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Announcements

• Check the latest announcement on Canvas:
• Scheduling lectures
• Link for joining CPSC 768 Slack
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Last Time: Maximum Matching in Bounded 
Arboricity Graphs
• Problem: Given an insertion-only arbitrary-order stream of 

edges, find an approximate size of the maximum matching in 
the graph using small space
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Last Time: Maximum Matching in Bounded 
Arboricity Graphs
• Problem: Given an insertion-only arbitrary-order stream of 

edges, find an approximate size of the maximum matching in 
the graph using small space
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Arboricity of the Graph

• Arboricity of the graph
• Minimum number of forests to decompose the graph
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Properties of Arboricity

• Related to the density of the graph

By Nash-Williams Theorem:

𝜶 = max
𝐒

𝒎𝑺

𝒏𝒔 − 𝟏
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Properties of Arboricity

• Related to the density of the graph

• Every subgraph 𝑆 ⊆ 𝐺 has arboricity ≤ 𝜶

By Nash-Williams Theorem:

𝜶 = max
𝐒

𝒎𝑺

𝒏𝒔 − 𝟏
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Properties of Arboricity

• Related to the density of the graph

• Every subgraph 𝑆 ⊆ 𝐺 has arboricity ≤ 𝜶
• Subgraph 𝑆 has at most 𝜶 ⋅ 𝑽 𝑺 edges

By Nash-Williams Theorem:

𝜶 = max
𝐒

𝒎𝑺

𝒏𝒔 − 𝟏
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Maximum Matching

• A matching in a graph is a set of edges where no two edges 
share an endpoint
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Maximum Matching

• A matching in a graph is a set of edges where no two edges 
share an endpoint

Maximum Matching has 
Maximum Cardinality
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Maximum Matching

• A matching in a graph is a set of edges where no two edges 
share an endpoint

Maximum Matching has 
Maximum Cardinality

Fractional Matching:

∀𝒗 ∈ 𝑽:&
𝒆∋𝒗

𝒇 𝒆 ≤ 𝟏
0.5
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Strategy for Streaming Algorithms

1. Figure out quantity to approximate and gives approximation of 
the quantity we want to approximate

2. Approximate the quantity via sampling and prove
concentration bounds
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Strategy for Streaming Algorithms

1. Figure out quantity to approximate and gives 
approximation of the quantity we want to approximate

2. Approximate the quantity via sampling and prove 
concentration bounds
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Strategy for Streaming Algorithms

1. Approximate 𝑬𝜶 to approximate 𝑴(𝑮) the maximum 
matching size
• 𝐸" is set of edges {𝑢, 𝑣} where 𝒖 and 𝒗 both incident to at 

most 𝜶 edges that show up later in the stream

Lemma 1: 𝑀 𝐺 ≤ 𝐸! ≤ 𝛼 + 2 ⋅ 𝑀(𝐺)
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Strategy for Streaming Algorithms

Last time: Proved 𝐸" ≤ 𝛼 + 2 ⋅ 𝑀 𝐺 via defining fractional 
matching 𝑌# =

$
"%$

if 𝑒 ∈ 𝐸" and 0 otherwise

Lemma 1: 𝑀 𝐺 ≤ 𝐸! ≤ 𝛼 + 2 ⋅ 𝑀(𝐺)

Edmond’s Matching Polytope Corollary:
Let 𝑌$ $∈&  be a fractional matching where the maximum 
weight on any edge is 𝜼. Then, ∑𝒆∈𝑬𝒀𝒆 ≤ 𝟏 + 𝜼 ⋅ 𝑴(𝑮).
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Strategy for Streaming Algorithms

Last time: Proved 𝐸" ≤ 𝛼 + 2 ⋅ 𝑀 𝐺 via defining fractional 
matching 𝑌# =

$
"%$

if 𝑒 ∈ 𝐸" and 0 otherwise.

Thus, $
"%$

⋅ 𝐸" ≤ 1 + $
"%$

⋅ 𝑀 𝐺 = "%&
"%$

⋅ 𝑀 𝐺 and so 

𝐸" ≤ 𝛼 + 2 ⋅ 𝑀 𝐺

Lemma 1: 𝑀 𝐺 ≤ 𝐸! ≤ 𝛼 + 2 ⋅ 𝑀(𝐺)
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Strategy for Streaming Algorithms

Last time: Proving 𝑀 𝐺 ≤ 𝐸" . 

Lemma 1: 𝑀 𝐺 ≤ 𝐸! ≤ 𝛼 + 2 ⋅ 𝑀(𝐺)
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Strategy for Streaming Algorithms

Last time: Proving 𝑀 𝐺 ≤ 𝐸" . 
• Defined 𝑩𝒖 for each 𝑢 ∈ 𝑉 as set of 𝜶 + 𝟏 edges incident to 𝒖

that arrive last in the stream

Lemma 1: 𝑀 𝐺 ≤ 𝐸! ≤ 𝛼 + 2 ⋅ 𝑀(𝐺)
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Strategy for Streaming Algorithms

Last time: Proving 𝑀 𝐺 ≤ 𝐸" . 
• Defined 𝑩𝒖 for each 𝑢 ∈ 𝑉 as set of 𝜶 + 𝟏 edges incident to 𝒖

that arrive last in the stream
• Defined good edge 𝑢, 𝑣 ∈ 𝐵( ∩ 𝐵)

