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Every once in a while, I hear puzzles about 
100 prisoners and a meticulous, demanding 
warden. All of these puzzles share a com-

mon characteristic: a set of prisoners must work 
together to devise a clever scheme to thwart the 
warden. I hear these puzzles often enough that 
each time they reappear, I view them with an in-
creased level of understanding corresponding to 
the stage of my mathematics education.

Any problem may have a solution, but, some-
times, that solution may not be the most efficient 
one possible. For example, suppose you want to 
find something in your room but don’t remember 
where you put it. You can either search the room 
by yourself. Or you can call your (many) friends 
to help you. From a correctness standpoint, both 
solutions are correct. You’ll find what you’re look-
ing for eventually. But from an algorithmic stand-
point, the second solution where you search in 
parallel with your friends is better because it has 
a shorter runtime. The same holds for solutions 
to the 100 prisoners puzzle. Some solutions may 
be theoretically correct answers to the puzzle but 
may have expected runtimes that exceed the lifes-
pan of an average person and are, thus, practically 
undesirable. Now, through this lens, the lens of a 
theoretical computer science student, I would like 
to present to you the 100 prisoners puzzle and its 
variants.

100 Prisoners and a Light Bulb
The original, very famous puzzle involving an in-
terrogation room, a light bulb, and 100 prisoners 
is the following (paraphrased from Wu in [3]):

One hundred prisoners just arrived in prison. The 
warden tells them that starting tomorrow, each of 
them will be placed in an isolated cell, unable to 
communicate amongst themselves. Each cell has a 
window so the prisoners will be able to count the 
days. Each day, the warden will choose one of the 
prisoners uniformly at random with replacement, 
and place him in a central interrogation room con-
taining only a light bulb with a toggle switch. The 
light bulb is initially switched off. The prisoner may 
observe the current state of the light bulb. If he 
wishes, he may toggle the light bulb. He also has 
the option of announcing that he believes all pris-
oners have visited the interrogation room at some 
point in time. If this announcement is true, then all 
prisoners are set free, but if it is false, all prisoners 
are executed. The warden leaves, and the prisoners 
huddle together to discuss their fate. Can they agree 
on a strategy that will guarantee their freedom? [3]

One common solution to the puzzle is to divide 
the days into 100-day blocks and instruct any 
prisoner to toggle the light off if he is interrogated 
twice within the same block. The first prisoner of 
each block turns the light on and the last prisoner 
checks whether the light is still on when he enters 
the interrogation room at the end of the 100-day 
block. If the light is still on and he did not enter 
the room on any previous day within the block, he 
declares that all prisoners have visited the interro-
gation room [3]. This solution is technically cor-
rect because it guarantees the prisoners their free-
dom, but the prisoners are expected to be freed 
after 1.072 ×1044 days, in years ≈ 1031 times the 
age of the universe. From an algorithmic stand-
point, this solution is rather poor because it has 
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an expected runtime of O(n1/2en) [3] for n prison-
ers.

The challenge now is to find a solution that is cor-
rect and also has an optimal runtime. Such a solu-
tion is more likely to guarantee that the prisoners 
are freed while they are still alive.

The canonical (better) solution is to designate a 
“leader” to be the person who counts the number 
of unique prisoners who have been interrogated. 
The leader may do so by counting the number of 
times the light bulb has been switched on. A pris-
oner who has not yet toggled the light switch will 
turn the light on if it is currently off. A prisoner 
will do nothing if he enters the room when the 
light is currently on. The leader turns the light off 
each time she leaves the room and increases her 
counter when she sees a light that is on. Thus, after 
counting 99, the leader may declare that all the 
prisoners have been interrogated at least once. (It 
is sufficient to count to 99 because the leader her-
self counts as the last prisoner.)

How long are the prisoners expected to wait? 
Suppose that T represents a counter for the num-
ber of times the bulb has been switched on. We 
may count the expected number of days until T 
= 99. Let Xi denote the number of days that pass 
between an increment of the counter from when 
T = i until T = i + 1. Let Yi denote the number 
of days from when a leader turns off a light bulb 
until a prisoner turns on the light. Let Zi denote 
the number of days from when a prisoner turns 
on the light until the leader enters the room to 
see the newly turned on light bulb. Thus, Xi=Yi+Zi. 
Let X be the number of days the strategy requires 
in total before the prisoners are freed. Given n 
prisoners, the probability of turning on the ith 
light is n−i

n
. The probability that the leader enters 

the room on any day is 1
n

. By linearity of expecta-
tion,

In asymptotic notation, the “leader” algorithm 
has an expected runtime of O(n2) days [3]. When 
there are 100 prisoners, the expected wait time 

is 10417.7 days or approximately 29 years [3]. 
Though still a long time, it is within the prisoners’ 
lifespans.

