CPSC 768: Scalable and Private Graph Algorithms

Lecture 7: Streaming Maximum Matching

Quanquan C. Liu quanquan.liu@yale.edu

CPSC 768

Announcements

- Check the latest announcement on Canvas:
 - Scheduling lectures
 - Link for joining CPSC 768 Slack

Last Time: Maximum Matching in Bounded Arboricity Graphs

• **Problem**: Given an insertion-only arbitrary-order stream of edges, find an approximate size of the maximum matching in the graph using small space

Last Time: Maximum Matching in Bounded Arboricity Graphs

• **Problem**: Given an insertion-only arbitrary-order stream of edges, find an approximate size of the maximum matching in the graph using small space

Arboricity of the Graph

- Arboricity of the graph
 - Minimum number of forests to decompose the graph

• Related to the **density** of the graph

By Nash-Williams Theorem:

$$\alpha = \max_{S} \left\{ \left[\frac{m_{S}}{n_{s} - 1} \right] \right\}$$

• Related to the density of the graph

By Nash-Williams Theorem:

$$\alpha = \max_{S} \left\{ \left[\frac{m_{S}}{n_{s} - 1} \right] \right\}$$

• Every subgraph $S \subseteq G$ has arboricity $\leq \alpha$

Related to the density of the graph

By Nash-Williams Theorem:

$$\alpha = \max_{S} \left\{ \left[\frac{m_{S}}{n_{s} - 1} \right] \right\}$$

- Every subgraph $S \subseteq G$ has arboricity $\leq \alpha$
- Subgraph S has at most $\alpha \cdot V(S)$ edges

Maximum Matching

 A matching in a graph is a set of edges where no two edges share an endpoint

Maximum Matching

 A matching in a graph is a set of edges where no two edges share an endpoint

Maximum Matching

 A matching in a graph is a set of edges where no two edges share an endpoint

- 1. Figure out quantity to approximate and gives approximation of the quantity we want to approximate
- 2. Approximate the quantity via sampling and prove concentration bounds

- 1. Figure out quantity to approximate and gives approximation of the quantity we want to approximate
- 2. Approximate the quantity via sampling and prove concentration bounds

- 1. Approximate $|E_{\alpha}|$ to approximate M(G) the maximum matching size
 - *E_α* is set of edges {*u, v*} where *u* and *v* both incident to at most *α* edges that show up later in the stream

Lemma 1:
$$M(G) \leq |E_{\alpha}| \leq (\alpha + 2) \cdot M(G)$$

Lemma 1: $M(G) \leq |E_{\alpha}| \leq (\alpha + 2) \cdot M(G)$

Last time: Proved $|E_{\alpha}| \le (\alpha + 2) \cdot M(G)$ via defining fractional matching $Y_e = \frac{1}{\alpha+1}$ if $e \in E_{\alpha}$ and 0 otherwise

Edmond's Matching Polytope Corollary: Let $\{Y_e\}_{e \in E}$ be a fractional matching where the maximum weight on any edge is η . Then, $\sum_{e \in E} Y_e \leq (1 + \eta) \cdot M(G)$.

Lemma 1: $M(G) \leq |E_{\alpha}| \leq (\alpha + 2) \cdot M(G)$

Last time: Proved $|E_{\alpha}| \le (\alpha + 2) \cdot M(G)$ via defining fractional matching $Y_e = \frac{1}{\alpha+1}$ if $e \in E_{\alpha}$ and 0 otherwise.

Thus,
$$\frac{1}{\alpha+1} \cdot |E_{\alpha}| \le \left(1 + \frac{1}{\alpha+1}\right) \cdot M(G) = \frac{\alpha+2}{\alpha+1} \cdot M(G)$$
 and so
 $|E_{\alpha}| \le (\alpha+2) \cdot M(G)$

<u>Lemma 1</u>: $M(G) \le |E_{\alpha}| \le (\alpha + 2) \cdot M(G)$

Last time: Proving $M(G) \leq |E_{\alpha}|$.

Lemma 1: $M(G) \leq |E_{\alpha}| \leq (\alpha + 2) \cdot M(G)$

Last time: Proving $M(G) \leq |E_{\alpha}|$.

• Defined B_u for each $u \in V$ as set of $\alpha + 1$ edges incident to u that arrive last in the stream

Lemma 1: $M(G) \leq |E_{\alpha}| \leq (\alpha + 2) \cdot M(G)$

Last time: Proving $M(G) \leq |E_{\alpha}|$.

