Scalable Auction Algorithms for Bipartite Maximum Matching Problems

Quanquan C. Liu

Joint work with

Yiduo Ke

Samir Khuller

Bipartite Matching Problems

- Maximum Matching: return matching of maximum size

Bipartite Matching Problems

- Maximum Matching: return matching of maximum size

Bipartite Matching Problems

- Maximum Weighted Matching: return matching of maximum weight

Bipartite Matching Problems

- Maximum Weighted Matching: return matching of maximum weight

Bipartite Matching Problems

- Maximum b-Matching: return matching of maximum size when each node v can be matched to at most b_{v} nodes

Bipartite Matching Problems

- Maximum b-Matching: return matching of maximum size when each node v can be matched to at most b_{v} nodes

Approximate Bipartite Matching Problems

- Let M^{*} be the optimum matching solution
- A $(1-\varepsilon)$-approximate solution \widehat{M} has value at least:

$$
\widehat{M} \geq(1-\varepsilon) \cdot M^{*}
$$

Auction-Based Maximum Matching

- Introduced by Demange, Gale, and Sotomayor '86 and Bertsekas '81 for exact (weighted) matching
- Same runtime as Hungarian method and maxflow

Auction-Based Maximum Matching

- Introduced by Demange, Gale, and Sotomayor '86 and Bertsekas '81 for exact (weighted) matching
- Same runtime as Hungarian method and maxflow
- Dobzinski, Nisan, and Oren '14 extend to approximation and blackboard distributed setting

Auction-Based Maximum Matching

- Introduced by Demange, Gale, and Sotomayor '86 and Bertsekas '81 for exact (weighted) matching
- Same runtime as Hungarian method and maxflow
- Dobzinski, Nisan, and Oren '14 extend to approximation and blackboard distributed setting
- $(1-\varepsilon)$-approximation in $O\left(\frac{\log n}{\varepsilon^{2}}\right)$ rounds

Auction-Based Maximum Matching

- Introduced by Demange, Gale, and Sotomayor '86 and Bertsekas '81 for exact (weighted) matching
- Same runtime as Hungarian method and maxflow
- Dobzinski, Nisan, and Oren '14 extend to approximation and blackboard distributed setting
- $(1-\varepsilon)$-approximation in $O\left(\frac{\log n}{\varepsilon^{2}}\right)$ rounds
- Assadi, Liu, and Tarjan '21 extend to semi-streaming and MPC

Auction-Based Maximum Matching

- Introduced by Demange, Gale, and Sotomayor '86 and Bertsekas '81 for exact (weighted) matching
- Same runtime as Hungarian method and maxflow
- Dobzinski, Nisan, and Oren '14 extend to approximation and blackboard distributed setting
- $(1-\varepsilon)$-approximation in $O\left(\frac{\log n}{\varepsilon^{2}}\right)$ rounds
- Assadi, Liu, and Tarjan ' 21 extend to semi-streaming and MPC
- $O\left(\frac{1}{\varepsilon^{2}}\right)$ passes in streaming, $O\left(n \log \left(\frac{1}{\varepsilon}\right)\right)$ space
- $O\left(\frac{1}{\varepsilon^{2}} \cdot \log \log n\right)$-round, $\boldsymbol{O}(n)$-memory algorithm in MPC

Auction-Based Maximum

Zheng and Henzinger '23 extends MWM to sequential and dynamic models

- Introduced by Demange, Gale, and Sotomayor '86 and Bertsekas '81 for exact (weighted) matching
- Same runtime as Hungarian method and maxflow
- Dobzinski, Nisan, and Oren '14 extend to approximation and blackboard distributed setting
- $(1-\varepsilon)$-approximation in $O\left(\frac{\log n}{\varepsilon^{2}}\right)$ rounds
- Assadi, Liu, and Tarjan ' 21 extend to semi-streaming and MPC
- $O\left(\frac{1}{\varepsilon^{2}}\right)$ passes in streaming, $O\left(n \log \left(\frac{1}{\varepsilon}\right)\right)$ space
- $O\left(\frac{1}{\varepsilon^{2}} \cdot \log \log n\right)$-round, $\boldsymbol{O}(n)$-memory algorithm in MPC