Lemma 1: 𝑀 𝐺 ≤ 𝐸! ≤ 𝛼 + 2 ⋅ 𝑀(𝐺)
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Strategy for Streaming Algorithms

Last time: Proving 𝑀 𝐺 ≤ 𝐸" . 
• Defined 𝑩𝒖 for each 𝑢 ∈ 𝑉 as set of 𝜶 + 𝟏 edges incident to 𝒖

that arrive last in the stream
• Defined good edge 𝑢, 𝑣 ∈ 𝐵( ∩ 𝐵)
• Defined wasted edge 𝑎, 𝑏 ∈ 𝐵* ⊕𝐵+

Lemma 1: 𝑀 𝐺 ≤ 𝐸! ≤ 𝛼 + 2 ⋅ 𝑀(𝐺)

𝐸! is exactly set of good edges
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Strategy for Streaming Algorithms

• Heavy vertices 𝑯: set of vertices with degree at least 𝛼 + 1

𝐸! is exactly set of good edges
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Strategy for Streaming Algorithms

• Heavy vertices 𝑯: set of vertices with degree at least 𝛼 + 1
• 𝒘 ≔ number of good edges with no endpoints in 𝐻

𝐸! is exactly set of good edges
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Strategy for Streaming Algorithms

• Heavy vertices 𝑯: set of vertices with degree at least 𝛼 + 1
• 𝒘 ≔ number of good edges with no endpoints in 𝐻
• 𝒙 ≔ number of good edges with one endpoint in 𝐻

𝐸! is exactly set of good edges
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Strategy for Streaming Algorithms

• Heavy vertices 𝑯: set of vertices with degree at least 𝛼 + 1
• 𝒘 ≔ number of good edges with no endpoints in 𝐻
• 𝒙 ≔ number of good edges with one endpoint in 𝐻
• 𝒚 ≔ number of good edges with two endpoints in 𝐻

𝐸! is exactly set of good edges
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Strategy for Streaming Algorithms

• Heavy vertices 𝑯: set of vertices with degree at least 𝛼 + 1
• 𝒘 ≔ number of good edges with no endpoints in 𝐻
• 𝒙 ≔ number of good edges with one endpoint in 𝐻
• 𝒚 ≔ number of good edges with two endpoints in 𝐻
• 𝒛 ≔ number of wasted edges with two endpoints in 𝐻

𝐸! is exactly set of good edges
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Strategy for Streaming Algorithms

• Heavy vertices 𝑯: set of vertices with degree at least 𝛼 + 1
• 𝒘 ≔ number of good edges with no endpoints in 𝐻
• 𝒙 ≔ number of good edges with one endpoint in 𝐻
• 𝒚 ≔ number of good edges with two endpoints in 𝐻
• 𝒛 ≔ number of wasted edges with two endpoints in 𝐻

𝐸! is exactly set of good edges

|𝐸!| = 𝑤 + 𝑥 + 𝑦
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Strategy for Streaming Algorithms

•𝒘 ≔ no endpoints in 𝐻
• 𝒙 ≔ one endpoint in 𝐻
• 𝒚 ≔ two endpoints in 𝐻
• 𝒛 ≔ wasted edges with 

two endpoints in 𝐻

• First, figure out 𝑥 + 𝑦 by 
stating some facts

|𝐸!| = 𝑤 + 𝑥 + 𝑦
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Strategy for Streaming Algorithms

•𝒘 ≔ no endpoints in 𝐻
• 𝒙 ≔ one endpoint in 𝐻
• 𝒚 ≔ two endpoints in 𝐻
• 𝒛 ≔ wasted edges with 

two endpoints in 𝐻

• First, figure out 𝑥 + 𝑦 by 
stating some facts

• Number of edges in the 𝑩𝒖
of every 𝒖 ∈ 𝑯 incident to 
good edge

|𝐸!| = 𝑤 + 𝑥 + 𝑦
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Strategy for Streaming Algorithms

•𝒘 ≔ no endpoints in 𝐻
• 𝒙 ≔ one endpoint in 𝐻
• 𝒚 ≔ two endpoints in 𝐻
• 𝒛 ≔ wasted edges with 

two endpoints in 𝐻

• First, figure out 𝑥 + 𝑦 by 
stating some facts

• Number of edges in the 𝑩𝒖
of every 𝒖 ∈ 𝑯 incident to 
good edge

• 𝛼 + 1 𝐻 = 𝑥 + 2𝑦 + 𝑧

|𝐸!| = 𝑤 + 𝑥 + 𝑦
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Strategy for Streaming Algorithms

•𝒘 ≔ no endpoints in 𝐻
• 𝒙 ≔ one endpoint in 𝐻
• 𝒚 ≔ two endpoints in 𝐻
• 𝒛 ≔ wasted edges with 

two endpoints in 𝐻

• First, figure out 𝑥 + 𝑦 by 
stating some facts

1. Number of edges in the 
𝑩𝒖 of every 𝒖 ∈ 𝑯
incident to good edge
• 𝛼 + 1 𝐻 = 𝑥 + 2𝑦 + 𝑧

2. Good and wasted edges:
𝑧 + 𝑦 ≤ 𝛼 ⋅ |𝐻|

|𝐸!| = 𝑤 + 𝑥 + 𝑦
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Strategy for Streaming Algorithms