- Defined B_u for each $u \in V$ as set of $\alpha + 1$ edges incident to u that arrive last in the stream
- Defined good edge $\{u, v\} \in B_u \cap B_v$

Lemma 1: $M(G) \leq |E_{\alpha}| \leq (\alpha + 2) \cdot M(G)$

Last time: Proving $M(G) \leq |E_{\alpha}|$.

- Defined B_u for each $u \in V$ as set of $\alpha + 1$ edges incident to u that arrive last in the stream
- Defined good edge $\{u, v\} \in B_u \cap B_v$
- Defined wasted edge $\{a, b\} \in B_a \oplus B_b$

E_{α} is **exactly** set of good edges

• Heavy vertices *H*: set of vertices with degree at least $\alpha + 1$

- Heavy vertices *H*: set of vertices with degree at least $\alpha + 1$
- $w \coloneqq$ number of good edges with **no** endpoints in *H*

- Heavy vertices *H*: set of vertices with degree at least $\alpha + 1$
- $w \coloneqq$ number of good edges with **no** endpoints in *H*
- $x \coloneqq$ number of good edges with one endpoint in *H*

- Heavy vertices *H*: set of vertices with degree at least $\alpha + 1$
- $w \coloneqq$ number of good edges with **no** endpoints in *H*
- $x \coloneqq$ number of good edges with one endpoint in *H*
- $y \coloneqq$ number of good edges with two endpoints in *H*

- Heavy vertices *H*: set of vertices with degree at least $\alpha + 1$
- $w \coloneqq$ number of good edges with **no** endpoints in *H*
- $x \coloneqq$ number of good edges with one endpoint in *H*
- $y \coloneqq$ number of good edges with two endpoints in *H*
- $z \coloneqq$ number of wasted edges with two endpoints in *H*

- Heavy vertices *H*: set of vertices with degree at least $\alpha + 1$
- $w \coloneqq$ number of good edges with **no** endpoints in *H*
- $x \coloneqq$ number of good edges with one endpoint in *H*
- $y \coloneqq$ number of good edges with two endpoints in *H*
- $z \coloneqq$ number of wasted edges with two endpoints in *H*

$$|E_{\alpha}| = w + x + y$$

$$|E_{\alpha}| = w + x + y$$

- $w \coloneqq no$ endpoints in H
- $x \coloneqq$ one endpoint in *H*
- $y \coloneqq two$ endpoints in *H*
- *z* ≔ wasted edges with
 two endpoints in *H*

• First, figure out x + y by stating some facts

$$|E_{\alpha}| = w + x + y$$

- $w \coloneqq no$ endpoints in H
- $x \coloneqq$ one endpoint in *H*
- $y \coloneqq two$ endpoints in *H*
- *z* ≔ wasted edges with
 two endpoints in *H*

- First, figure out x + y by stating some facts
 - Number of edges in the B_u of every u ∈ H incident to good edge

$$|E_{\alpha}| = w + x + y$$

- $w \coloneqq no$ endpoints in H
- $x \coloneqq$ one endpoint in *H*
- $y \coloneqq two$ endpoints in *H*
- *z* ≔ wasted edges with
 two endpoints in *H*

- First, figure out x + y by stating some facts
 - Number of edges in the B_u of every u ∈ H incident to good edge

•
$$(\alpha + 1)|H| = x + 2y + z$$

$$|E_{\alpha}| = w + x + y$$

CPSC 768

- $w \coloneqq no$ endpoints in H
- $x \coloneqq$ one endpoint in *H*
- $y \coloneqq two$ endpoints in *H*
- *z* ≔ wasted edges with
 two endpoints in *H*

- First, figure out x + y by stating some facts
 - 1. Number of edges in the B_u of every $u \in H$ incident to good edge

•
$$(\alpha + 1)|H| = x + 2y + z$$

2. Good and wasted edges:
$$z + y \le \alpha \cdot |H|$$

$$|E_{\alpha}| = w + x + y$$

CPSC 768

- $w \coloneqq no$ endpoints in H
- $x \coloneqq$ one endpoint in *H*
- $y \coloneqq two$ endpoints in *H*
- *z* ≔ wasted edges with
 two endpoints in *H*

- First, figure out x + y by stating some facts
 - 1. Number of edges in the B_u of every $u \in H$ incident to good edge

•
$$(\alpha + 1)|H| = x + 2y + z$$

2. Good and wasted edges:
$$z + y \le \alpha \cdot |H|$$

Related to the density of the graph

By Nash-Williams Theorem:

$$\alpha = \max_{S} \left\{ \left[\frac{m_{S}}{n_{s} - 1} \right] \right\}$$

- Every subgraph $S \subseteq G$ has arboricity $\leq \alpha$
- Subgraph S has at most $\alpha \cdot V(S)$ edges

$$|E_{\alpha}| = w + x + y$$

CPSC 768

- $w \coloneqq no$ endpoints in H
- $x \coloneqq$ one endpoint in *H*
- $y \coloneqq two$ endpoints in *H*
- *z* ≔ wasted edges with
 two endpoints in *H*

