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These lecture notes have not undergone rigorous peer-review. Please email quanquan.liu@yale.edu if
you see any errors.

1 Introduction

Today we’ll conclude our brief overview of differential privacy with a discussion of the Gaussian mechanism
(together with advanced composition), exponential mechanism, and privacy amplification via subsampling.
Thus far, we have focused on randomized response and the Laplace/Geometric mechanisms. As we dis-
cussed in previous classes, randomized response is well-suited for the local differential privacy model and
for settings where we are looking for a cumulative (counting) query. On the other hand, the Laplace and Ge-
ometric mechanisms are well-suited for situations where the sensitivity of a (deterministic) function (solving
a problem) is small. The Laplace/Geometric mechanism generally results in less error than randomized re-
sponse but does not (immediately) satisfy local privacy. Today we’ll discuss approximate differential privacy
and mechanisms/tools we can take advantage of in the approximate DP setting.

As a reminder of the definition of differential privacy, approximate DP is the setting where δ > 0.

Theorem 1 ((Central) Differential Privacy (DP) Model [DMNS06]). Let ε > 0 and δ ∈ [0, 1). A
randomized algorithm A is (ε, δ)-differentially private (DP) (with respect to the neighbor relation on
the universe of the datasets) if for all events S in the output space of A and all neighboring datasets X
and X ′,

Pr[A(X) ∈ S] ≤ exp(ε) · Pr[A(X ′) ∈ S] + δ.

The interpretation of the approximate DP definition is that with probability 1− δ, we obtain the privacy
guarantee afforded by pure DP. But with probability δ, we get no guarantee at all. No guarantee means that
the entire privacy dataset could be the output of the algorithm! Thus, it is important to to pick a very small
δ, ie. δ = 1

poly(n) . Approximate DP like pure DP satisfy sequential composition, parallel composition, and
post-processing. The only difference is that composing two approximate DP algorithms with parameters
ε1, δ1 and ε2, δ2 gives a (ε1 + ε2, δ1 + δ2)-DP algorithm.

2 Gaussian Mechanism

The Gaussian mechanism is an alternative to the Laplace mechanism that does not satisfy ε-DP but does
satisfy (ε, δ)-DP. The Gaussian mechanism requires a slightly different notion of sensitivity than what we
have seen thus far in this class. Namely, it requires the ℓ2 sensitivity defined as follows. Given that this class
focuses on graphs, we let our input neighboring datasets be two edge-neighboring graphs, G,G′:

Theorem 2 (ℓ2-Sensitivity). Given a function, f : G → Rn, the ℓ2-sensitivity of f , denoted by ∆2
f , is

the maximum ℓ2 distance between the outputs of f on two neighboring datasets G ∼ G′,

∆2
f = max

G∼G′
||f(G)− f(G′)||2.

The Gaussian mechanism is defined over the Gaussian distribution N (0, σ2) with mean 0 and standard
deviation σ has density function defined by:

p(X) =
1

σ
√
2π

exp

(
−X2

2σ2

)
.
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Below is a plot of the Gaussian distribution alongside the Laplace distribution:
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Figure 1: Laplace and Gaussian Distributions with Different Parameters

In high dimensional settings, where the output of the function is some n-dimensional vector of real
values from R, the Gaussian mechanism is defined as follows.

Theorem 3 (Gaussian Mechanism). Given a function f : G → Rn, the Gaussian mechanism defines
an algorithm M(G) which outputs

M(G) = f(G) + (Y1, . . . , Yn)

where each Yi is an independent random variable drawn from N
(
0,

2 ln(5/(4δ))(∆2
f)

2

ε2

)
.

As we showed above, the Gaussian mechanism has a flatter appearance compared to the Laplace mech-
anism; furthermore, it provides a less strong privacy guarantee. So why would we use it? Let me give
you some intuition for situations where it is preferable to use the Gaussian mechanism over the Laplace
mechanism. So far in this class, we’ve mainly considered functions which output a single real number.
However, there are many cases for which we may want vector-valued functions. Such examples of vector
valued functions include histograms. The output is a vector where each element of the vector is the number
of elements in a bin. To compute the sensitivity of vector valued functions, we consider the ℓ1 and ℓ2 norms.
As a recap, the ℓ1 sensitivity is defined as ∆f = maxG∼G′ ||f(G)−f(G′)||1 and the ℓ2 sensitivity is defined
as ∆2

f = maxG∼G′ ||f(G)− f(G′)||2. Suppose we have a function that returns a vector with element-wise
sensitivity 1 (i.e. each coordinate has sensitivity 1, then the ℓ1 sensitivity of this function is n. On the other
hand, the ℓ2 sensitivity of this function is

√
n.

Second, recall that approximate DP allows for a catastrophic mode where with probability δ, the entire
private dataset could be released. However, the Gaussian mechanism does not fail catastrophically, instead
it fails gracefully. With probability δ, it doesn’t satisfy ε-DP but instead satisfies a weaker c · ε-DP for some
value c.