Our Results

MWM = Maximum Weighted Matching MCBM = Maximum Cardinality b-Matching

	Model		Previous Results		Our Results	
	Blackboard Distributed	MWM	$\Omega(n \log n)($ trivial $)$	[DNO14]	$O\left(\frac{n \log ^{3}(n)}{\varepsilon^{8}}\right)$	Theorem 3.9
		MCBM	$\Omega(n b \log n)$	trivial	$O\left(\frac{n b \log ^{2} n}{\varepsilon^{2}}\right)$	Theorem 4.8
"Universal" solution across many different scalable models!	Streaming	MWM	$O\left(\frac{\log (1 / \varepsilon)}{\varepsilon^{2}}\right)$ pass $O\left(\frac{n \log n}{\varepsilon^{2}}\right)$ space	[AG11]	$\begin{gathered} O\left(\frac{1}{\varepsilon^{8}}\right) \text { pass } \\ O(n \cdot \log n \cdot \log (1 / \varepsilon)) \text { space } \end{gathered}$	Theorem 3.11
		MCbM	$\begin{gathered} O\left(\log n / \varepsilon^{3}\right) \text { pass } \\ \widetilde{O}\left(\frac{\sum_{i \in L \cup R} b_{i}}{\varepsilon^{3}}\right) \text { space } \end{gathered}$	[AG18]	$\begin{gathered} O\left(\frac{1}{\varepsilon^{2}}\right) \text { pass } \\ O\left(\left(\sum_{i \in L} b_{i}+\|R\|\right) \log (1 / \varepsilon)\right) \text { space } \end{gathered}$	Theorem 4.10
	MPC	MWM	$\begin{gathered} O_{\varepsilon}(\log \log n) \text { rounds } \\ O_{\varepsilon}(n \operatorname{poly}(\log n)) \\ \text { space p.m. } \end{gathered}$	[GKMS19] (general)	$\begin{gathered} O\left(\frac{\log \log n}{\varepsilon^{7}}\right) \text { rounds } \\ O\left(n \cdot \log _{(1 / \varepsilon)}(n)\right) \text { space p.m. } \end{gathered}$	Theorem 3.15
	Parallel	MWM	$\begin{gathered} \hline \hline O(m \cdot \operatorname{poly}(1 / \varepsilon, \log n)) \\ \text { work*}^{*} \\ O(\operatorname{poly}(1 / \varepsilon, \log n)) \\ \operatorname{depth}^{*} \end{gathered}$	$\begin{gathered} {[\mathrm{HS} 22]} \\ \text { (general) } \end{gathered}$	$\begin{aligned} & O\left(\frac{m \log (n)}{\varepsilon^{7}}\right) \text { work } \\ & O\left(\frac{\log ^{3} n}{\varepsilon^{7}}\right) \text { depth } \end{aligned}$	Theorem 3.13
		MCBM	N/A	N/A	$O\left(\frac{m \log n}{\varepsilon^{2}}\right)$ work $O\left(\frac{\log ^{3} n}{\varepsilon^{2}}\right)$ depth	Theorem 4.11

Our Results

MWM = Maximum Weighted Matching MCBM = Maximum Cardinality b-Matching

First results in blackboard distributed	Model		Previous Results		Our Results	
	Blackboard Distributed	MWM	$\Omega(n \log n)$ (trivial)	[DNO14]	$O\left(\frac{n \log ^{3}(n)}{\varepsilon^{8}}\right)$	Theorem 3.9
		MCbM	$\Omega(n b \log n)$	trivial	$O\left(\frac{n b \log ^{2} n}{\varepsilon^{2}}\right)$	Theorem 4.8
	Streaming	MWM	$\begin{aligned} & O\left(\frac{\log (1 / \varepsilon)}{\varepsilon^{2}}\right) \text { pass } \\ & O\left(\frac{n \log n}{\varepsilon^{2}}\right) \text { space } \\ & \hline \end{aligned}$	[AG11]	$\begin{gathered} O\left(\frac{1}{\varepsilon^{8}}\right) \text { pass } \\ O(n \cdot \log n \cdot \log (1 / \varepsilon)) \text { space } \end{gathered}$	Theorem 3.11
		МСвм		[AG18]	$\begin{gathered} O\left(\frac{1}{\varepsilon^{2}}\right) \text { pass } \\ O\left(\left(\sum_{i \in L} b_{i}+\|R\|\right) \log (1 / \varepsilon)\right) \text { space } \end{gathered}$	Theorem 4.10
	MPC	MWM	$\begin{gathered} \hline O_{\varepsilon}(\log \log n) \text { rounds } \\ O_{\varepsilon}(n \text { poly }(\log n)) \\ \text { space p.m. } \end{gathered}$	[GKMS19] (general)	$\begin{gathered} O\left(\frac{\log \log n}{\varepsilon^{7}}\right) \text { rounds } \\ O\left(n \cdot \log _{(1 / \varepsilon)}(n)\right) \text { space p.m. } \end{gathered}$	Theorem 3.15
	Parallel	MWM	$\begin{gathered} \hline O(m \cdot \operatorname{poly}(1 / \varepsilon, \log n)) \\ \text { work* } \\ O(\text { poly }(1 / \varepsilon, \log n)) \\ \operatorname{depth} * \end{gathered}$	$\begin{gathered} {[\mathrm{HS} 22]} \\ \text { (general) } \end{gathered}$	$\begin{aligned} & O\left(\frac{m \log (n)}{\varepsilon^{7}}\right) \text { work } \\ & O\left(\frac{\log ^{3} n}{\varepsilon^{n}}\right) \text { depth } \end{aligned}$	Theorem 3.13
		MСвМ	N/A	N/A	$\begin{aligned} & O\left(\frac{m \log n}{\varepsilon^{2}}\right) \text { work } \\ & O\left(\frac{\log ^{3} n}{\varepsilon^{2}}\right) \text { depth } \end{aligned}$	Theorem 4.11