All edges in H: at most $\alpha \cdot |H|$ of them

- First, figure out x + y by stating some facts
 - 1. Number of edges in the B_u of every $u \in H$ incident to good edge

•
$$(\alpha + 1)|H| = x + 2y + z$$

2. Good and wasted edges:
$$z + y \le \alpha \cdot |H|$$

Strategy for Streaming Algorithms $IE = w \pm x \pm w$

$$|E_{\alpha}| = w + x + y$$

- $w \coloneqq no$ endpoints in *H*
- $x \coloneqq$ one endpoint in *H*
- y := two endpoints in *H*
- *z* ≔ wasted edges with
 two endpoints in *H*

• Hence,

•
$$x + 2y + z = (\alpha + 1)H$$

Strategy for Streaming Algorithms |F| = w + x + w

- $|E_{\alpha}| = w + x + y$
- $w \coloneqq no$ endpoints in *H*
- $x \coloneqq$ one endpoint in *H*
- $y \coloneqq two$ endpoints in *H*
- *z* ≔ wasted edges with
 two endpoints in *H*

- Hence,
 - $x + 2y + z = (\alpha + 1)H$
 - $-(z+y) \ge -\alpha \cdot |H|$

Strategy for Streaming Algorithms $|E_{\alpha}| = w + x + y$

- $w \coloneqq no$ endpoints in *H*
- $x \coloneqq$ one endpoint in *H*
- $y \coloneqq two$ endpoints in *H*
- *z* ≔ wasted edges with
 two endpoints in *H*

- Hence,
 - $x + 2y + z = (\alpha + 1)H$
 - $-(z + y) \ge -\alpha \cdot |H|$ • $x + y \ge |H|$
Strategy for Streaming Algorithms IE = w + x + w

- $|E_{\alpha}| = w + x + y$
- $w \coloneqq no$ endpoints in H
- $x \coloneqq$ one endpoint in *H*
- $y \coloneqq two$ endpoints in *H*
- *z* ≔ wasted edges with
 two endpoints in *H*

Define **E**_L be set of edges with **no endpoints in H**

• Hence,

- $x + 2y + z = (\alpha + 1)H$
- $-(z + y) \ge -\alpha \cdot |H|$ • $x + y \ge |H|$

$$|E_{\alpha}| = w + x + y$$

CPSC 768

- $w \coloneqq no$ endpoints in *H*
- $x \coloneqq$ one endpoint in *H*
- $y \coloneqq two$ endpoints in *H*
- *z* ≔ wasted edges with
 two endpoints in *H*

Define *E*_{*L*} be set of edges with **no endpoints in** *H*

• Hence,

- $x + 2y + z = (\alpha + 1)H$
- $-(z + y) \ge -\alpha \cdot |H|$ • $x + y \ge |H|$
- Every edge in E_L is good

$$|E_{\alpha}| = w + x + y$$

- $w \coloneqq no$ endpoints in *H*
- $x \coloneqq$ one endpoint in *H*
- $y \coloneqq two$ endpoints in *H*
- *z* ≔ wasted edges with
 two endpoints in *H*

Define *E*_{*L*} be set of edges with **no endpoints in** *H*

• Hence,

- $x + 2y + z = (\alpha + 1)H$
- $-(z + y) \ge -\alpha \cdot |H|$ • $x + y \ge |H|$
- Every edge in E_L is good

• $w = |E_L|$

$$|E_{\alpha}| = w + x + y$$

CPSC 768

- $w \coloneqq no$ endpoints in *H*
- $x \coloneqq$ one endpoint in *H*
- $y \coloneqq two$ endpoints in *H*
- *z* ≔ wasted edges with
 two endpoints in *H*

Define **E**_L be set of edges with **no endpoints in H**

• Hence,

- $x + 2y + z = (\alpha + 1)H$
- $-(z + y) \ge -\alpha \cdot |H|$ • $x + y \ge |H|$
- Every edge in E_L is good
- $w = |E_L|$
- Therefore, $x + y + w \ge |H| + |E_L|$

- $w \coloneqq no$ endpoints in *H*
- $x \coloneqq$ one endpoint in *H*
- $y \coloneqq two$ endpoints in *H*
- *z* ≔ wasted edges with
 two endpoints in *H*

