+\eta}(n)]$

Approximation: $2 \cdot (1 + \eta)^7 = 2 \cdot 1.1^7 = 2 \cdot 1.95 = 3.9$

 $\eta = 0.1$

Set cutoffs $(1 + \eta)^i$ for all $i \in [\log_{1+\eta}(n)]$

Approximation: $2 \cdot (1 + \eta)^7 = 2 \cdot 1.1^7 = 2 \cdot 1.95 = 3.9$

 $oldsymbol{\eta}=0.1$

Set cutoffs $(1 + \eta)^i$ for all $i \in [\log_{1+\eta}(n)]$

Each active vertex draws i.i.d. noise from symmetric geometric distribution

> Distribution Geom(b)PMF: $\frac{e^{b}-1}{e^{b}+1} \cdot e^{-|X| \cdot b}$

_____ Re _____ up _____ ir

Release and move up degree <u>+ noise</u> in active vertices $> (1 + \eta)$

Each active vertex draws i.i.d. noise from symmetric geometric distribution

> Distribution Geom(b)PMF: $\frac{e^{b}-1}{e^{b}+1} \cdot e^{-|X| \cdot b}$

------ Re ------- up ------- in

Release and move up degree <u>+ noise</u> in active vertices $> (1 + \eta)$

Each active vertex draws i.i.d. noise from symmetric geometric distribution

> Distribution Geom(b)PMF: $\frac{e^{b}-1}{e^{b}+1} \cdot e^{-|X| \cdot b}$

$$deg(i) + N_i > (1 + \eta),$$

move up

Where
$$N_i \sim Geom\left(\frac{\varepsilon}{8\log_{1+\eta}^2(n)}\right)$$

lf

Release and move up degree <u>+ noise</u> in active vertices $> (1 + \eta)$

In this example: $\eta = 0.1$

Each active vertex draws i.i.d. noise from symmetric geometric distribution

> Distribution Geom(b)PMF: $\frac{e^{b}-1}{e^{b}+1} \cdot e^{-|X| \cdot b}$

Release and move up degree <u>+ noise</u> in active vertices $> (1 + \eta)$

If $deg(i) + N_i > (1 + \eta)$, move up

Where
$$N_i \sim Geom\left(\frac{\varepsilon}{8\log_{1+\eta}^2(n)}\right)$$

Each active vertex draws i.i.d. noise from symmetric geometric distribution

> Distribution Geom(b)PMF: $\frac{e^{b}-1}{e^{b}+1} \cdot e^{-|X| \cdot b}$

If
$$deg(i) + N_i > (1 + \eta)$$
,
move up

Where
$$N_i \sim Geom\left(\frac{\varepsilon}{8\log_{1+\eta}^2(n)}\right)$$

Release and move up degree <u>+ noise</u> in active vertices $> (1 + \eta)$

Redraw new noise each time vertex remains active

Each active vertex draws i.i.d. noise from symmetric geometric distribution

> Distribution Geom(b)PMF: $\frac{e^{b}-1}{e^{b}+1} \cdot e^{-|X| \cdot b}$

If
$$deg(i) + N_i > (1 + \eta)$$
,
move up

Where
$$N_i \sim Geom\left(\frac{\varepsilon}{8\log_{1+\eta}^2(n)}\right)$$

Release and move up degree <u>+ noise</u> in active vertices $> (1 + \eta)$

Redraw new noise each time vertex remains active

Approx. as before $2(1 + \eta)^i$ using topmost level

Each active vertex draws i.i.d. noise from symmetric geometric distribution

> Distribution Geom(b)PMF: $\frac{e^{b}-1}{e^{b}+1} \cdot e^{-|X| \cdot b}$

 $\begin{aligned} & \text{If } \deg(k) + N_k > (1+\eta), \\ & \text{move up} \end{aligned}$

Where
$$N_k \sim Geom\left(\frac{\varepsilon}{8\log_{1+\eta}^2(n)}\right)$$

Release and move up degree <u>+ noise</u> in active vertices $> (1 + \eta)$

Redraw new noise each time vertex remains active

Approx. as before $2(1 + \eta)^i$ using topmost level

Each active vertex draws i.i.d. noise from symmetric geometric distribution

Distribution Geom Privacy and Approximation?