Our Results

MWM = Maximum Weighted Matching MCBM = Maximum Cardinality b-Matching

	Model		Previous Results		Our Results	
	Blackboard Distributed	MWM	$\Omega(n \log n)($ trivial $)$	[DNO14]	$O\left(\frac{n \log ^{3}(n)}{\varepsilon^{8}}\right)$	Theorem 3.9
		MCbM	$\Omega(n b \log n)$	trivial	$O\left(\frac{n b \log ^{2} n}{\varepsilon^{2}}\right)$	Theorem 4.8
Eliminate polynomial dependence in $\left(\frac{1}{\varepsilon}\right)$ in space	Streaming	MWM	$O\left(\frac{\log (1 / \varepsilon)}{\varepsilon^{2}}\right)$ pass $O\left(\frac{n \log n}{\varepsilon^{2}}\right)$ space	[AG11]	$\begin{gathered} O\left(\frac{1}{\varepsilon^{8}}\right) \text { pass } \\ O(n \cdot \log n \cdot \log (1 / \varepsilon)) \text { space } \end{gathered}$	Theorem 3.11
		MCBM	$\begin{gathered} O\left(\log n / \varepsilon^{3}\right) \text { pass } \\ \widetilde{O}\left(\frac{\sum_{i \in L \cup R} b_{i}}{\varepsilon^{3}}\right) \text { space } \end{gathered}$	[AG18]	$\begin{gathered} O\left(\frac{1}{\varepsilon^{2}}\right) \text { pass } \\ O\left(\left(\sum_{i \in L} b_{i}+\|R\|\right) \log (1 / \varepsilon)\right) \text { space } \end{gathered}$	Theorem 4.10
	MPC	MWM	$\begin{aligned} & \hline O_{\varepsilon}(\log \log n) \text { rounds } \\ & O_{\varepsilon}(n \operatorname{poly}(\log n)) \\ & \text { space p.m. } \end{aligned}$	$\begin{gathered} {[\text { GKMS19] }} \\ \text { (general) } \end{gathered}$	$\begin{gathered} O\left(\frac{\log \log n}{\varepsilon^{7}}\right) \text { rounds } \\ O\left(n \cdot \log _{(1 / \varepsilon)}(n)\right) \text { space p.m. } \end{gathered}$	Theorem 3.15
	Parallel	MWM	$\begin{gathered} \hline \hline O(m \cdot \operatorname{poly}(1 / \varepsilon, \log n)) \\ \text { work }^{*} \\ O(\operatorname{poly}(1 / \varepsilon, \log n)) \\ \text { depth* }^{*} \end{gathered}$	$\begin{gathered} {[\mathrm{HS} 22]} \\ \text { (general) } \end{gathered}$	$\begin{aligned} & O\left(\frac{m \log (n)}{\varepsilon^{7}}\right) \text { work } \\ & O\left(\frac{\log ^{3} n}{\varepsilon^{7}}\right) \text { depth } \end{aligned}$	Theorem 3.13
		MCbM	N/A	N/A	$\begin{aligned} & O\left(\frac{m \log n}{\varepsilon^{2}}\right) \text { work } \\ & O\left(\frac{\log ^{3} n}{\varepsilon^{2}}\right) \text { depth } \end{aligned}$	Theorem 4.11

