
APPROX/RANDOM 2023

Scalable Auction Algorithms for
Bipartite Maximum Matching Problems

Quanquan C. Liu

Joint work with

Samir KhullerYiduo Ke

APPROX/RANDOM 2023

Bipartite Matching Problems

• Maximum Matching: return matching of maximum size

APPROX/RANDOM 2023

Bipartite Matching Problems

• Maximum Matching: return matching of maximum size

APPROX/RANDOM 2023

Bipartite Matching Problems

• Maximum Weighted Matching: return matching of maximum
weight

5

10

2

8 8

2

APPROX/RANDOM 2023

Bipartite Matching Problems

• Maximum Weighted Matching: return matching of maximum
weight

5

10

2

8 8

2

APPROX/RANDOM 2023

Bipartite Matching Problems

• Maximum b-Matching: return matching of maximum size when
each node 𝑣 can be matched to at most 𝑏! nodes

1

2

1

2

2

1

1

1

APPROX/RANDOM 2023

Bipartite Matching Problems

• Maximum b-Matching: return matching of maximum size when
each node 𝑣 can be matched to at most 𝑏! nodes

1

2

1

2

2

1

1

1

APPROX/RANDOM 2023

Approximate Bipartite Matching Problems

• Let 𝑀∗ be the optimum matching solution
• A 𝟏 − 𝜺 -approximate solution '𝑀 has value at least:

!𝑀 ≥ 1 − 𝜀 ⋅ 𝑀∗

APPROX/RANDOM 2023

Auction-Based Maximum Matching

• Introduced by Demange, Gale, and Sotomayor ‘86 and
Bertsekas ‘81 for exact (weighted) matching

• Same runtime as Hungarian method and maxflow

APPROX/RANDOM 2023

Auction-Based Maximum Matching

• Introduced by Demange, Gale, and Sotomayor ‘86 and
Bertsekas ‘81 for exact (weighted) matching

• Same runtime as Hungarian method and maxflow
• Dobzinski, Nisan, and Oren ‘14 extend to approximation and

blackboard distributed setting

APPROX/RANDOM 2023

Auction-Based Maximum Matching

• Introduced by Demange, Gale, and Sotomayor ‘86 and
Bertsekas ‘81 for exact (weighted) matching

• Same runtime as Hungarian method and maxflow
• Dobzinski, Nisan, and Oren ‘14 extend to approximation and

blackboard distributed setting
• (𝟏 − 𝜺)-approximation in 𝑶 𝐥𝐨𝐠	𝒏

𝛆𝟐
 rounds

APPROX/RANDOM 2023

Auction-Based Maximum Matching

• Introduced by Demange, Gale, and Sotomayor ‘86 and
Bertsekas ‘81 for exact (weighted) matching

• Same runtime as Hungarian method and maxflow
• Dobzinski, Nisan, and Oren ‘14 extend to approximation and

blackboard distributed setting
• (𝟏 − 𝜺)-approximation in 𝑶 𝐥𝐨𝐠	𝒏

𝛆𝟐
 rounds

• Assadi, Liu, and Tarjan ‘21 extend to semi-streaming and MPC

APPROX/RANDOM 2023

Auction-Based Maximum Matching

• Introduced by Demange, Gale, and Sotomayor ‘86 and
Bertsekas ‘81 for exact (weighted) matching

• Same runtime as Hungarian method and maxflow
• Dobzinski, Nisan, and Oren ‘14 extend to approximation and

blackboard distributed setting
• (𝟏 − 𝜺)-approximation in 𝑶 𝐥𝐨𝐠	𝒏

𝛆𝟐
 rounds

• Assadi, Liu, and Tarjan ‘21 extend to semi-streaming and MPC
• 𝑶 𝟏

𝜺𝟐
 passes in streaming, 𝑶 𝒏	log 𝟏

𝜺
 space

• 𝑶 𝟏
𝜺𝟐
⋅ 𝐥𝐨𝐠	𝐥𝐨𝐠	𝒏 -round, 𝑶 𝒏 -memory algorithm in MPC

APPROX/RANDOM 2023

Auction-Based Maximum Matching

• Introduced by Demange, Gale, and Sotomayor ‘86 and
Bertsekas ‘81 for exact (weighted) matching

• Same runtime as Hungarian method and maxflow
• Dobzinski, Nisan, and Oren ‘14 extend to approximation and

blackboard distributed setting
• (𝟏 − 𝜺)-approximation in 𝑶 𝐥𝐨𝐠	𝒏

𝛆𝟐
 rounds

• Assadi, Liu, and Tarjan ‘21 extend to semi-streaming and MPC
• 𝑶 𝟏

𝜺𝟐
 passes in streaming, 𝑶 𝒏	log 𝟏

𝜺
 space

• 𝑶 𝟏
𝜺𝟐
⋅ 𝐥𝐨𝐠	𝐥𝐨𝐠	𝒏 -round, 𝑶 𝒏 -memory algorithm in MPC

Zheng and Henzinger ‘23
extends MWM to sequential

and dynamic models

APPROX/RANDOM 2023

Our Results
Model Previous Results Our Results

Blackboard
Distributed

MWM Ω(n logn) (trivial) [DNO14] O
(

n log3(n)
ε8

)
Theorem 3.9

MCbM Ω(nb logn) trivial O
(

nb log2 n
ε2

)
Theorem 4.8

Streaming
MWM

O
(

log(1/ε)
ε2

)
pass

O
(

n logn
ε2

)
space [AG11]