•𝒘 ≔ no endpoints in 𝐻
• 𝒙 ≔ one endpoint in 𝐻
• 𝒚 ≔ two endpoints in 𝐻
• 𝒛 ≔ wasted edges with 

two endpoints in 𝐻

• First, figure out 𝑥 + 𝑦 by 
stating some facts

1. Number of edges in the 
𝑩𝒖 of every 𝒖 ∈ 𝑯
incident to good edge
• 𝛼 + 1 𝐻 = 𝑥 + 2𝑦 + 𝑧

2. Good and wasted edges:
𝑧 + 𝑦 ≤ 𝛼 ⋅ |𝐻|

|𝐸!| = 𝑤 + 𝑥 + 𝑦
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Properties of Arboricity

• Related to the density of the graph

• Every subgraph 𝑆 ⊆ 𝐺 has arboricity ≤ 𝜶
• Subgraph 𝑆 has at most 𝜶 ⋅ 𝑽 𝑺 edges

By Nash-Williams Theorem:

𝜶 = max
𝐒

𝒎𝑺

𝒏𝒔 − 𝟏
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Strategy for Streaming Algorithms

•𝒘 ≔ no endpoints in 𝐻
• 𝒙 ≔ one endpoint in 𝐻
• 𝒚 ≔ two endpoints in 𝐻
• 𝒛 ≔ wasted edges with 

two endpoints in 𝐻

• First, figure out 𝑥 + 𝑦 by 
stating some facts

1. Number of edges in the 
𝑩𝒖 of every 𝒖 ∈ 𝑯
incident to good edge
• 𝛼 + 1 𝐻 = 𝑥 + 2𝑦 + 𝑧

2. Good and wasted edges:
𝑧 + 𝑦 ≤ 𝛼 ⋅ |𝐻|

|𝐸!| = 𝑤 + 𝑥 + 𝑦

All edges in 𝐻: 
at most 𝛼 ⋅ |𝐻| of them
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Strategy for Streaming Algorithms

•𝒘 ≔ no endpoints in 𝐻
• 𝒙 ≔ one endpoint in 𝐻
• 𝒚 ≔ two endpoints in 𝐻
• 𝒛 ≔ wasted edges with 

two endpoints in 𝐻

• Hence,
• 𝑥 + 2𝑦 + 𝑧 = 𝛼 + 1 𝐻

|𝐸!| = 𝑤 + 𝑥 + 𝑦
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Strategy for Streaming Algorithms

•𝒘 ≔ no endpoints in 𝐻
• 𝒙 ≔ one endpoint in 𝐻
• 𝒚 ≔ two endpoints in 𝐻
• 𝒛 ≔ wasted edges with 

two endpoints in 𝐻

• Hence,
• 𝑥 + 2𝑦 + 𝑧 = 𝛼 + 1 𝐻
• − 𝑧 + 𝑦 ≥ −𝛼 ⋅ |𝐻|

|𝐸!| = 𝑤 + 𝑥 + 𝑦
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Strategy for Streaming Algorithms

•𝒘 ≔ no endpoints in 𝐻
• 𝒙 ≔ one endpoint in 𝐻
• 𝒚 ≔ two endpoints in 𝐻
• 𝒛 ≔ wasted edges with 

two endpoints in 𝐻

• Hence,
• 𝑥 + 2𝑦 + 𝑧 = 𝛼 + 1 𝐻
• − 𝑧 + 𝑦 ≥ −𝛼 ⋅ |𝐻|
• 𝒙 + 𝒚 ≥ |𝑯|

|𝐸!| = 𝑤 + 𝑥 + 𝑦
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Strategy for Streaming Algorithms

•𝒘 ≔ no endpoints in 𝐻
• 𝒙 ≔ one endpoint in 𝐻
• 𝒚 ≔ two endpoints in 𝐻
• 𝒛 ≔ wasted edges with 

two endpoints in 𝐻

• Hence,
• 𝑥 + 2𝑦 + 𝑧 = 𝛼 + 1 𝐻
• − 𝑧 + 𝑦 ≥ −𝛼 ⋅ |𝐻|
• 𝒙 + 𝒚 ≥ |𝑯|

|𝐸!| = 𝑤 + 𝑥 + 𝑦

Define 𝑬𝑳 be set of edges 
with no endpoints in 𝑯
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Strategy for Streaming Algorithms

•𝒘 ≔ no endpoints in 𝐻
• 𝒙 ≔ one endpoint in 𝐻
• 𝒚 ≔ two endpoints in 𝐻
• 𝒛 ≔ wasted edges with 

two endpoints in 𝐻

• Hence,
• 𝑥 + 2𝑦 + 𝑧 = 𝛼 + 1 𝐻
• − 𝑧 + 𝑦 ≥ −𝛼 ⋅ |𝐻|
• 𝒙 + 𝒚 ≥ |𝑯|

• Every edge in 𝑬𝑳 is good

|𝐸!| = 𝑤 + 𝑥 + 𝑦

Define 𝑬𝑳 be set of edges 
with no endpoints in 𝑯
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Strategy for Streaming Algorithms