Our Results

MWM = Maximum Weighted Matching MCBM = Maximum Cardinality b-Matching

	Model		Previous Results		Our Results	
	Blackboard Distributed	MWM	$\Omega(n \log n)($ trivial $)$	[DNO14]	$O\left(\frac{n \log ^{3}(n)}{\varepsilon^{8}}\right)$	Theorem 3.9
		MCbM	$\Omega(n b \log n)$	trivial	$O\left(\frac{n b \log ^{2} n}{\varepsilon^{2}}\right)$	Theorem 4.8
	Streaming	MWM	$\begin{aligned} & O\left(\frac{\log (1 / \varepsilon)}{\varepsilon^{2}}\right) \text { pass } \\ & O\left(\frac{n \log n}{\varepsilon^{2}}\right) \text { space } \end{aligned}$	[AG11]	$\begin{gathered} O\left(\frac{1}{\varepsilon^{8}}\right) \text { pass } \\ O(n \cdot \log n \cdot \log (1 / \varepsilon)) \text { space } \end{gathered}$	Theorem 3.11
		MCbM	$\begin{gathered} O\left(\log n / \varepsilon^{3}\right) \text { pass } \\ \widetilde{O}\left(\frac{\sum_{i \in L U B} b_{i}}{\varepsilon^{3}}\right) \text { space } \end{gathered}$	[AG18]	$\begin{gathered} O\left(\frac{1}{\varepsilon^{2}}\right) \text { pass } \\ O\left(\left(\sum_{i \in L} b_{i}+\|R\|\right) \log (1 / \varepsilon)\right) \text { space } \end{gathered}$	Theorem 4.10
Eliminate exponential dependence on $\left(\frac{1}{\varepsilon}\right)$	MPC	MWM	$\begin{aligned} & O_{\varepsilon}(\log \log n) \text { rounds } \\ & O_{\varepsilon}(n \text { poly }(\log n)) \\ & \text { space p.m. } \end{aligned}$	[GKMS19] (general)	$\begin{gathered} O\left(\frac{\log \log n}{\varepsilon^{7}}\right) \text { rounds } \\ O\left(n \cdot \log _{(1 / \varepsilon)}(n)\right) \text { space p.m. } \end{gathered}$	Theorem 3.15
	Parallel	MWM	$\begin{gathered} \hline \hline O(m \cdot \operatorname{poly}(1 / \varepsilon, \log n)) \\ \text { work}^{*} \\ O(\operatorname{poly}(1 / \varepsilon, \log n)) \\ \text { depth* }^{*} \end{gathered}$	$\begin{gathered} {[\mathrm{HS} 22]} \\ \text { (general) } \end{gathered}$	$\begin{gathered} O\left(\frac{m \log (n)}{\varepsilon^{7}}\right) \text { work } \\ O\left(\frac{\log ^{3} n}{\varepsilon^{7}}\right) \text { depth } \end{gathered}$	Theorem 3.13
		MCbM	N/A	N/A	$\begin{aligned} & O\left(\frac{m \log n}{\varepsilon^{2}}\right) \text { work } \\ & O\left(\frac{\log ^{3} n}{\varepsilon^{2}}\right) \text { depth } \end{aligned}$	Theorem 4.11

Our Results

MWM = Maximum Weighted Matching MCBM = Maximum Cardinality b-Matching

Outline

- Auction Algorithm of [ALT21] for maximum cardinality matching
- Our auction algorithm for maximum weighted matching
- Algorithm description
- Minimizing dependence on $\log (W)$
- Our auction algorithm for maximum b-matching

Outline

- Auction Algorithm of [ALT21] for maximum cardinality matching
- Our auction algorithm for maximum weighted matching
- Algorithm description
- Minimizing dependence on log (W)
- Our auction algorithm for maximum b-matching

Auction Algorithm of [ALT21]

Left and Right Side of Bipartite Graph

Auction Algorithm of [ALT21]

Left and Right Side of Bipartite Graph

Left Side has Bidders and Right Side has Items

Auction Algorithm of [ALT21]

Auction Algorithm of [ALT21]

Iteratively, bidders bid on all lowest price adjacent items

All items start with price 0

Auction Algorithm of [ALT21]