O
(

1
ε8

)
pass

O (n · logn · log(1/ε)) space Theorem 3.11

MCbM

O(log n/ε3) pass

Õ
(∑

i∈L∪R bi
ε3

)
space [AG18]

O
(

1
ε2

)
pass

O
((∑

i∈L bi + |R|
)
log(1/ε)

)
space Theorem 4.10

MPC MWM

Oε(log logn) rounds
Oε(n poly(log n))

space p.m.
[GKMS19]
(general)

O
(

log logn
ε7

)
rounds

O(n · log(1/ε)(n)) space p.m. Theorem 3.15

Parallel
MWM

O (m · poly (1/ε, logn))
work*

O (poly (1/ε, logn))
depth*

[HS22]
(general)

O
(

m log(n)
ε7

)
work

O
(

log3 n
ε7

)
depth Theorem 3.13

MCbM N/A N/A

O
(

m logn
ε2

)
work

O
(

log3 n
ε2

)
depth Theorem 4.11

Table 1: We assume the ratio between the largest weight edge and smallest weight edge in the graph is
poly(n). Results for general graphs are labeled with (general); results that are specifically for bipartite
graphs do not have a label. Upper bounds are given in terms of O(·) and lower bounds are given in terms of
Ω(·). “Space p.m.” stands for space per machine. The complexity measures for the “blackboard distributed”
setting is the total communication (over all rounds and players) in bits. poly(logn, ε) for the specified results
indicated by * hides large constant factors in the exponents, specifically constants c > 20. Our results often
exhibit a tradeoff of one complexity measure with another in our various models.

a semi-streaming algorithm in optimal O(n) space and O (logn log(1/ε)/ε) passes. They also provide a
MWM algorithm that also runs in O(n) space but requires Ω̃(n/ε) passes. Please refer to these papers and
references therein for older results in this area. Ahn and Guha [AG18] also considered the general weighted
non-bipartite maximum matching problem in the semi-streaming model and utilize linear programming ap-
proaches for computing a (2/3−ε)-approximation and (1−ε)-approximation that uses O(log(1/ε)/ε2) passes,

O
(
n ·
(

log(1/ε)
ε2 + logn/ε

ε

))
space, and O

(
logn
ε4

)
passes, O

(
n logn

ε4

)
space, respectively.

Bipartite Matching Ahn and Guha [AG18] also extended their results to the bipartite MWM and b-
Matching settings with small changes. Specifically, in the MWM setting, they give a O(log(1/ε)/ε2) pass,
O(n · ((log(1/ε))/ε2 + (log n/ε)/ε)) space algorithm. For maximum cardinality b-matching, they give a

O(log n/ε3) pass and Õ
(∑

i∈L∪R bi
ε3

)
space algorithm. For exact bipartite MWM in the semi-streaming

model, Liu et al. [LSZ20] gave the first streaming algorithm to break the n-pass barrier in the exact setting;
it uses Õ(n) space and Õ(

√
m) passes using interior point methods, SDD system solvers, and various other

techniques to output the optimum matching with high probability. Work on bipartite MWM prior to [LSZ20]
either required Ω(n logn) passes [JLS19] or only found approximate solutions [AG11, AG18, Kap13].

Lower Bounds Several papers have looked at matching problems from the lower bound side. Konrad et
al. [KRZ21] considered the communication complexity of graph problems in a blackboard model of compu-
tation (for which the simultaneous message passing model of Dobzinski et al. [DNO14] is a special variant).
Specifically, they show that any non-trivial graph problem on n vertices require Ω(n) bits [KRZ21] in com-
munication complexity. In a similar model called the demand query model, Nisan [Nis21] showed that any

4

MWM = Maximum Weighted Matching
MCBM = Maximum Cardinality b-Matching

“Universal”
solution

across many
different
scalable
models!

APPROX/RANDOM 2023

Model Previous Results Our Results

Blackboard
Distributed

MWM Ω(n logn) (trivial) [DNO14] O
(

n log3(n)
ε8

)
Theorem 3.9

MCbM Ω(nb logn) trivial O
(

nb log2 n
ε2

)
Theorem 4.8

Streaming
MWM

O
(

log(1/ε)
ε2

)
pass

O
(

n logn
ε2

)
space [AG11]

O
(

1
ε8

)
pass

O (n · logn · log(1/ε)) space Theorem 3.11

MCbM

O(log n/ε3) pass

Õ
(∑

i∈L∪R bi
ε3

)
space [AG18]

O
(

1
ε2

)
pass

O
((∑

i∈L bi + |R|
)
log(1/ε)

)
space Theorem 4.10

MPC MWM

Oε(log logn) rounds
Oε(n poly(log n))

space p.m.
[GKMS19]
(general)

O
(

log logn
ε7

)
rounds

O(n · log(1/ε)(n)) space p.m. Theorem 3.15

Parallel
MWM

O (m · poly (1/ε, logn))
work*

O (poly (1/ε, logn))
depth*

[HS22]
(general)