•𝒘 ≔ no endpoints in 𝐻
• 𝒙 ≔ one endpoint in 𝐻
• 𝒚 ≔ two endpoints in 𝐻
• 𝒛 ≔ wasted edges with 

two endpoints in 𝐻

• Hence,
• 𝑥 + 2𝑦 + 𝑧 = 𝛼 + 1 𝐻
• − 𝑧 + 𝑦 ≥ −𝛼 ⋅ |𝐻|
• 𝒙 + 𝒚 ≥ |𝑯|

• Every edge in 𝑬𝑳 is good
• 𝒘 = 𝑬𝑳

|𝐸!| = 𝑤 + 𝑥 + 𝑦

Define 𝑬𝑳 be set of edges 
with no endpoints in 𝑯
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Strategy for Streaming Algorithms

•𝒘 ≔ no endpoints in 𝐻
• 𝒙 ≔ one endpoint in 𝐻
• 𝒚 ≔ two endpoints in 𝐻
• 𝒛 ≔ wasted edges with 

two endpoints in 𝐻

• Hence,
• 𝑥 + 2𝑦 + 𝑧 = 𝛼 + 1 𝐻
• − 𝑧 + 𝑦 ≥ −𝛼 ⋅ |𝐻|
• 𝒙 + 𝒚 ≥ |𝑯|

• Every edge in 𝑬𝑳 is good
• 𝒘 = 𝑬𝑳
• Therefore, 

𝒙 + 𝒚 +𝒘 ≥ 𝑯 + |𝑬𝑳|

|𝐸!| = 𝑤 + 𝑥 + 𝑦

Define 𝑬𝑳 be set of edges 
with no endpoints in 𝑯
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Strategy for Streaming Algorithms

•𝒘 ≔ no endpoints in 𝐻
• 𝒙 ≔ one endpoint in 𝐻
• 𝒚 ≔ two endpoints in 𝐻
• 𝒛 ≔ wasted edges with 

two endpoints in 𝐻

• Hence,
• 𝑥 + 2𝑦 + 𝑧 = 𝛼 + 1 𝐻
• − 𝑧 + 𝑦 ≥ −𝛼 ⋅ |𝐻|
• 𝒙 + 𝒚 ≥ |𝑯|

• Every edge in 𝑬𝑳 is good
• 𝒘 = 𝑬𝑳
• Therefore, 

𝒙 + 𝒚 +𝒘 ≥ 𝑯 + |𝑬𝑳|

|𝐸!| = 𝑤 + 𝑥 + 𝑦 ≥ 𝑯 + |𝑬𝑳|

Define 𝑬𝑳 be set of edges 
with no endpoints in 𝑯
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Strategy for Streaming Algorithms

• Relate back to 𝑴 𝑮 • Hence,
• 𝑥 + 2𝑦 + 𝑧 = 𝛼 + 1 𝐻
• − 𝑧 + 𝑦 ≥ −𝛼 ⋅ |𝐻|
• 𝒙 + 𝒚 ≥ |𝑯|

• Every edge in 𝑬𝑳 is good
• 𝒘 = 𝑬𝑳
• Therefore, 

𝒙 + 𝒚 +𝒘 ≥ 𝑯 + |𝑬𝑳|

|𝐸!| = 𝑤 + 𝑥 + 𝑦 ≥ 𝑯 + |𝑬𝑳|

Define 𝑬𝑳 be set of edges 
with no endpoints in 𝑯
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Strategy for Streaming Algorithms

• Relate back to 𝑴 𝑮
• What is the size of 𝑀 𝐺 in 

relation to |𝐻| and 𝐸- ?

• Hence,
• 𝑥 + 2𝑦 + 𝑧 = 𝛼 + 1 𝐻
• − 𝑧 + 𝑦 ≥ −𝛼 ⋅ |𝐻|
• 𝒙 + 𝒚 ≥ |𝑯|

• Every edge in 𝑬𝑳 is good
• 𝒘 = 𝑬𝑳
• Therefore, 

𝒙 + 𝒚 +𝒘 ≥ 𝑯 + |𝑬𝑳|

|𝐸!| = 𝑤 + 𝑥 + 𝑦 ≥ 𝑯 + |𝑬𝑳|

Define 𝑬𝑳 be set of edges 
with no endpoints in 𝑯
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Strategy for Streaming Algorithms

• Relate back to 𝑴 𝑮
• What is the size of 𝑀 𝐺 in 

relation to |𝐻| and 𝐸- ?
• Every edge in 𝐸- could be 

in matching

• Hence,
• 𝑥 + 2𝑦 + 𝑧 = 𝛼 + 1 𝐻
• − 𝑧 + 𝑦 ≥ −𝛼 ⋅ |𝐻|
• 𝒙 + 𝒚 ≥ |𝑯|

• Every edge in 𝑬𝑳 is good
• 𝒘 = 𝑬𝑳
• Therefore, 

𝒙 + 𝒚 +𝒘 ≥ 𝑯 + |𝑬𝑳|

|𝐸!| = 𝑤 + 𝑥 + 𝑦 ≥ 𝑯 + |𝑬𝑳|

Define 𝑬𝑳 be set of edges 
with no endpoints in 𝑯
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Strategy for Streaming Algorithms