Iteratively, bidders bid on all lowest price adjacent items

All items start with price 0

Auction Algorithm of [ALT21]

Iteratively, bidders bid on all lowest price adjacent items

0
0 Find maximal matching among induced subgraph of bid items

0

Auction Algorithm of [ALT21]

Increase price of items in matching by ε and maintain current matching

Auction Algorithm of [ALT21]

Increase price of items in matching by ε and maintain current matching

ε
0
0

0

Can bid on item as long as price < 1

Auction Algorithm of [ALT21]

Iterate for
$\left\lceil\frac{2}{\varepsilon^{2}}\right\rceil$ iterations

Can bid on item as long as price < 1

Auction Algorithm of [ALT21]

Iterate for
$\left\lceil\frac{2}{\varepsilon^{2}}\right\rceil$ iterations

Can bid on item as long as price < 1

Auction Algorithm of [ALT21]

Iterate for
$\left\lceil\frac{2}{\varepsilon^{2}}\right\rceil$ iterations
Each unmatched bidder bids

\mathcal{E}
0
0

0
R

Can bid on item as long as price < 1

Auction Algorithm of [ALT21]

Iterate for

Each unmatched
bidder bids

L

Auction Algorithm of [ALT21]

Iterate for
$\left\lceil\frac{2}{\varepsilon^{2}}\right\rceil$ iterations
Item goes to new bidder!

Can bid on item as long as price < 1

Auction Algorithm of [ALT21]

Iterate for
$\left\lceil\frac{2}{\varepsilon^{2}}\right\rceil$ iterations

Can bid on item as long as price < 1

Auction Algorithm of [ALT21]

Iterate for
$\left\lceil\frac{2}{\varepsilon^{2}}\right\rceil$ iterations

Can bid on item as long as price < 1

Auction Algorithm of [ALT21]

Final Matching

Outline

- Auction Algorithm of [ALT21] for maximum cardinality matching
- Our auction algorithm for maximum weighted matching
- Algorithm description
- Minimizing dependence on $\log (W)$
- Our auction algorithm for maximum b-matching

Our Maximum Weight Auction Algorithm

- Bucket the edges using buckets based on the weights of the edges
- Rescale weights to $(0,1]$
- Edge with weight $w \in(0,1]$ is in bucket b if

$$
\varepsilon^{b-1} \leq w<\varepsilon^{b-2}
$$

Our Simplified Maximum Weight Auction Algorithm

Our Simplified Maximum Weight Auction Algorithm

Increase price of items in matching by $\boldsymbol{\varepsilon} \cdot \boldsymbol{w}$ and maintain current matching

Our Simplified Maximum Weight Auction Algorithm

Increase price of items in matching by $\boldsymbol{\varepsilon} \cdot \boldsymbol{w}$ and maintain current matching

Our Simplified Maximum Weight Auction Algorithm

Increase price of items in matching by $\boldsymbol{\varepsilon} \cdot \boldsymbol{w}$ and maintain current matching

Our Simplified Maximum Weight Auction Algorithm

Iterate for
$\left\lceil\frac{\log ^{2}(n)}{\varepsilon^{4}}\right\rceil$ iterations

Our Simplified Maximum Weight Auction Algorithm

Iterate for
$\left\lceil\frac{\log ^{2}(n)}{\varepsilon^{4}}\right\rceil$ iterations
Each unmatched bidder bids

	0.7ع
	0
	0
	0.35ع
	0
L	

Our Simplified Maximum Weight Auction Algorithm

> Iterate for
> $\left\lceil\frac{\log ^{2}(n)}{\varepsilon^{4}}\right\rceil$ iterations

Item goes to new bidder!

Our Simplified Maximum Weight Auction Algorithm

Iterate for
$\left\lceil\frac{\log ^{2}(n)}{\varepsilon^{4}}\right\rceil$ iterations

Our Simplified Maximum Weight Auction Algorithm

Iterate for
$\left\lceil\frac{\log ^{2}(n)}{\varepsilon^{4}}\right\rceil$ iterations

Our Simplified Maximum Weight Auction Algorithm

Final Matching

Minimizing Dependence on $\log (W)$

- Modified Gupta-Peng '13 transformation
- Partition edges into levels based on edge weight
- Each level contains multiple buckets
- Omit certain buckets to prevent too large ratio in weights
- Ratio of weights in each level is bounded by $\varepsilon^{-o\left(\frac{1}{\varepsilon}\right)}$

