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1 Introduction

Today we’ll discuss approximate maximum bipartite matching (MCM) algorithm of Assadi, Liu, and Tar-
jan [ALT21]. The maximum cardinality matching problem for bipartite graphs asks for a matching of
maximum size. This paper gives a (1 − ε)-approximate MCM in the streaming model after O(1/ε2)
passes. The main techniques used in this paper are auction algorithms which are typically used for welfare-
maximumizing assignment of items to bidders. In our setting, we let the set of notes on the left hand size of
the bipartite graph be the set of bidders and the set of nodes on the right be the items. We denote these sets
of nodes by L and R, respectively.

2 Streaming Auction-Based MCM

Initially bidders are unallocated and all items start with price 0. Prices for items are capped at 1. The
algorithm proceeds in iterations where in each iteration, bidders bid on their lowest price items. Then, these
items are allocated to the bidder who currently does not have an item and bid on an item. The pseudocode
for this algorithm is given in Algorithm 1. To define the notation we will use, let a bidder be i ∈ L and the
valuation for i for items in R as the function vi : R → {0, 1} where vi(j) = 1 if j ∈ N(i) and vi(j) = 0,
otherwise.

Theorem 1. We define the utility of bidder i as ui := vi(ai) − pai where ai is the item allocated to i
and pai is the price of the item ai allocated to i. An unallocated bidder i has ui = 0.

The number of iterations is trivially O(1/ε2) since we only run our algorithm for that many iterations.
Now we prove the approximation factor. Let M∗ be a maximum matching of G and OPT ⊆ L be the

set of bidders in L that are matched by M∗. For any i ∈ OPT, let oi ∈ R be the item allocated to i in M∗.
We now define a happy bidder.

Theorem 2. Bidder i is ε-happy if and only if ui ≥ vi(j)− pj − ε for all j ∈ N(i).

In other words, a happy bidder i is one where changing the allocation of i to any other item does not
increase the utility of I by more than ε.

We now show the following lemma.

Lemma 2.1. In each iteration, allocated bidders and unallocated bidders with empty demand sets are ε-
happy.

Proof. First, each allocated bidder picked a minimum price item in its neighborhoods and increased the
price of this item by only ε. Thus, the prices are monotonically non-decreasing and each bidder with an
allocated item cannot change to another item and get an increase in utility by more than ε.

Then, every item in the empty demand set of a bidder’s neighborhood has price 1. Hence, the statement
trivially holds since vi(j)− pj − ε ≤ 0 for all such bidders.

Now, we show that if a “large” number of bidders in OPT become ε-happy at any point in the auction,
then the final matching gives a (1− ε)-approximation.

Let µ(G) be the size of OPT.
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Lemma 2.2. If at the end of some iteration, (1 − ε) · µ(G) bidders in OPT are ε-happy, then the final
matching M has size at least (1− 2ε) · µ(G).

Proof. Let a1, . . . , an be the set of allocations and p1, . . . , pn be the prices of the items. Let HAPPY be
the set of ε-happy bidders. For any bidder i ∈ HAPPY ∩ OPT, it holds that ui ≥ vi(oi)− poi − ε.

Now, we sum over all ε-happy bidders:

∑
i∈HAPPY

ui ≥
∑

i∈HAPPY ∩OPT

ui since ui ≥ 0

≥
∑

i∈HAPPY ∩OPT

(vi(oi)− poi − ε)

≥
∑

i∈HAPPY ∩OPT

(vi(oi)− ε)−
∑

i∈HAPPY ∩OPT

poi by assumption |HAPPY ∩ OPT| ≥ (1− ε)µ(G)

≥ (1− ε)µ(G)(1− ε)−
∑

i∈HAPPY ∩OPT

poi since v(oi) = 1

≥ (1− 2ε)µ(G)−
∑

i∈HAPPY ∩OPT

poi .