• Relate back to 𝑴 𝑮
• What is the size of 𝑀 𝐺 in 

relation to |𝐻| and 𝐸- ?
• Every edge in 𝐸- could be 

in matching
• Remaining edges incident 

to 𝐻
• At most one edge 

incident to each 𝑢 ∈ 𝐻

• Hence,
• 𝑥 + 2𝑦 + 𝑧 = 𝛼 + 1 𝐻
• − 𝑧 + 𝑦 ≥ −𝛼 ⋅ |𝐻|
• 𝒙 + 𝒚 ≥ |𝑯|

• Every edge in 𝑬𝑳 is good
• 𝒘 = 𝑬𝑳
• Therefore, 

𝒙 + 𝒚 +𝒘 ≥ 𝑯 + |𝑬𝑳|

|𝐸!| = 𝑤 + 𝑥 + 𝑦 ≥ 𝑯 + |𝑬𝑳|
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Strategy for Streaming Algorithms

• Relate back to 𝑴 𝑮
• What is the size of 𝑀 𝐺 in 

relation to |𝐻| and 𝐸- ?
• Every edge in 𝐸- could be 

in matching
• Remaining edges incident 

to 𝐻
• At most one edge 

incident to each 𝑢 ∈ 𝐻

• Hence,
• 𝑥 + 2𝑦 + 𝑧 = 𝛼 + 1 𝐻
• − 𝑧 + 𝑦 ≥ −𝛼 ⋅ |𝐻|
• 𝒙 + 𝒚 ≥ |𝑯|

• Every edge in 𝑬𝑳 is good
• 𝒘 = 𝑬𝑳
• Therefore, 

𝒙 + 𝒚 +𝒘 ≥ 𝑯 + |𝑬𝑳|

|𝐸!| = 𝑤 + 𝑥 + 𝑦 ≥ 𝑯 + 𝑬𝑳 ≥ 𝑴(𝑮)
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Strategy for Streaming Algorithms

• Most of our work is proving:

Lemma 1: 𝑀 𝐺 ≤ 𝐸! ≤ 𝛼 + 2 ⋅ 𝑀(𝐺)
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Strategy for Streaming Algorithms

1. Figure out quantity to approximate and gives approximation of 
the quantity we want to approximate

2. Approximate the quantity via sampling and prove
concentration bounds
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Approximating 𝐸2
• Let 𝑮𝒕 be the graph defined by the prefix of the stream 

consisting of first 𝒕 edges
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Approximating 𝐸2
• Let 𝑮𝒕 be the graph defined by the prefix of the stream 

consisting of first 𝒕 edges
• Let 𝑬𝜶𝒕 be the set of good edges in this prefix
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Approximating 𝐸2
• Let 𝑮𝒕 be the graph defined by the prefix of the stream 

consisting of first 𝒕 edges
• Let 𝑬𝜶𝒕 be the set of good edges in this prefix
• Let 𝑬∗ = max

𝒕
𝑬𝜶𝒕

Then, 𝑴 𝑮 ≤ 𝑬∗ ≤ 𝜶 + 𝟐 ⋅ 𝑴 𝑮  
since 𝐸∗ ≥ 𝐸+  and 𝑀 𝐺, ≤ 𝑀 𝐺



CPSC 768

Approximating 𝐸2
• Let 𝑮𝒕 be the graph defined by the prefix of the stream 

consisting of first 𝒕 edges
• Let 𝑬𝜶𝒕 be the set of good edges in this prefix
• Let 𝑬∗ = max

𝒕
𝑬𝜶𝒕

Then, 𝑴 𝑮 ≤ 𝑬∗ ≤ 𝜶 + 𝟐 ⋅ 𝑴 𝑮  
since 𝐸∗ ≥ 𝐸+  and 𝑀 𝐺, ≤ 𝑀 𝐺

Question: does 𝐸()  ever 
drop as 𝑡 increases? 
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Approximating 𝐸∗

Theorem: Can approximate 𝐸∗ to 1 + 𝜀 -
approximation in 𝑂 -./ 0

1!
 space whp.
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Approximating 𝐸∗

• Intuition: sample edges from 𝐸". to obtain accurate 
approximation of 𝐸".

Theorem: Can approximate 𝐸∗ to 1 + 𝜀 -
approximation in 𝑂 -./ 0

1!
 space whp.
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Approximating 𝐸∗ Algorithm

• Intuition: sample edges from 𝐸". to obtain accurate 
approximation of 𝐸".

• For each sampled edge 𝑒 = {𝑢, 𝑣}, store 𝒄𝒆𝒖 and 𝒄𝒆𝒗 for degrees 
of 𝑢 and 𝑣 in the rest of the stream
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Approximating 𝐸∗ Algorithm

• Intuition: sample edges from 𝐸". to obtain accurate 
approximation of 𝐸".