Minimizing Dependence on $\log (W)$

- Modified Gupta-Peng '13 transformation
- Partition edges into levels based on edge weight
- Each level contains multiple buckets
- Omit certain buckets to prevent too large ratio in weights
- Ratio of weights in each level is bounded by $\varepsilon^{-o\left(\frac{1}{\varepsilon}\right)}$

Iterate for
 $\left\lceil\frac{\log ^{2}(n)}{\varepsilon^{4}}\right\rceil$ iterations

Iterate for
$\left\lceil\frac{\log (n)}{\varepsilon^{7}}\right\rceil$ iterations

Outline

- Auction Algorithm of [ALT21] for maximum cardinality matching
- Our auction algorithm for maximum weighted matching
- Algorithm description
- Minimizing dependence on log (W)
- Our auction algorithm for maximum b-matching

Very brief!

Very Simplified Maximum b-Matching Algorithm

Create a copy for each bidder and item equal to their b value

Very Simplified Maximum b-Matching Algorithm

Create a biclique

 between copies representing bidder and item

Very Simplified Maximum b-Matching Algorithm

Create a biclique between copies representing bidder and item

Make sure match only one copy!

Very Simplified Maximum b-Matching Algorithm

Create a biclique between copies representing bidder and item

Make sure match only one copy!

Solution: each time price increases, increase the lowest possible bidding price for each unmatched bidder

Our Results

MWM = Maximum Weighted Matching MCBM = Maximum Cardinality b-Matching

	Model		Previous Results		Our Results	
	Blackboard Distributed	MWM	$\Omega(n \log n)($ trivial $)$	[DNO14]	$O\left(\frac{n \log ^{3}(n)}{\varepsilon^{8}}\right)$	Theorem 3.9
		MCBM	$\Omega(n b \log n)$	trivial	$O\left(\frac{n b \log ^{2} n}{\varepsilon^{2}}\right)$	Theorem 4.8
"Universal" solution across many different scalable models!	Streaming	MWM	$O\left(\frac{\log (1 / \varepsilon)}{\varepsilon^{2}}\right)$ pass $O\left(\frac{n \log n}{\varepsilon^{2}}\right)$ space	[AG11]	$\begin{gathered} O\left(\frac{1}{\varepsilon^{8}}\right) \text { pass } \\ O(n \cdot \log n \cdot \log (1 / \varepsilon)) \text { space } \end{gathered}$	Theorem 3.11
		MCbM	$\begin{gathered} O\left(\log n / \varepsilon^{3}\right) \text { pass } \\ \widetilde{O}\left(\frac{\sum_{i \in L \cup R} b_{i}}{\varepsilon^{3}}\right) \text { space } \end{gathered}$	[AG18]	$\begin{gathered} O\left(\frac{1}{\varepsilon^{2}}\right) \text { pass } \\ O\left(\left(\sum_{i \in L} b_{i}+\|R\|\right) \log (1 / \varepsilon)\right) \text { space } \end{gathered}$	Theorem 4.10
	MPC	MWM	$\begin{gathered} O_{\varepsilon}(\log \log n) \text { rounds } \\ O_{\varepsilon}(n \operatorname{poly}(\log n)) \\ \text { space p.m. } \end{gathered}$	[GKMS19] (general)	$\begin{gathered} O\left(\frac{\log \log n}{\varepsilon^{7}}\right) \text { rounds } \\ O\left(n \cdot \log _{(1 / \varepsilon)}(n)\right) \text { space p.m. } \end{gathered}$	Theorem 3.15
	Parallel	MWM	$\begin{gathered} \hline \hline O(m \cdot \operatorname{poly}(1 / \varepsilon, \log n)) \\ \text { work*}^{*} \\ O(\operatorname{poly}(1 / \varepsilon, \log n)) \\ \operatorname{depth}^{*} \end{gathered}$	$\begin{gathered} {[\mathrm{HS} 22]} \\ \text { (general) } \end{gathered}$	$\begin{aligned} & O\left(\frac{m \log (n)}{\varepsilon^{7}}\right) \text { work } \\ & O\left(\frac{\log ^{3} n}{\varepsilon^{7}}\right) \text { depth } \end{aligned}$	Theorem 3.13
		MCBM	N/A	N/A	$O\left(\frac{m \log n}{\varepsilon^{2}}\right)$ work $O\left(\frac{\log ^{3} n}{\varepsilon^{2}}\right)$ depth	Theorem 4.11