Finally, the Gaussian mechanism allows for the use of a stronger form of composition theorem called
advanced composition. In advanced composition, instead of summing the privacy parameters of each of the
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algorithms involved in the composition, we instead have the following lemma.

Theorem 2.1 (Advanced Composition). Let M1,M2, . . . ,Mk be k randomized algorithms Mi : G → Y ,
where Mi is (ϵ, δ)-differentially private for each i ∈ [k]. Define M(x) = (M1(G), . . . ,Mk(G))) where
each Mi is run independently. Then, for any δ′ > 0, the mechanism M is (ϵ′, k · δ + δ′)-differentially
private, where

ϵ′ =
√
2k ln(1/δ′) · ε+ kε(eε − 1).

This theorem shows that the privacy loss parameters ϵ and δ scale roughly with
√
k and k, respectively,

when composing k differentially private mechanisms.

The above essentially allows for ε′ = O(kε2 +
√
kε2) privacy guarantee which is significantly smaller

than kε afforded by basic composition when k is large.
For the sake of time, we did not cover the proof of the privacy of the Gaussian mechanism in class, but

for completeness, the detailed proof of the privacy of the Gaussian mechanism can be found on pg. 261-265
of the The Algorithmic Foundations of Differential Privacy textbook [DR+14].

3 Exponential Mechanism

So far, we have focused on adding noise to an aggregate cumulative value. However, for certain applications,
we might not want to add noise to a precise value to obtain an approximate value but instead we want to be
able to return the precise exact solution while preserving differential privacy. Suppose answers to a problem
are ranked by value and we want to select the best possible answer out of the ranked values. The exponential
mechanism allows just that: to select the best valued answer, exactly, but privately; however, sometimes the
best valued answer is not selected in the interest of preserving privacy.

More formally, the exponential mechanism operates over a scoring function which outputs a score for
each element in a set of elements. The mechanism then approximately maximizes the score of the element
it returns. Take a concrete example use of this mechanism. Suppose we have a bipartite graph consisting of
bidders and items and each edge represents a value of a bidder for an item. No bidder would buy an item
priced at a greater value than their preference. We would like to find a pricing of the items to maximize
profit. This problem corresponds with the maximum bipartite weighted matching problem where we want
to return an (exact) price of values for each item to maximize the profit equal to its maximum weighted
adjacent edge. One may think that one can add noise to a price to achieve privacy but suppose an item is
connected to three bidders with valuations at $1 , $2, and $5. Pricing the item at $5 achieves maximum
profit but increasing the price beyond $5 (e.g. with noise) results in $0 profit!

Thus, in this situation, we would like to return an approximately best ranked solution from the set
without adding noise to the item prices. Hence, we define the exponential mechanism as follows:

Theorem 4 (Exponential Mechanism). The exponential mechanism takes as input a private input
dataset X . It also takes a (public) scoring function u : X × H → R where H is a (public) set of
objects (all possible outcomes) and the scoring function returns for each object h ∈ H is with respect
to X . The sensitivity is defined as

∆u = max
h∈H

max
X∼X′

|u(X,h)− u(X ′, h)|,

over neighboring datasets X and X ′. The exponential mechanism M(X,H, u) selects and outputs
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object h ∈ H with probability proportional to exp
(
ε·u(X,h)
2∆u

)
.

There are some important characteristics of the exponential mechanism that we have not yet seen with
our other mechanisms:

1. The privacy cost of the mechanism is ε, regardless of the size of the size of the item set H.

2. The mechanism works for finite and infinite sets H but will be practically challenging to use if the
dataset is infinite.

3. All other ε-differentially private mechanisms can be defined in terms of the exponential mechanism
for appropriate definitions of the scoring function.

4. For many situations, the exponential distribution gives the “best” possible outcome, although it may
not be computationally feasible.

We now prove the privacy and utility of the exponential mechanism.

Lemma 3.1. The exponential mechanism is ε-differentially private.

Proof. We fix the neighboring datasets X and X ′ as well as some output h ∈ H. Then, given the exponential
mechanism M with privacy parameter ε, we have that

Pr(M(X) = h)

Pr(M(X ′ = h)
=

exp
(

ε·u(X,h)
2∆u

)
∑

h′∈H exp
(

ε·u(X,h′)
2∆u

)
exp

(
ε·u(X′,h)

2∆u

)
∑

h′∈H exp
(

ε·u(X′,h′)
2∆u

)

= exp

(
ε · (u(X,h)− u(X ′, h))

2∆u

)∑
h′∈H exp

(
ε·u(X′,h′)

2∆u

)
∑

h′∈H exp
(
ε·u(X,h′)

2∆u

)


≤ exp
(ε
2

)
·

∑
h′∈H exp

(
ε·u(X′,h′)

2∆u

)
∑

h′∈H exp
(
ε·u(X,h′)

2∆u

)
 by our definition of ∆u

≤ exp
(ε
2

)
·

exp
(
ε
2

)
·
∑

h′∈H exp
(
ε·u(X,h′)

2∆u

)
∑

h′∈H exp
(
ε·u(X,h′)

2∆u

)
 = exp(ε).