Wu [3] further summarized some strategies 
that may lead to even shorter wait times. One 
such strategy achieves an expected runtime of 
O(n(logn)2). The key insight behind this algorithm 
is to allow “assistant” leaders to help the leader 
by doing some of the counting. Then, the leader 
would sum together the totals of all the “assistant” 
counts to determine if all prisoners have visited 
the interrogation room. To do this, we must be 
able to divide up the counting of the light bulbs 
into blocks of days. There must be a block for as-
sistants to count the number of prisoners and a 
different stage for assistants to tell the leader their 
total [3]. See [3] for more details.

But can we achieve a solution with an even bet-
ter runtime, for example, a solution with an O(n) 
expected runtime? Turns out, the answer is no 
for the O(n) runtime solution. It is a common 
joke among CS theoreticians that we hate lower 
bounds because it prevents us from making bet-
ter algorithms. The reason why we can’t create an 
O(n) algorithm for the 100 prisoners problem is 
precisely that a lower bound prevents us from do-
ing so. The expected number of days for all pris-
oners to enter the interrogation room at least once 
is O(nlogn), therefore no strategy, no matter how 
clever, may achieve a better expected runtime 
than O(nlogn), [1]. A simple calculation confirms 
this lower bound. Let the random variable Xi be 
the number of days until the i-th unique prisoner 
with probability of selection                   is picked.

 

Naturally, when the original problem has been 
solved, we wonder if the solution still applies for 
variants of the problem. Some of these solutions, 
like the leader and the O(n(logn)2) solutions, de-
pend on certain characteristics of the problem  
like the ability to tell time. What if we took away 
these abilities? Below, I present some harder in-
stances of the 100 Prisoners puzzle and challenge 
you to find more efficient solutions for them.
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Variations of the 100 Prisoners 
and a Light Bulb Puzzle
We assume for Problems 1 and 4 that the following 
are true: All prisoners are allowed to discuss their 
strategy on the first day. On the next day, they are 
each placed in an isolated cell with a window. The 
interrogation room contains a single light bulb 
that is initially switched off.

1. Blue and Red Cells: Each isolated cell is either 
painted completely blue or completely red. 
In addition to declaring that all prisoners 
have been interrogated, a confident pris-
oner must also correctly state the number 
of prisoners in red cells and the number of 
prisoners in blue cells [1].

Problem 1 is easily solvable using a strategy simi-
lar to the “leader” strategy if two light bulbs are in 
the interrogation room instead of one. However, 
with only one light bulb, is it possible to devise an 
O(n2) time algorithm?

2. Light Bulb May Be Off: We assume that the 
light bulb in the interrogation room may be 
turned on or off initially (i.e. before the first 
prisoner enters) [2].

If prisoners still have windows in their rooms, 
then the “leader” algorithm still provides an O(n2)  
solution to Problem 2 because the leader can just 
record all the times the light is on starting from the 
second day. The first non-leader prisoner to enter 
the interrogation room must be unique; therefore, 
on the first day, he can simply leave the light on if 
it is on or turn it on if it is off. All other prisoners 
behave as before. However, this problem becomes 
trickier if prisoners do not have windows in their 
individual cells because the prisoners have just 
lost their ability to keep track of time.

3. No Windows: We keep the condition pre-
sented in Problem 2. Now, prisoners may 
no longer keep track of how much time has 
passed because they are placed in isolated 
cells with no windows and no way to keep 
time [2].

This variation is harder because now the leader 
does not know how many days have passed and 
how many prisoners were interrogated before she 
enters the room. She could be the first prisoner 
to enter the room and the light bulb could have 
been initially on. In this case, her count of the 
number of interrogated prisoners would be off 
by 1. Can we still achieve an O(n2) algorithm by 
tweaking the “leader” protocol (the answer is yes 
but how)? The harder question is can we tweak 
the O(n(logn)2) solution to apply to this problem?