O
(

m log(n)
ε7

)
work

O
(

log3 n
ε7

)
depth Theorem 3.13

MCbM N/A N/A

O
(

m logn
ε2

)
work

O
(

log3 n
ε2

)
depth Theorem 4.11

Table 1: We assume the ratio between the largest weight edge and smallest weight edge in the graph is
poly(n). Results for general graphs are labeled with (general); results that are specifically for bipartite
graphs do not have a label. Upper bounds are given in terms of O(·) and lower bounds are given in terms of
Ω(·). “Space p.m.” stands for space per machine. The complexity measures for the “blackboard distributed”
setting is the total communication (over all rounds and players) in bits. poly(logn, ε) for the specified results
indicated by * hides large constant factors in the exponents, specifically constants c > 20. Our results often
exhibit a tradeoff of one complexity measure with another in our various models.

a semi-streaming algorithm in optimal O(n) space and O (logn log(1/ε)/ε) passes. They also provide a
MWM algorithm that also runs in O(n) space but requires Ω̃(n/ε) passes. Please refer to these papers and
references therein for older results in this area. Ahn and Guha [AG18] also considered the general weighted
non-bipartite maximum matching problem in the semi-streaming model and utilize linear programming ap-
proaches for computing a (2/3−ε)-approximation and (1−ε)-approximation that uses O(log(1/ε)/ε2) passes,

O
(
n ·
(

log(1/ε)
ε2 + logn/ε

ε

))
space, and O

(
logn
ε4

)
passes, O

(
n logn

ε4

)
space, respectively.

Bipartite Matching Ahn and Guha [AG18] also extended their results to the bipartite MWM and b-
Matching settings with small changes. Specifically, in the MWM setting, they give a O(log(1/ε)/ε2) pass,
O(n · ((log(1/ε))/ε2 + (log n/ε)/ε)) space algorithm. For maximum cardinality b-matching, they give a

O(log n/ε3) pass and Õ
(∑

i∈L∪R bi
ε3

)
space algorithm. For exact bipartite MWM in the semi-streaming

model, Liu et al. [LSZ20] gave the first streaming algorithm to break the n-pass barrier in the exact setting;
it uses Õ(n) space and Õ(

√
m) passes using interior point methods, SDD system solvers, and various other

techniques to output the optimum matching with high probability. Work on bipartite MWM prior to [LSZ20]
either required Ω(n logn) passes [JLS19] or only found approximate solutions [AG11, AG18, Kap13].

Lower Bounds Several papers have looked at matching problems from the lower bound side. Konrad et
al. [KRZ21] considered the communication complexity of graph problems in a blackboard model of compu-
tation (for which the simultaneous message passing model of Dobzinski et al. [DNO14] is a special variant).
Specifically, they show that any non-trivial graph problem on n vertices require Ω(n) bits [KRZ21] in com-
munication complexity. In a similar model called the demand query model, Nisan [Nis21] showed that any

4

Our Results MWM = Maximum Weighted Matching
MCBM = Maximum Cardinality b-Matching

First results in
blackboard
distributed

APPROX/RANDOM 2023

Model Previous Results Our Results

Blackboard
Distributed

MWM Ω(n logn) (trivial) [DNO14] O
(

n log3(n)
ε8

)
Theorem 3.9

MCbM Ω(nb logn) trivial O
(

nb log2 n
ε2

)
Theorem 4.8

Streaming
MWM

O
(

log(1/ε)
ε2

)
pass

O
(

n logn
ε2

)
space [AG11]

O
(

1
ε8

)
pass

O (n · logn · log(1/ε)) space Theorem 3.11

MCbM

O(log n/ε3) pass

Õ
(∑

i∈L∪R bi
ε3

)
space [AG18]

O
(

1
ε2

)
pass

O
((∑

i∈L bi + |R|
)
log(1/ε)

)
space Theorem 4.10

MPC MWM

Oε(log logn) rounds
Oε(n poly(log n))

space p.m.
[GKMS19]
(general)

O
(

log logn
ε7

)
rounds

O(n · log(1/ε)(n)) space p.m. Theorem 3.15

Parallel
MWM

O (m · poly (1/ε, logn))
work*

O (poly (1/ε, logn))
depth*

[HS22]
(general)

O
(

m log(n)
ε7

)
work

O
(

log3 n
ε7

)
depth Theorem 3.13

MCbM N/A N/A

O
(

m logn
ε2

)
work

O
(

log3 n
ε2

)
depth Theorem 4.11

Table 1: We assume the ratio between the largest weight edge and smallest weight edge in the graph is
poly(n). Results for general graphs are labeled with (general); results that are specifically for bipartite
graphs do not have a label. Upper bounds are given in terms of O(·) and lower bounds are given in terms of
Ω(·). “Space p.m.” stands for space per machine. The complexity measures for the “blackboard distributed”
setting is the total communication (over all rounds and players) in bits. poly(logn, ε) for the specified results
indicated by * hides large constant factors in the exponents, specifically constants c > 20. Our results often
exhibit a tradeoff of one complexity measure with another in our various models.

a semi-streaming algorithm in optimal O(n) space and O (logn log(1/ε)/ε) passes. They also provide a
MWM algorithm that also runs in O(n) space but requires Ω̃(n/ε) passes. Please refer to these papers and
references therein for older results in this area. Ahn and Guha [AG18] also considered the general weighted
non-bipartite maximum matching problem in the semi-streaming model and utilize linear programming ap-
proaches for computing a (2/3−ε)-approximation and (1−ε)-approximation that uses O(log(1/ε)/ε2) passes,

O
(
n ·
(

log(1/ε)
ε2 + logn/ε

ε

))
space, and O

(
logn
ε4

)
passes, O

(
n logn

ε4

)
space, respectively.