Furthermore, we can lower bound the sum of the utilities as follows:

Algorithm 1: Auction-Based Algorithm for MCM
Input: A bipartite graph G = (L,R,E), where L is the set of bidders, R is the set of items, and E

is the set of edges
Output: A matching M of G

1 for each bidder i ∈ L do
2 set ai ← ⊥
3 end
4 for each item j ∈ R do
5 set pj ← 0
6 end
7 for r ← 1 to ⌈2/ε2⌉ do
8 for each unallocated bidder i ∈ L do
9 define Di ← argminj∈N(i),pj<1(pj) be the demand set of i

10 end
11 let Gr be the induced subgraph between unallocated bidders and demand set
12 find a maximal matching Mr in Gr

13 for every bidder-item pair (i, j) ∈Mr do
14 reallocate j to i, set ai ← j, and ai′ ← ⊥ for previous owner i′ of j
15 increase price of j, pj ← pj + ε

16 end
17 end
18 Return matching M as (i, ai) for all i ∈ L where ai ̸= ⊥
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∑
i∈HAPPY

ui =
∑

i∈HAPPY ∩ai ̸=⊥
(vi(ai)− pai) unallocated bidder have ui = 0

≤ |M | −
∑

i∈HAPPY ∩ai ̸=⊥
painumber of allocated bidders nondecreasing

= |M | −
∑
j∈R

pj only allocated items have > 0 price.

Combining both inequalities above gives us

|M | −
∑
j∈R

pj ≥
∑

i∈HAPPY

ui ≥ (1− 2ε)µ(G)−
∑

i∈HAPPY ∩OPT

poi

|M | ≥ (1− 2ε)µ(G) +

∑
j∈R

pj −
∑

i∈HAPPY ∩OPT

poi


≥ (1− 2ε)µ(G).

Now we prove that the conditions of the lemma are satisfied for some iteration.

Lemma 2.3. There exists some iteration r ≤ ⌈2/ε⌉ where at least (1−ε)µ(G) bidders in OPT are ε-happy.

Proof. We define a set of potential functions Φbidders and Φitems to represent the sum of the minimum prices
of neighboring items to each bidder and the sum of the prices of all items. Formally, we define:

Φbidders =
∑

i∈OPT

min
j∈N(i)

(pj)

Φitems =
∑
j∈R

pj .

Now we first note that both 0 ≤ Φbidders,Φitems ≤ µ(G) since prices start at 0 and are capped at 1. The
number of allocated items cannot be more than µ(G) as otherwise, we get a better matching. Thus, both
potential functions are monotone.

Consider an iteration where ≥ ε · µ(G) bidders are not ε-happy. They are the unallocated bidders.
At the end of the iteration, either an unallocated bidder becomes matched or all of the items in its demand

set are matched to other bidders. In the first case, the price of its matched item increases by ε. In the second
case, minj∈N(i)(pj) increases since all items in its demand set becomes matched (i.e. all of its lowest price
items increase in price). Hence, Φitems + Φbidders increase by at least ε2 · µ(G) in total. The maximum
possible value of this sum is 2µ(G) so by the pigeonhole principle, we have that in 2µ(G)

ε2µ(G)
= 2

ε iterations,
in at least one iteration we have enough happy bidders.

Finally, we show how to implement this algorithm in the streaming model and show its space bounds.

Lemma 2.4. Algorithm 1 can be implemented in the streaming model in O
(
1
ε

)
passes and O(n log(1/ε))

space.
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Proof. To prove the number of passes, we simply need to prove that each iteration requires O(1) passes.
In each iteration, the demand set can be determined in 2 passes. In the first pass, the bidder determines
their lowest price neighbor. Then, we do not store Di for each bidder explicitly but implicitly calculate
it when determining the maximal matching. For each unallocated neighbor, we greedily find a maximal
matching in the second pass by taking an edge if it is in the demand set of a bidder and the bidder is not yet
matched. Then, reallocation and price increases do not require additional passes. Hence, the algorithm can
be implemented in O(1/ε2) passes.

The amount of space usage is equal to the number of bidders and the space required to store the prices
for each bidder. Hence, a total of O(n log(1/ε)) space is needed.
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