• For each sampled edge 𝑒 = {𝑢, 𝑣}, store 𝒄𝒆𝒖 and 𝒄𝒆𝒗 for degrees 
of 𝑢 and 𝑣 in the rest of the stream

• If either 𝒄𝒆𝒖 or 𝒄𝒆𝒗 exceeds 𝛼 delete {𝑢, 𝑣}
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Approximating 𝐸∗ Algorithm

1. Initialize 𝑆 ← ∅, 𝑝 = 1, estimate = 0
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1. Initialize 𝑆 ← ∅, 𝑝 = 1, estimate = 0
2. For each {𝑢, 𝑣} in stream: 
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Approximating 𝐸∗ Algorithm

1. Initialize 𝑆 ← ∅, 𝑝 = 1, estimate = 0
2. For each {𝑢, 𝑣} in stream: 

a) With probability 𝑝 add 𝑆 ← 𝑆 ∪ {𝑢, 𝑣}, initialize counters

Add new sampled edges
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Approximating 𝐸∗ Algorithm

1. Initialize 𝑆 ← ∅, 𝑝 = 1, estimate = 0
2. For each {𝑢, 𝑣} in stream: 

a) With probability 𝑝 add 𝑆 ← 𝑆 ∪ {𝑢, 𝑣}, initialize counters
b) For each edge 𝑒1 ∈ 𝑆, if 𝑒1 shares endpoint 𝑤 with 𝑒:
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Approximating 𝐸∗ Algorithm

1. Initialize 𝑆 ← ∅, 𝑝 = 1, estimate = 0
2. For each {𝑢, 𝑣} in stream: 

a) With probability 𝑝 add 𝑆 ← 𝑆 ∪ {𝑢, 𝑣}, initialize counters
b) For each edge 𝑒1 ∈ 𝑆, if 𝑒1 shares endpoint 𝑤 with 𝑒:

i. Increment 𝑐#!
2

Check the counters of 
previously sampled edges 
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Approximating 𝐸∗ Algorithm

1. Initialize 𝑆 ← ∅, 𝑝 = 1, estimate = 0
2. For each {𝑢, 𝑣} in stream: 

a) With probability 𝑝 add 𝑆 ← 𝑆 ∪ {𝑢, 𝑣}, initialize counters
b) For each edge 𝑒1 ∈ 𝑆, if 𝑒1 shares endpoint 𝑤 with 𝑒:

i. Increment 𝑐#!
2

ii. If 𝑐#!
2 > 𝛼, remove 𝑒1 and corresponding counters from 𝑆

Remove edge if it is no longer in 𝑬𝜶𝒕
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Approximating 𝐸∗ Algorithm

1. Initialize 𝑆 ← ∅, 𝑝 = 1, estimate = 0
2. For each {𝑢, 𝑣} in stream: 

a) With probability 𝑝 add 𝑆 ← 𝑆 ∪ {𝑢, 𝑣}, initialize counters
b) For each edge 𝑒1 ∈ 𝑆, if 𝑒1 shares endpoint 𝑤 with 𝑒:

i. Increment 𝑐#!
2

ii. If 𝑐#!
2 > 𝛼, remove 𝑒1 and corresponding counters from 𝑆

c) If 𝑆 > 80 𝜀4& log 𝑛:
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Approximating 𝐸∗ Algorithm

1. Initialize 𝑆 ← ∅, 𝑝 = 1, estimate = 0
2. For each {𝑢, 𝑣} in stream: 

a) With probability 𝑝 add 𝑆 ← 𝑆 ∪ {𝑢, 𝑣}, initialize counters
b) For each edge 𝑒1 ∈ 𝑆, if 𝑒1 shares endpoint 𝑤 with 𝑒:

i. Increment 𝑐#!
2

ii. If 𝑐#!
2 > 𝛼, remove 𝑒1 and corresponding counters from 𝑆

c) If 𝑆 > 80 𝜀4& log 𝑛:
i. Set 𝑝 ← 5

&
If you used too much space, reduce 

sampling rate
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Approximating 𝐸∗ Algorithm

1. Initialize 𝑆 ← ∅, 𝑝 = 1, estimate = 0
2. For each {𝑢, 𝑣} in stream: 

a) With probability 𝑝 add 𝑆 ← 𝑆 ∪ {𝑢, 𝑣}, initialize counters
b) For each edge 𝑒1 ∈ 𝑆, if 𝑒1 shares endpoint 𝑤 with 𝑒:

i. Increment 𝑐#!
2

ii. If 𝑐#!
2 > 𝛼, remove 𝑒1 and corresponding counters from 𝑆

c) If 𝑆 > 80 𝜀4& log 𝑛:
i. Set 𝑝 ← 5

&
ii. Remove each edge in 𝑆 with probability ½

Resample previous samples
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Approximating 𝐸∗ Algorithm
1. Initialize 𝑆 ← ∅, 𝑝 = 1, estimate = 0
2. For each {𝑢, 𝑣} in stream: 

a) With probability 𝑝 add 𝑆 ← 𝑆 ∪ {𝑢, 𝑣}, initialize counters
b) For each edge 𝑒1 ∈ 𝑆, if 𝑒1 shares endpoint 𝑤 with 𝑒:

i. Increment 𝑐#!
2

ii. If 𝑐#!
2 > 𝛼, remove 𝑒1 and corresponding counters from 𝑆

c) If 𝑆 > 80 𝜀4& log 𝑛:
i. Set 𝑝 ← 5

&
ii. Remove each edge in 𝑆 with probability ½

d) Estimate ← max(estimate, 𝑆 /𝑝)
Update estimate of 𝑬∗
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Approximating 𝐸∗ Algorithm