Bipartite Matching Ahn and Guha [AG18] also extended their results to the bipartite MWM and b-
Matching settings with small changes. Specifically, in the MWM setting, they give a O(log(1/ε)/ε2) pass,
O(n · ((log(1/ε))/ε2 + (log n/ε)/ε)) space algorithm. For maximum cardinality b-matching, they give a

O(log n/ε3) pass and Õ
(∑

i∈L∪R bi
ε3

)
space algorithm. For exact bipartite MWM in the semi-streaming

model, Liu et al. [LSZ20] gave the first streaming algorithm to break the n-pass barrier in the exact setting;
it uses Õ(n) space and Õ(

√
m) passes using interior point methods, SDD system solvers, and various other

techniques to output the optimum matching with high probability. Work on bipartite MWM prior to [LSZ20]
either required Ω(n logn) passes [JLS19] or only found approximate solutions [AG11, AG18, Kap13].

Lower Bounds Several papers have looked at matching problems from the lower bound side. Konrad et
al. [KRZ21] considered the communication complexity of graph problems in a blackboard model of compu-
tation (for which the simultaneous message passing model of Dobzinski et al. [DNO14] is a special variant).
Specifically, they show that any non-trivial graph problem on n vertices require Ω(n) bits [KRZ21] in com-
munication complexity. In a similar model called the demand query model, Nisan [Nis21] showed that any

4

Our Results MWM = Maximum Weighted Matching
MCBM = Maximum Cardinality b-Matching

Eliminate
polynomial

dependence in
𝟏
𝜺

 in space

APPROX/RANDOM 2023

Model Previous Results Our Results

Blackboard
Distributed

MWM Ω(n logn) (trivial) [DNO14] O
(

n log3(n)
ε8

)
Theorem 3.9

MCbM Ω(nb logn) trivial O
(

nb log2 n
ε2

)
Theorem 4.8

Streaming
MWM

O
(

log(1/ε)
ε2

)
pass

O
(

n logn
ε2

)
space [AG11]

O
(

1
ε8

)
pass

O (n · logn · log(1/ε)) space Theorem 3.11

MCbM

O(log n/ε3) pass

Õ
(∑

i∈L∪R bi
ε3

)
space [AG18]

O
(

1
ε2

)
pass

O
((∑

i∈L bi + |R|
)
log(1/ε)

)
space Theorem 4.10

MPC MWM

Oε(log logn) rounds
Oε(n poly(log n))

space p.m.
[GKMS19]
(general)

O
(

log logn
ε7

)
rounds

O(n · log(1/ε)(n)) space p.m. Theorem 3.15

Parallel
MWM

O (m · poly (1/ε, logn))
work*

O (poly (1/ε, logn))
depth*

[HS22]
(general)

O
(

m log(n)
ε7

)
work

O
(

log3 n
ε7

)
depth Theorem 3.13

MCbM N/A N/A

O
(

m logn
ε2

)
work

O
(

log3 n
ε2

)
depth Theorem 4.11

Table 1: We assume the ratio between the largest weight edge and smallest weight edge in the graph is
poly(n). Results for general graphs are labeled with (general); results that are specifically for bipartite
graphs do not have a label. Upper bounds are given in terms of O(·) and lower bounds are given in terms of
Ω(·). “Space p.m.” stands for space per machine. The complexity measures for the “blackboard distributed”
setting is the total communication (over all rounds and players) in bits. poly(logn, ε) for the specified results
indicated by * hides large constant factors in the exponents, specifically constants c > 20. Our results often
exhibit a tradeoff of one complexity measure with another in our various models.

a semi-streaming algorithm in optimal O(n) space and O (logn log(1/ε)/ε) passes. They also provide a
MWM algorithm that also runs in O(n) space but requires Ω̃(n/ε) passes. Please refer to these papers and
references therein for older results in this area. Ahn and Guha [AG18] also considered the general weighted
non-bipartite maximum matching problem in the semi-streaming model and utilize linear programming ap-
proaches for computing a (2/3−ε)-approximation and (1−ε)-approximation that uses O(log(1/ε)/ε2) passes,

O
(
n ·
(

log(1/ε)
ε2 + logn/ε

ε

))
space, and O

(
logn
ε4

)
passes, O

(
n logn

ε4

)
space, respectively.

Bipartite Matching Ahn and Guha [AG18] also extended their results to the bipartite MWM and b-
Matching settings with small changes. Specifically, in the MWM setting, they give a O(log(1/ε)/ε2) pass,
O(n · ((log(1/ε))/ε2 + (log n/ε)/ε)) space algorithm. For maximum cardinality b-matching, they give a

O(log n/ε3) pass and Õ
(∑

i∈L∪R bi
ε3

)
space algorithm. For exact bipartite MWM in the semi-streaming

model, Liu et al. [LSZ20] gave the first streaming algorithm to break the n-pass barrier in the exact setting;
it uses Õ(n) space and Õ(

√
m) passes using interior point methods, SDD system solvers, and various other

techniques to output the optimum matching with high probability. Work on bipartite MWM prior to [LSZ20]
either required Ω(n logn) passes [JLS19] or only found approximate solutions [AG11, AG18, Kap13].