The last inequality follows since exp
(
ε·u(X′,h′)

2∆u

)
≤ exp

(
ε·u(X,h′)
2u(X′,h′)

)
· exp

(
ε·u(X′,h′)

2∆u

)
= exp

(
ε
2

)
·

exp
(
ε·u(X′,h′)

2∆u

)
.

Finally, we compute the utility of the exponential mechanism to be:

Lemma 3.2. Let X be a dataset and OPT(X) = maxh∈H u(X,h) be the best score obtained from all
possible outcomes. Let H∗ = {h ∈ H | u(X,h) = OPT(X)} be the set of objects which achieve OPT(X).
Then,

Pr

(
u(M(X)) ≤ OPT(X)− 2∆u

ε

(
ln

(
|H|
|H∗|

)
+ t

))
≤ exp(−t).
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Proof. First, we bound the probability that the score of M(X) is less than a general parameter C. We
can compute this probability by first calculating the probability that we pick an outcome h with value less
than or equal to C. This probability is given by

∑
h∈H|u(X,h)≤C exp

(
εu(X,h)
2∆u

)
. This expression is upper

bounded by |H| · exp
(

εC
2∆u

)
since there are at most |H| possible outcomes and the score is upper bounded

by C. Then, the denominator consists of all possible outcomes
∑

h∈H exp
(
εu(X,h)
2∆u

)
. This denominator is

lower bounded by |H∗| exp
(
εOPT(X)

2∆u

)
since there are at least |H∗| outcomes with score at least OPT(X).

Altogether, combining these two expressions we obtain,

Pr(u(M(X)) ≤ C) ≤
|H| · exp

(
εC
2∆u

)
|H∗| exp

(
εOPT(X)

2∆u

) =
|H|
|H∗|

· exp
(
ε(C − OPT(X))

2∆u

)
.

Substituting the given C gives our desired result.

4 Privacy Amplification by Subsampling

The idea behind privacy amplification by subsampling is that we run a DP algorithm on some random subset
of the input data. This random sampling procedure inherently introduces additional uncertainly, which we
can use for privacy. In particular, sampling allows for the possibility that any one datapoint is not used in
the algorithm, which benefits the privacy of your data. Furthermore, the adversary does not know whether
your data is being used, further benefitting privacy. Subsampling arises in the sketching literature and hence
arise in many algorithms that deal with massive datasets. Subsampling also has applications to stochastic
gradient descent methods that use minibatch training.

We’ll go over a simple version of the privacy amplification argument. Namely, we can amplify the
privacy of an ε-DP algorithm M by creating a new algorithm M ′ that is 2ε2-DP that runs M on a random
subsample of size ε · n. We define our neighboring datasets to be two datasets X,X ′ where X ⊕X ′ = {j};
in words, there exists exactly one element j ∈ X that is not contained in X ′ and all elements in X ′ are
contained in X .

Lemma 4.1 (Privacy Amplification by Subsampling). Given ε ∈ (0, 1) and an ε-DP algorithm A, then an
algorithm A′ which samples each element of dataset X (with n elements) with probability ε and runs A on
the sampled dataset is 2ε2-DP.

Proof. We fix the output y. Given two input datasets X ∼ X ′ that differ in element j, we consider a run
of A′ on input X . We introduce a coupling between the random sampling process on X and X ′. Namely,
if an entry i is sampled from X , then we also add the entry i to the sample from X ′. Since the samples are
determined independently, we easily see that this is a correct coupling. For ease of exposition, we denote
the random variable representing the sample from X as SX and the sample from X ′ as SX′ . If data point j
is not included in SX , then, the distribution of outputs on SX and SX′ are identical since each data point is
sampled independently. If instead, entry j is included in SX , then the probability distributions are a factor
of eε off from each other by the guaranteed privacy of the algorithm. Formally, we have

Pr[A(SX) = y | j ̸∈ SX ] = Pr[A(SX′) = y],

and, let X ′ = X \ {j} by our coupling and since A is ε-DP,
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e−ε · Pr[A(SX′) = y] ≤ Pr[A(SX) = y | j ∈ SX ] ≤ eε · Pr[A(SX′) = y].

Now, using the above and Pr[j ∈ SX ], we can show

Pr[A(SX) = y] = (1− ε) · Pr[A(SX) = y | j ̸∈ SX ] + ε · Pr[A(SX) = y | j ∈ SX ]

≤ (1− ε) · Pr[A(SX′) = y] + ε · eε · Pr[A(SX′) = y]

≤ (1 + ε · (eε − 1)) · Pr[A(SX′) = y]

≤ e2ε · Pr[A(SX′) = y].

and

Pr[A(SX) = y] ≥ (1− ε) · Pr[A(SX′) = y] + ε · e−ε · Pr[A(SX′) = y]

= (1− ε · (1− e−ε)) · Pr[A(SX′) = y]

≥ e−ε · Pr[A(SX′) = y],

when ε ∈ (0, 1).
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