$$\mathsf{PMF}: \frac{e^b - 1}{e^b + 1} \cdot e^{-|X| \cdot b}$$

If
$$deg(k) + N_k > (1 + \eta)$$

move up

Where
$$N_k \sim Geom\left(\frac{\varepsilon}{8\log_{1+\eta}(n)}\right)$$

Move up if induced degree <u>+ noise</u> in active vertices $> (1 + \eta)$

Redraw new noise each time vertex remains active and determines whether move up

Approx. as before $2(1 + \eta)^i$ where *i* largest that vertex is on the topmost level

• Can be implemented via local randomizers R

- Can be implemented via local randomizers R
- *R* takes as input *a* (adjacency list) and public set of active vertices *A*

- Can be implemented via local randomizers R
- *R* takes as input *a* (adjacency list) and public set of active vertices *A*
 - *R* computes size of intersection $|a \cap A|$

- Can be implemented via local randomizers R
- *R* takes as input *a* (adjacency list) and public set of active vertices *A*
 - *R* computes size of intersection $|a \cap A|$
 - Then, add symmetric geometric noise $X \sim Geom\left(\frac{\varepsilon}{8\log_{1+n}^2(n)}\right)$

- Can be implemented via local randomizers R
- *R* takes as input *a* (adjacency list) and public set of active vertices *A*
 - *R* computes size of intersection $|a \cap A|$ Sensitivity of 1
 - Then, add symmetric geometric noise $X \sim Geom\left(\frac{\varepsilon}{8\log_{1+n}^2(n)}\right)$

Global Sensitivity:

 $\Delta_{f} = \max_{edge-neighbors \ G \ and \ G'} |f(G) - f(G')|$

$$f(\boldsymbol{a},A) = |\boldsymbol{a} \cap A|$$

- Can be implemented via local randomizers R
- *R* takes as input *a* (adjacency list) and public set of active vertices *A*
 - *R* computes size of intersection $|a \cap A|$ Sensitivity of 1
 - Then, add symmetric geometric noise $X \sim Geom\left(\frac{\varepsilon}{8\log_{1+n}^2(n)}\right)$

Geometric Mechanism: [Chan-Shi-Song '11; Balcer-Vadhan '18] $M(a, A) = f(a, A) + Geom\left(\frac{\varepsilon}{\Delta_f}\right)$ *M* is ε -DP

- Can be implemented via local randomizers R
- *R* takes as input *a* (adjacency list) and public set of active vertices *A*
 - *R* computes size of intersection $|a \cap A|$ Sensitivity of 1
 - Then, add symmetric geometric noise $X \sim Geom\left(\frac{\varepsilon}{8\log_{1+n}^2(n)}\right)$

• *R* is $\frac{\varepsilon}{8\log_{1+\eta}^2(n)}$ - LR by privacy of Geometric Mechanism [Chan-Shi-Song '11; Balcer-Vadhan '18]

- Can be implemented via local randomizers R
- *R* takes as input *a* (adjacency list) and public set of active vertices *A*
 - *R* computes size of intersection $|a \cap A|$ Sensitivity of 1
 - Then, add symmetric geometric noise $X \sim Geom\left(\frac{\varepsilon}{8\log_{1+n}^2(n)}\right)$
- *R* is $\frac{\varepsilon}{8\log_{1+\eta}^2(n)}$ LR by privacy of Geometric Mechanism [Chan-Shi-Song '11; Balcer-Vadhan '18]
- Same LR called for all vertices $4\log_{1+\eta}^2(n)$ times

- Can be implemented via local randomizers R
- *R* takes as input *a* (adjacency list) and public set of active vertices *A*
 - *R* computes size of intersection $|a \cap A|$ Sensitivity of 1
 - Then, add symmetric geometric noise $X \sim Geom\left(\frac{\varepsilon}{8\log_{1+n}^2(n)}\right)$
- *R* is $\frac{\varepsilon}{8\log_{1+\eta}^2(n)}$ LR by privacy of Geometric Mechanism [Chan-Shi-Song '11; Balcer-Vadhan '18]
- Same LR called for all vertices $4\log_{1+\eta}^2(n)$ times
- For each edge, called $8\log_{1+\eta}^2(n)$; then, $8\log_{1+\eta}^2(n) \cdot \frac{\varepsilon}{8\log_{1+\eta}^2(n)} = \varepsilon$ and so ε -LEDP
• With high probability, magnitude of each drawn noise is **upper bounded by** $O\left(\frac{\log^3 n}{\epsilon}\right)$