Lower Bounds Several papers have looked at matching problems from the lower bound side. Konrad et
al. [KRZ21] considered the communication complexity of graph problems in a blackboard model of compu-
tation (for which the simultaneous message passing model of Dobzinski et al. [DNO14] is a special variant).
Specifically, they show that any non-trivial graph problem on n vertices require Ω(n) bits [KRZ21] in com-
munication complexity. In a similar model called the demand query model, Nisan [Nis21] showed that any

4

Our Results MWM = Maximum Weighted Matching
MCBM = Maximum Cardinality b-Matching

Eliminate
exponential

dependence on
𝟏
𝜺

APPROX/RANDOM 2023

Model Previous Results Our Results

Blackboard
Distributed

MWM Ω(n logn) (trivial) [DNO14] O
(

n log3(n)
ε8

)
Theorem 3.9

MCbM Ω(nb logn) trivial O
(

nb log2 n
ε2

)
Theorem 4.8

Streaming
MWM

O
(

log(1/ε)
ε2

)
pass

O
(

n logn
ε2

)
space [AG11]

O
(

1
ε8

)
pass

O (n · logn · log(1/ε)) space Theorem 3.11

MCbM

O(log n/ε3) pass

Õ
(∑

i∈L∪R bi
ε3

)
space [AG18]

O
(

1
ε2

)
pass

O
((∑

i∈L bi + |R|
)
log(1/ε)

)
space Theorem 4.10

MPC MWM

Oε(log logn) rounds
Oε(n poly(log n))

space p.m.
[GKMS19]
(general)

O
(

log logn
ε7

)
rounds

O(n · log(1/ε)(n)) space p.m. Theorem 3.15

Parallel
MWM

O (m · poly (1/ε, logn))
work*

O (poly (1/ε, logn))
depth*

[HS22]
(general)

O
(

m log(n)
ε7

)
work

O
(

log3 n
ε7

)
depth Theorem 3.13

MCbM N/A N/A

O
(

m logn
ε2

)
work

O
(

log3 n
ε2

)
depth Theorem 4.11

Table 1: We assume the ratio between the largest weight edge and smallest weight edge in the graph is
poly(n). Results for general graphs are labeled with (general); results that are specifically for bipartite
graphs do not have a label. Upper bounds are given in terms of O(·) and lower bounds are given in terms of
Ω(·). “Space p.m.” stands for space per machine. The complexity measures for the “blackboard distributed”
setting is the total communication (over all rounds and players) in bits. poly(logn, ε) for the specified results
indicated by * hides large constant factors in the exponents, specifically constants c > 20. Our results often
exhibit a tradeoff of one complexity measure with another in our various models.

a semi-streaming algorithm in optimal O(n) space and O (logn log(1/ε)/ε) passes. They also provide a
MWM algorithm that also runs in O(n) space but requires Ω̃(n/ε) passes. Please refer to these papers and
references therein for older results in this area. Ahn and Guha [AG18] also considered the general weighted
non-bipartite maximum matching problem in the semi-streaming model and utilize linear programming ap-
proaches for computing a (2/3−ε)-approximation and (1−ε)-approximation that uses O(log(1/ε)/ε2) passes,

O
(
n ·
(

log(1/ε)
ε2 + logn/ε

ε

))
space, and O

(
logn
ε4

)
passes, O

(
n logn

ε4

)
space, respectively.

Bipartite Matching Ahn and Guha [AG18] also extended their results to the bipartite MWM and b-
Matching settings with small changes. Specifically, in the MWM setting, they give a O(log(1/ε)/ε2) pass,
O(n · ((log(1/ε))/ε2 + (log n/ε)/ε)) space algorithm. For maximum cardinality b-matching, they give a

O(log n/ε3) pass and Õ
(∑

i∈L∪R bi
ε3

)
space algorithm. For exact bipartite MWM in the semi-streaming

model, Liu et al. [LSZ20] gave the first streaming algorithm to break the n-pass barrier in the exact setting;
it uses Õ(n) space and Õ(

√
m) passes using interior point methods, SDD system solvers, and various other

techniques to output the optimum matching with high probability. Work on bipartite MWM prior to [LSZ20]
either required Ω(n logn) passes [JLS19] or only found approximate solutions [AG11, AG18, Kap13].

Lower Bounds Several papers have looked at matching problems from the lower bound side. Konrad et
al. [KRZ21] considered the communication complexity of graph problems in a blackboard model of compu-
tation (for which the simultaneous message passing model of Dobzinski et al. [DNO14] is a special variant).
Specifically, they show that any non-trivial graph problem on n vertices require Ω(n) bits [KRZ21] in com-
munication complexity. In a similar model called the demand query model, Nisan [Nis21] showed that any

4

Our Results MWM = Maximum Weighted Matching
MCBM = Maximum Cardinality b-Matching

Eliminate large
dependence on
𝟏
𝜺

 and 𝐥𝐨𝐠	𝒏

APPROX/RANDOM 2023

Outline

• Auction Algorithm of [ALT21] for maximum cardinality matching
• Our auction algorithm for maximum weighted matching