4. Couple of Prisoners: Let us assume that all 
prisoners arrested were couples. Therefore, 
among the 100 prisoners, there are 50 dis-
tinct couples (no person may be a member 
of more than one couple). The warden then 
divides each couple. One member of the 
couple is placed in Group A and the other is 
placed in Group B. On each day, the warden 
chooses uniformly at random with replace-
ment someone in Group A to interrogate in 
the morning. In the afternoon, on the same 
day, the warden chooses randomly someone 
from Group B to interrogate. Couples may 
not switch who they’re partnered with. In 
addition to declaring that all 100 prisoners 
have been interrogated, a prisoner must also 
correctly claim that all couples have been 
interrogated (at least once) on the same day 
[4].

There exists a solution that assigns each couple to 
a particular day. The person from Group A may 
only turn the light on when they are called on their 
assigned day. Otherwise, they turn the light off. If 
the person from Group B is also called on their 
assigned day, they will leave the light on if it is on 
from the morning. If the person from Group B is 
called on any other day, they will turn the light off. 
A leader chosen from Group A counts the number 
of unique days she sees a light on when she enters 
the room. This indicates that both members of a 
couple were interrogated on their assigned day 
(the previous day). What is the expected runtime 
of this solution? Does this problem still have a so-
lution if the prisoners are placed in isolated cells 
without windows?
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Trading Light Bulbs for Time
For this last problem, I want to see how much 
more power we must give to the prisoners in order 
to bring the expected number of days in jail down 
to O(n). The riddle I created below trivially must 
have an O(n) solution (answer in the appendix). 
Giving prisoners more light bulbs enables them
to tell each other more information in a shorter 
amount of time. But the more interesting ques-
tion, now, is can the prisoners escape with less 
than 6 light bulbs?

5. Prisoners and Vindictive Wardens: The same 
100 prisoners are ushered into prison by 
the same warden. They will be placed in 
isolated cells with windows starting tomor-
row. Except now, the warden tells them that 
the interrogation room has 6 light bulbs in a 
row, and she will interrogate each prisoner at 
most twice. Prisoners are chosen uniformly 
at random from those that have not yet been 
interrogated twice. The prisoners were tre-
mendously happy at this news because they 
are guaranteed freedom after at most 200 
days. The warden cackles and tells them that 
there is a catch. This time, when a prisoner 
enters the interrogation room, he is asked, 

“Are you the last unique prisoner?” The last 
unique prisoner must declare, “Yes.” Every 
other prisoner must declare, “No.” Once a 

“Yes” is correctly declared, everyone is imme-
diately freed. If someone declares incorrectly, 
everyone will be executed. How can they 
guarantee their freedom?

As a hint, the solution to this problem critically 
depends on the prisoners being able to tell time. 
If the isolated cells do not contain windows, what, 
then, is the minimum number of light bulbs need-
ed in order to guarantee the prisoners’ freedom?

Is the Solution Optimal? 
 
I hope that you will take what I have written here 
to heart so that the next time you look at a puzzle, 
don’t just find a right solution; find the optimal 
solution.

Appendix
Answer to “Prisoners and Vindictive Wardens”: 
Despite having 6 light bulbs, the answer to this 
riddle is not as simple as encoding the number 
of prisoners who have been interrogated twice, 
which we could if we had 7 light bulbs. But we 
may use a similar scheme. Let “on” represent 1 
and “off ” represent 0, with the rightmost light 
bulb representing the smallest bit. On the i-th day, 
the prisoner who enters the interrogation room 
knows at least      unique prisoners must have al-
ready been interrogated by the pigeonhole prin-
ciple. Then, using this fact and the light bulbs, we 
may implement a counting system. Let Δi be the 
number represented in bits by the 6 light bulbs 
on the i-th day. Every prisoner knows how many 
times he has been interrogated. If the prisoner is 
entering the interrogation room the first time, he 
will check whether      + Δi is 99. If so, then he 
declares, “Yes.” If not, he changes the light bulbs 
such that           + Δi+1 =      + Δi +1 and declares “No.” 
If the prisoner is entering the room for the second 
time, he will change the light bulbs such that
         + Δi+1 =      + Δi  and declare “No.” We may see 
this algorithm works for any n prisoners because 
0 ≤ Δi  ≤      + 1. Never is Δi  >      + 1 because that 
means      + Δi > n, a contradiction. Furthermore, 
never is Δi < 0 because we would contradict the 
pigeonhole principle. For any n prisoners, this 
scheme would work given                        light bulbs.
May we achieve a better scheme using fewer light 
bulbs?
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