• Proof: Let 𝝉 = 𝟒𝟎 𝐥𝐨𝐠 𝒏
𝜺𝟐

and level 𝑖 (starting with 𝑖 = 2) be 
𝟐𝒊4𝟏 ⋅ 𝝉 ≤ 𝑬𝜶𝒕 < 𝟐𝒊 ⋅ 𝝉

• Define level 𝑖 = 1 to be 𝟎 ≤ 𝑬𝜶𝒕 < 𝟐 ⋅ 𝝉

Theorem: Can approximate 𝐸∗ to 1 + 𝜀 -
approximation in 𝑂 -./ 0

1!
 space whp.
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for 𝑖 ≥ 2
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Approximating 𝐸∗ Algorithm

• Proof: Let 𝝉 = 𝟒𝟎 𝐥𝐨𝐠 𝒏
𝜺𝟐

and level 𝑖 (starting with 𝑖 = 2) be 
𝟐𝒊4𝟏 ⋅ 𝝉 ≤ 𝑬𝜶𝒕 < 𝟐𝒊 ⋅ 𝝉

• Define level 𝑖 = 1 to be 𝟎 ≤ 𝑬𝜶𝒕 < 𝟐 ⋅ 𝝉

• Edge 𝑒 is sampled in level 𝒊 with probability 1
2"

for 𝑖 ≥ 2

• For any level 𝑖, let’s show the probability we get 1 + 𝜀 -approx. 
of 𝐸".
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Approximating 𝐸∗ Algorithm

• Proof: Let 𝝉 = 𝟒𝟎 𝐥𝐨𝐠 𝒏
𝜺𝟐

and level 𝑖 (starting with 𝑖 = 2) be 
𝟐𝒊4𝟏 ⋅ 𝝉 ≤ 𝑬𝜶𝒕 < 𝟐𝒊 ⋅ 𝝉

• Define level 𝑖 = 1 to be 𝟎 ≤ 𝑬𝜶𝒕 < 𝟐 ⋅ 𝝉

• Edge 𝑒 is sampled in level 𝒊 with probability 1
2"

for 𝑖 ≥ 2

• For any level 𝑖, let’s show the probability we get 1 + 𝜀 -approx. 
of 𝐸".

• Let 𝑆9. be the number of edges sampled in level 𝑖 after 𝑡
updates
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Approximating 𝐸∗ Algorithm
• Proof: Let 𝝉 = 𝟒𝟎 𝐥𝐨𝐠 𝒏

𝜺𝟐
and level 𝑖

(starting with 𝑖 = 2) be 
𝟐𝒊1𝟏 ⋅ 𝝉 ≤ 𝑬𝜶𝒕 < 𝟐𝒊 ⋅ 𝝉

• Define level 𝑖 = 1 to be 𝟎 ≤ 𝑬𝜶𝒕 < 𝟐 ⋅
𝝉

• Edge 𝑒 is sampled in level 𝒊 with 
probability 5

6"
for 𝑖 ≥ 2

• For any level 𝑖, let’s show the 
probability we get 1 + 𝜀 -approx. of 
𝐸78

• Let 𝑆98 be the number of edges 
sampled in level 𝑖 after 𝑡 updates

• Multiplicative Chernoff Bound:
• Pr 𝑋 − 𝜇 ≥ 𝜀 ⋅ 𝜇 ≤ 2exp(− :";

<
)
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Approximating 𝐸∗ Algorithm
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• 𝜇 = 𝑝9 ⋅ 𝐸". for 𝑖 ≥ 2
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Approximating 𝐸∗ Algorithm
• Proof: Let 𝝉 = 𝟒𝟎 𝐥𝐨𝐠 𝒏
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• Multiplicative Chernoff Bound:
• Pr 𝑋 − 𝜇 ≥ 𝜀 ⋅ 𝜇 ≤ 2exp(− :";
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• 𝜇 = 𝑝9 ⋅ 𝐸". for 𝑖 ≥ 2

• Pr |𝑆9. − 𝜇 ≥ 𝜀 ⋅ 𝜇 ≤ 2exp(4:
" =#$ ⋅5%
<

)

≤ 2 exp − :"⋅?@ ABC D
<⋅:"

= $
EBAF D
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Approximating 𝐸∗ Algorithm
• Proof: Let 𝝉 = 𝟒𝟎 𝐥𝐨𝐠 𝒏

𝜺𝟐
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• Let 𝑆98 be the number of edges 
sampled in level 𝑖 after 𝑡 updates
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• 𝜇 = 𝑝9 ⋅ 𝐸". for 𝑖 ≥ 2

• Pr |𝑆9. − 𝜇 ≥ 𝜀 ⋅ 𝜇 ≤ 2exp(4:
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<⋅:"
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EBAF D

• What do you notice about the above 
calculation?
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Approximating 𝐸∗ Algorithm
• True if 𝜇 ≥ 23 -./ 0

41!
• Multiplicative Chernoff Bound:

• Pr 𝑋 − 𝜇 ≥ 𝜀 ⋅ 𝜇 ≤ 2exp(− :";
<
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• What do you notice about the above 
calculation?
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Approximating 𝐸∗ Algorithm
• True if 𝜇 ≥ 23 -./ 0

41!