• Algorithm description
• Minimizing dependence on log	(𝑊)

• Our auction algorithm for maximum b-matching

APPROX/RANDOM 2023

Outline

• Auction Algorithm of [ALT21] for maximum cardinality matching
• Our auction algorithm for maximum weighted matching

• Algorithm description
• Minimizing dependence on log	(𝑊)

• Our auction algorithm for maximum b-matching

APPROX/RANDOM 2023

Auction Algorithm of [ALT21]

𝑹𝑳

Left and Right Side
of Bipartite Graph

APPROX/RANDOM 2023

Auction Algorithm of [ALT21]

𝑹𝑳

Left and Right Side
of Bipartite Graph

Left Side has
Bidders and Right

Side has Items

APPROX/RANDOM 2023

Auction Algorithm of [ALT21]

𝑹𝑳

All items start
with price 0

0

0

0

0

0

APPROX/RANDOM 2023

Auction Algorithm of [ALT21]

𝑹𝑳

All items start
with price 0

0

0

0

0

0

Iteratively, bidders bid
on all lowest price

adjacent items

APPROX/RANDOM 2023

Auction Algorithm of [ALT21]

𝑹𝑳

Iteratively, bidders bid
on all lowest price

adjacent items
All items start
with price 0

0

0

0

0

0

APPROX/RANDOM 2023

Auction Algorithm of [ALT21]

𝑹𝑳

Iteratively, bidders bid
on all lowest price

adjacent items

Find maximal matching
among induced

subgraph of bid items

0

0

0

0

0

APPROX/RANDOM 2023

Auction Algorithm of [ALT21]

𝑹𝑳

Increase price of items
in matching by 𝜺 and

maintain current
matching

0

0

𝜺

0

𝜺

APPROX/RANDOM 2023

Auction Algorithm of [ALT21]

𝑹𝑳

Increase price of items
in matching by 𝜺 and

maintain current
matching

0

𝜺

0

Can bid on item as
long as price < 1

0

𝜺

APPROX/RANDOM 2023

Auction Algorithm of [ALT21]

𝑹𝑳

0

𝜺

0

Can bid on item as
long as price < 1

Iterate for
𝟐
𝜺𝟐

 iterations

0

𝜺

APPROX/RANDOM 2023

Auction Algorithm of [ALT21]

𝑹𝑳

0

𝜺

0

Can bid on item as
long as price < 1

Iterate for
𝟐
𝜺𝟐

 iterations

0

𝜺

APPROX/RANDOM 2023

Auction Algorithm of [ALT21]

𝑹𝑳

0

𝜺

0

Can bid on item as
long as price < 1

Each unmatched
bidder bids

Iterate for
𝟐
𝜺𝟐

 iterations

0

𝜺

APPROX/RANDOM 2023

Auction Algorithm of [ALT21]

𝑹𝑳

0

𝜺

0

Can bid on item as
long as price < 1

Each unmatched
bidder bids

Iterate for
𝟐
𝜺𝟐

 iterations

0

𝜺

APPROX/RANDOM 2023

Auction Algorithm of [ALT21]

𝑹𝑳

0

𝜺

0

Can bid on item as
long as price < 1

Item goes to new
bidder!

Iterate for
𝟐
𝜺𝟐

 iterations

0

𝟐𝜺

APPROX/RANDOM 2023

Auction Algorithm of [ALT21]

𝑹𝑳

0

𝜺

0

Can bid on item as
long as price < 1

Iterate for
𝟐
𝜺𝟐

 iterations

0

𝟐𝜺

APPROX/RANDOM 2023

Auction Algorithm of [ALT21]

𝑹𝑳

𝜺

𝜺

0

Can bid on item as
long as price < 1

Iterate for
𝟐
𝜺𝟐

 iterations

0

𝟐𝜺

APPROX/RANDOM 2023

Auction Algorithm of [ALT21]

𝑹𝑳

Final Matching

APPROX/RANDOM 2023

Outline

• Auction Algorithm of [ALT21] for maximum cardinality matching
• Our auction algorithm for maximum weighted matching

• Algorithm description
• Minimizing dependence on log	(𝑊)