- With high probability, magnitude of each drawn noise is **upper bounded by** $O\left(\frac{\log^3 n}{\epsilon}\right)$
- **Degree Upper Bound:** If a vertex v is on level $i < 4\log_{1+\eta}(n)$ at end of algorithm, then it has at most $(1 + \eta)^i + O\left(\frac{\log^3 n}{\varepsilon}\right)$ neighbors on levels $\geq i$

- With high probability, magnitude of each drawn noise is **upper bounded by** $O\left(\frac{\log^3 n}{\epsilon}\right)$
- **Degree Upper Bound:** If a vertex v is on level $i < 4\log_{1+\eta}(n)$ at end of algorithm, then it has at most $(1 + \eta)^i + O\left(\frac{\log^3 n}{\varepsilon}\right)$ neighbors on levels $\geq i$

- With high probability, magnitude of each drawn noise is **upper bounded by** $O\left(\frac{\log^3 n}{\epsilon}\right)$
- **Degree Upper Bound:** If a vertex v is on level $i < 4\log_{1+\eta}(n)$ at end of algorithm, then it has at most $(1 + \eta)^i + O\left(\frac{\log^3 n}{\epsilon}\right)$ neighbors on levels $\geq i$
- **Degree Lower Bound:** If a vertex v is on level i > 0 at end of algorithm, then it has at least $(1 + \eta)^i O\left(\frac{\log^3 n}{\varepsilon}\right)$ neighbors on levels $\ge i 1$

- With high probability, magnitude of each drawn noise is upper bounded by $O\left(\frac{\log^3 n}{\epsilon}\right)$
- **Degree Upper Bound:** If a vertex v is on level $i < 4\log_{1+\eta}(n)$ at end of algorithm, then it has at most $(1 + \eta)^i + O\left(\frac{\log^3 n}{\epsilon}\right)$ neighbors on levels $\geq i$
- **Degree Lower Bound:** If a vertex v is on level i > 0 at end of algorithm, then it has at least $(1 + \eta)^i O\left(\frac{\log^3 n}{\varepsilon}\right)$ neighbors on levels $\ge i 1$

Key: Largest cutoff increases/decreases by **additive** $O\left(\frac{\log^3 n}{\epsilon}\right)$

FOCS 2022

 $(\log^3 n)$

 Intuition: Each node's current state depends on number of neighbors whose previous state satisfies predicate P

 Intuition: Each node's current state depends on number of neighbors whose previous state satisfies predicate P

- Intuition: Each node's current state depends on number of neighbors whose previous state satisfies predicate P
 - Update new state based on this count

- Intuition: Each node's current state depends on number of neighbors whose previous state satisfies predicate P
 - Update new state based on this count

Many distributed/parallel graph algorithms use small rounds/depth and may fall under framework

Many distributed/parallel graph algorithms use small rounds/depth and may fall under framework

Use small rounds/depth to get small noise OPEN: approximation bounds for framework

Additional Open Questions

• Better multiplicative approximation for LEDP densest subgraph (currently $4 + \eta$ for LEDP compared to $1 + \eta$ for DP)

Additional Open Questions

- Better multiplicative approximation for LEDP densest subgraph (currently $4 + \eta$ for LEDP compared to $1 + \eta$ for DP)
- Better upper bounds or tight lower bounds for the additive noise (current best lower bound of [Farhadi-Hajiaghayi-Shi '22] is sub-logarithmic)

Additional Open Questions

- Better multiplicative approximation for LEDP densest subgraph (currently $4 + \eta$ for LEDP compared to $1 + \eta$ for DP)
- Better upper bounds or tight lower bounds for the additive noise (current best lower bound of [Farhadi-Hajiaghayi-Shi '22] is sublogarithmic)
- Node privacy for k-core decomposition (deleting one node changes the core number of any node by at most 1)