• What if 𝜇 < 23 -./ 0
41!

?
• Thoughts?

• Multiplicative Chernoff Bound:
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Approximating 𝐸∗ Algorithm
• True if 𝜇 ≥ 23 -./ 0

41!

• What if 𝜇 < 23 -./ 0
41!

?
• Thoughts?

• Multiplicative Chernoff Bound:
• Pr 𝑋 − 𝜇 ≥ 𝜀 ⋅ 𝜇 ≤ 2exp(− :";

<
)

• 𝜇 = 𝑝9 ⋅ 𝐸". for 𝑖 ≥ 2

• Pr |𝑆9. − 𝜇 ≥ 𝜀 ⋅ 𝜇 ≤ 2exp(4:
" =#$ ⋅5%
<

)

≤ 2 exp − :"⋅?@ ABC D
<⋅:"

= $
EBAF D

• What do you notice about the above 
calculation?

Need to prove that 𝑝3  
matches the level whp
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Approximating 𝐸∗ Algorithm
• Take the union bound 
over 𝑡 ≤ 𝑛5, then with 
probability at least 1 −

6
7.-8 0

:

• Multiplicative Chernoff Bound:
• Pr 𝑋 − 𝜇 ≥ 𝜀 ⋅ 𝜇 ≤ 2exp(− :";

<
)

• 𝜇 = 𝑝9 ⋅ 𝐸". for 𝑖 ≥ 2

• Pr |𝑆9. − 𝜇 ≥ 𝜀 ⋅ 𝜇 ≤ 2exp(4:
" =#$ ⋅5%
<

)

≤ 2 exp − :"⋅?@ ABC D
<⋅:"

= $
EBAF D
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Approximating 𝐸∗ Algorithm
• Take the union bound 
over 𝑡 ≤ 𝑛5, then with 
probability at least 1 −

6
7.-8 0

:

• 9"
#

:"
= 𝐸+, ± 𝜀 ⋅ |𝐸+, | for 

all 𝑡

• Multiplicative Chernoff Bound:
• Pr 𝑋 − 𝜇 ≥ 𝜀 ⋅ 𝜇 ≤ 2exp(− :";

<
)

• 𝜇 = 𝑝9 ⋅ 𝐸". for 𝑖 ≥ 2

• Pr |𝑆9. − 𝜇 ≥ 𝜀 ⋅ 𝜇 ≤ 2exp(4:
" =#$ ⋅5%
<

)

≤ 2 exp − :"⋅?@ ABC D
<⋅:"

= $
EBAF D



CPSC 768

Approximating 𝐸∗ Algorithm
• Take the union bound 
over 𝑡 ≤ 𝑛5, then with 
probability at least 1 −

6
7.-8 0

:

• 9"
#

:"
= 𝐸+, ± 𝜀 ⋅ |𝐸+, | for 

all 𝑡

• Multiplicative Chernoff Bound:
• Pr 𝑋 − 𝜇 ≥ 𝜀 ⋅ 𝜇 ≤ 2exp(− :";

<
)

• 𝜇 = 𝑝9 ⋅ 𝐸". for 𝑖 ≥ 2

• Pr |𝑆9. − 𝜇 ≥ 𝜀 ⋅ 𝜇 ≤ 2exp(4:
" =#$ ⋅5%
<

)

≤ 2 exp − :"⋅?@ ABC D
<⋅:"

= $
EBAF D

Theorem: Can approximate 𝐸∗ to 1 + 𝜀 -
approximation in 𝑂 -./ 0

1!
 space whp.
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Approximating 𝐸∗ Algorithm
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Theorem: Can approximate 𝐸∗ to 1 + 𝜀 -
approximation in 𝑂 -./ 0

1!
 space whp.

Lemma 1: 𝑀 𝐺 ≤ 𝐸∗ ≤ 𝛼 + 2 ⋅ 𝑀(𝐺)
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Approximating 𝐸∗ Algorithm
• Take the union bound 
over 𝑡 ≤ 𝑛5, then with 
probability at least 1 −

6
7.-8 0

:

• 9"
#

:"
= 𝐸+, ± 𝜀 ⋅ |𝐸+, | for 

all 𝑡

• Multiplicative Chernoff Bound:
• Pr 𝑋 − 𝜇 ≥ 𝜀 ⋅ 𝜇 ≤ 2exp(− :";

<
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• 𝜇 = 𝑝9 ⋅ 𝐸". for 𝑖 ≥ 2

• Pr |𝑆9. − 𝜇 ≥ 𝜀 ⋅ 𝜇 ≤ 2exp(4:
" =#$ ⋅5%
<

)

≤ 2 exp − :"⋅?@ ABC D
<⋅:"

= $
EBAF D

Theorem: Can approximate 𝑴(𝑮) to 
𝟐 + 𝜶 𝟏 + 𝜺 -approximation in 𝑶 𝐥𝐨𝐠 𝒏 ⋅𝐥𝐨𝐠 𝜶

𝜺𝟐
 space 

whp.
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On Wednesday

• Streaming Bipartite Matching using Auction Algorithms
• Another more intuitive way to solve maximum matching in 

bipartite graphs than Hungarian algorithm or maxflow!