• Our auction algorithm for maximum b-matching

APPROX/RANDOM 2023

Our Maximum Weight Auction Algorithm

• Bucket the edges using buckets based on the weights of the
edges

• Rescale weights to (0, 1]
• Edge with weight 𝒘 ∈ (𝟎, 𝟏] is in bucket b if

𝜺𝒃"𝟏 ≤ 𝒘 < 𝜺𝒃"𝟐

APPROX/RANDOM 2023

Our Simplified Maximum Weight Auction Algorithm

𝑹𝑳

All items start
with price 0

0

0

0

0

0

0.5

0.7

0.3
0.1

0.35
0.2

APPROX/RANDOM 2023

Our Simplified Maximum Weight Auction Algorithm

𝑹𝑳

All items start
with price 0

0

0

0

0

0

0.5

0.7

0.3
0.1

0.35
0.2

Iteratively, bidders bid
on all

highest (value – price)
items

APPROX/RANDOM 2023

𝑹𝑳

All items start
with price 0

0

0

0

0

0

0.5

0.7

0.3
0.1

0.35
0.7

Iteratively, bidders bid
on all

highest (value – price)
items

Our Simplified Maximum Weight Auction Algorithm

APPROX/RANDOM 2023

𝑹𝑳

0

0

0

0

0

0.5

0.7

0.3
0.1

0.35
0.7

Iteratively, bidders bid
on all

highest (value – price)
items

Find maximal matching
among induced

subgraph of bid items
from highest bucket

down

Our Simplified Maximum Weight Auction Algorithm

Reason: items under
contention should be

won by edges with
larger weights

APPROX/RANDOM 2023

𝑹𝑳

0

0

0

0

0

0.5

0.7

0.3
0.1

0.35
0.7

Iteratively, bidders bid
on all

highest (value – price)
items

Find maximal matching
among induced

subgraph of bid items
from highest bucket

down

Our Simplified Maximum Weight Auction Algorithm

APPROX/RANDOM 2023

𝑹𝑳

0

0

0

0

0

0.5

0.7

0.3
0.1

0.35
0.7

Iteratively, bidders bid
on all

highest (value – price)
items

Find maximal matching
among induced

subgraph of bid items
from highest bucket

down

Our Simplified Maximum Weight Auction Algorithm

APPROX/RANDOM 2023

𝑹𝑳

𝟎. 𝟕𝜺

0

0

𝟎. 𝟑𝟓𝜺

0

0.5

0.7

0.3
0.1

0.35
0.7

Our Simplified Maximum Weight Auction Algorithm

Increase price of items
in matching by 𝜺 ⋅ 𝒘

and maintain current
matching

APPROX/RANDOM 2023

𝑹𝑳

𝟎. 𝟕𝜺

0

0

𝟎. 𝟑𝟓𝜺

0

0.5

0.7

0.3
0.1

0.35
0.7

Our Simplified Maximum Weight Auction Algorithm

Increase price of items
in matching by 𝜺 ⋅ 𝒘

and maintain current
matching

Reason: higher weight
edges will contribute

more to the matching

APPROX/RANDOM 2023

𝑹𝑳

𝟎. 𝟕𝜺

0

0

𝟎. 𝟑𝟓𝜺

0

0.5

0.7

0.3
0.1

0.35
0.7

Our Simplified Maximum Weight Auction Algorithm

Increase price of items
in matching by 𝜺 ⋅ 𝒘

and maintain current
matching

Can bid on item as long
as weight - price > 0

APPROX/RANDOM 2023

𝑹𝑳

𝟎. 𝟕𝜺

0

0

𝟎. 𝟑𝟓𝜺

0

0.5

0.7

0.3
0.1

0.35
0.7

Our Simplified Maximum Weight Auction Algorithm

Iterate for
,-.𝟐(𝒏)
𝜺𝟒

 iterations

APPROX/RANDOM 2023

𝑹𝑳

𝟎. 𝟕𝜺

0

0

𝟎. 𝟑𝟓𝜺

0

0.5

0.7

0.3
0.1

0.35
0.7

Our Simplified Maximum Weight Auction Algorithm

Iterate for
,-.𝟐(𝒏)
𝜺𝟒

 iterations

Each unmatched
bidder bids

APPROX/RANDOM 2023

𝑹𝑳

1. 𝟐𝜺

0

0

𝟎. 𝟑𝟓𝜺

0

0.5

0.7

0.3
0.1

0.35
0.7

Our Simplified Maximum Weight Auction Algorithm

Iterate for
,-.𝟐(𝒏)
𝜺𝟒

 iterations

Item goes to new
bidder!

APPROX/RANDOM 2023

𝑹𝑳

0

0

𝟎. 𝟑𝟓𝜺

0

0.5

0.7

0.3
0.1

0.35
0.7

Our Simplified Maximum Weight Auction Algorithm

Iterate for
,-.𝟐(𝒏)
𝜺𝟒

 iterations

1. 𝟐𝜺

APPROX/RANDOM 2023

𝑹𝑳

0

0

𝟎. 𝟑𝟓𝜺

𝟎. 𝟕𝜺

0.5

0.7

0.3
0.1

0.35
0.7

Our Simplified Maximum Weight Auction Algorithm

Iterate for
,-.𝟐(𝒏)
𝜺𝟒

 iterations

1. 𝟐𝜺

APPROX/RANDOM 2023

𝑹𝑳

0.5

0.7

0.3
0.1

0.35
0.7

Our Simplified Maximum Weight Auction Algorithm

Final Matching

APPROX/RANDOM 2023

Minimizing Dependence on log	(𝑊)

• Modified Gupta-Peng ‘13 transformation
• Partition edges into levels based on edge weight
• Each level contains multiple buckets
• Omit certain buckets to prevent too large ratio in weights

• Ratio of weights in each level is bounded by 𝜺1𝑶
𝟏
𝜺

APPROX/RANDOM 2023

Minimizing Dependence on log	(𝑊)

• Modified Gupta-Peng ‘13 transformation
• Partition edges into levels based on edge weight
• Each level contains multiple buckets
• Omit certain buckets to prevent too large ratio in weights

• Ratio of weights in each level is bounded by 𝜺1𝑶
𝟏
𝜺

Iterate for
,-.𝟐(𝒏)
𝜺𝟒

 iterations

Iterate for
,-.(𝒏)
𝜺𝟕

 iterations

APPROX/RANDOM 2023

Outline

• Auction Algorithm of [ALT21] for maximum cardinality matching
• Our auction algorithm for maximum weighted matching

• Algorithm description
• Minimizing dependence on log	(𝑊)

• Our auction algorithm for maximum b-matching

Very brief!

APPROX/RANDOM 2023

Very Simplified Maximum b-Matching Algorithm

1

2

1

2

2

1

1

1

Create a copy for each
bidder and item equal

to their b value

APPROX/RANDOM 2023

Very Simplified Maximum b-Matching Algorithm

1

2

1

2

2

1

1

1

Create a biclique
between copies

representing bidder
and item

APPROX/RANDOM 2023

Very Simplified Maximum b-Matching Algorithm

1

2

1

2

2

1

1

1

Create a biclique
between copies

representing bidder
and item

Make sure match only
one copy!

APPROX/RANDOM 2023

Very Simplified Maximum b-Matching Algorithm

1

2

1

2

2

1

1

1

Create a biclique
between copies

representing bidder
and item

Make sure match only
one copy!

Solution: each time
price increases,

increase the lowest
possible bidding price
for each unmatched

bidder

APPROX/RANDOM 2023

Our Results
Model Previous Results Our Results

Blackboard
Distributed

MWM Ω(n logn) (trivial) [DNO14] O
(

n log3(n)
ε8

)
Theorem 3.9

MCbM Ω(nb logn) trivial O
(

nb log2 n
ε2

)
Theorem 4.8

Streaming
MWM

O
(

log(1/ε)
ε2

)
pass

O
(

n logn
ε2

)
space [AG11]

O
(

1
ε8

)
pass

O (n · logn · log(1/ε)) space Theorem 3.11

MCbM

O(log n/ε3) pass

Õ
(∑

i∈L∪R bi
ε3

)
space [AG18]

O
(

1
ε2

)
pass

O
((∑

i∈L bi + |R|
)
log(1/ε)

)
space Theorem 4.10

MPC MWM

Oε(log logn) rounds
Oε(n poly(log n))

space p.m.
[GKMS19]
(general)

O
(

log logn
ε7

)
rounds

O(n · log(1/ε)(n)) space p.m. Theorem 3.15

Parallel
MWM

O (m · poly (1/ε, logn))
work*

O (poly (1/ε, logn))
depth*

[HS22]
(general)

O
(

m log(n)
ε7

)
work

O
(

log3 n
ε7

)
depth Theorem 3.13

MCbM N/A N/A

O
(

m logn
ε2

)
work

O
(

log3 n
ε2

)
depth Theorem 4.11

Table 1: We assume the ratio between the largest weight edge and smallest weight edge in the graph is
poly(n). Results for general graphs are labeled with (general); results that are specifically for bipartite
graphs do not have a label. Upper bounds are given in terms of O(·) and lower bounds are given in terms of
Ω(·). “Space p.m.” stands for space per machine. The complexity measures for the “blackboard distributed”
setting is the total communication (over all rounds and players) in bits. poly(logn, ε) for the specified results
indicated by * hides large constant factors in the exponents, specifically constants c > 20. Our results often
exhibit a tradeoff of one complexity measure with another in our various models.

a semi-streaming algorithm in optimal O(n) space and O (logn log(1/ε)/ε) passes. They also provide a
MWM algorithm that also runs in O(n) space but requires Ω̃(n/ε) passes. Please refer to these papers and
references therein for older results in this area. Ahn and Guha [AG18] also considered the general weighted
non-bipartite maximum matching problem in the semi-streaming model and utilize linear programming ap-
proaches for computing a (2/3−ε)-approximation and (1−ε)-approximation that uses O(log(1/ε)/ε2) passes,

O
(
n ·
(

log(1/ε)
ε2 + logn/ε

ε

))
space, and O

(
logn
ε4

)
passes, O

(
n logn

ε4

)
space, respectively.

Bipartite Matching Ahn and Guha [AG18] also extended their results to the bipartite MWM and b-
Matching settings with small changes. Specifically, in the MWM setting, they give a O(log(1/ε)/ε2) pass,
O(n · ((log(1/ε))/ε2 + (log n/ε)/ε)) space algorithm. For maximum cardinality b-matching, they give a

O(log n/ε3) pass and Õ
(∑

i∈L∪R bi
ε3

)
space algorithm. For exact bipartite MWM in the semi-streaming

model, Liu et al. [LSZ20] gave the first streaming algorithm to break the n-pass barrier in the exact setting;
it uses Õ(n) space and Õ(

√
m) passes using interior point methods, SDD system solvers, and various other

techniques to output the optimum matching with high probability. Work on bipartite MWM prior to [LSZ20]
either required Ω(n logn) passes [JLS19] or only found approximate solutions [AG11, AG18, Kap13].

Lower Bounds Several papers have looked at matching problems from the lower bound side. Konrad et
al. [KRZ21] considered the communication complexity of graph problems in a blackboard model of compu-
tation (for which the simultaneous message passing model of Dobzinski et al. [DNO14] is a special variant).
Specifically, they show that any non-trivial graph problem on n vertices require Ω(n) bits [KRZ21] in com-
munication complexity. In a similar model called the demand query model, Nisan [Nis21] showed that any

4

MWM = Maximum Weighted Matching
MCBM = Maximum Cardinality b-Matching

“Universal”
solution

across many
different
scalable
models!