Define **E**_L be set of edges with **no endpoints in H**

• Hence,

- $x + 2y + z = (\alpha + 1)H$
- $-(z + y) \ge -\alpha \cdot |H|$ • $x + y \ge |H|$
- Every edge in E_L is good
- $w = |E_L|$

CPSC 768

• Therefore, $x + y + w \ge |H| + |E_L|$

• Relate back to M(G)

• Hence,

- $x + 2y + z = (\alpha + 1)H$
- $-(z + y) \ge -\alpha \cdot |H|$ • $x + y \ge |H|$
- Every edge in E_L is good
- $w = |E_L|$
 - Therefore, $x + y + w \ge |H| + |E_L|$

Define *E_L* be set of edges with **no endpoints in** *H*

- Relate back to M(G)
 - What is the size of M(G) in relation to |H| and $|E_L|$?

• Hence,

- $x + 2y + z = (\alpha + 1)H$
- $-(z + y) \ge -\alpha \cdot |H|$ • $x + y \ge |H|$
- Every edge in E_L is good
- $w = |E_L|$
 - Therefore, $x + y + w \ge |H| + |E_L|$

Define **E**_L be set of edges with **no endpoints in H**

- Relate back to M(G)
 - What is the size of M(G) in relation to |H| and $|E_L|$?
 - Every edge in E_L could be in matching

Define *E*_{*L*} be set of edges with **no endpoints in** *H*

• Hence,

- $x + 2y + z = (\alpha + 1)H$
- $-(z + y) \ge -\alpha \cdot |H|$ • $x + y \ge |H|$
- Every edge in E_L is good
- $w = |E_L|$

CPSC 768

• Therefore, $x + y + w \ge |H| + |E_L|$

- Relate back to M(G)
 - What is the size of M(G) in relation to |H| and $|E_L|$?
 - Every edge in E_L could be in matching
 - Remaining edges incident to *H*
 - At most one edge incident to each $u \in H$

• Hence,

- $x + 2y + z = (\alpha + 1)H$
- $-(z + y) \ge -\alpha \cdot |H|$ • $x + y \ge |H|$
- Every edge in E_L is good
- $w = |E_L|$

CPSC 768

• Therefore, $x + y + w \ge |H| + |E_L|$

CPSC 768

• Relate back to M(G)

- What is the size of M(G) in relation to |H| and $|E_L|$?
- Every edge in E_L could be in matching
- Remaining edges incident to *H*
 - At most one edge incident to each $u \in H$

• Hence,

•
$$x + 2y + z = (\alpha + 1)H$$

•
$$-(z + y) \ge -\alpha \cdot |H|$$

• $x + y \ge |H|$

- Every edge in E_L is good
- $w = |E_L|$
- Therefore, $x + y + w \ge |H| + |E_L|$

Most of our work is proving:

Lemma 1: $M(G) \leq |E_{\alpha}| \leq (\alpha + 2) \cdot M(G)$

- 1. Figure out quantity to approximate and gives approximation of the quantity we want to approximate
- 2. Approximate the quantity via sampling and prove concentration bounds

Let G_t be the graph defined by the prefix of the stream consisting of first t edges

- Let G_t be the graph defined by the prefix of the stream consisting of first t edges
 - Let E_{α}^{t} be the set of good edges in this prefix

- Let G_t be the graph defined by the prefix of the stream consisting of first t edges
 - Let E_{α}^{t} be the set of good edges in this prefix
 - Let $\mathbf{E}^* = \max_t \left(|\mathbf{E}^t_{\alpha}| \right)$

Then,
$$M(G) \leq E^* \leq (\alpha + 2) \cdot M(G)$$

since $E^* \geq |E_{\alpha}|$ and $M(G_t) \leq M(G)$

- Let G_t be the graph defined by the prefix of the stream consisting of first t edges
 - Let E_{α}^{t} be the set of good edge
 - Let $\mathbf{E}^* = \max_t \left(|\mathbf{E}^t_{\alpha}| \right)$

Question: does $|E_{\alpha}^{t}|$ ever drop as t increases?

Then, $M(G) \leq E^* \leq (\alpha + 2) \cdot M(G)$ since $E^* \geq |E_{\alpha}|$ and $M(G_t) \leq M(G)$

Approximating *E**

Theorem: Can approximate E^* to $(1 + \varepsilon)$ approximation in $O\left(\frac{\log(n)}{\varepsilon^2}\right)$ space whp.

Approximating E*

• Intuition: sample edges from E_{α}^{t} to obtain accurate approximation of $|E_{\alpha}^{t}|$

Theorem: Can approximate E^* to $(1 + \varepsilon)$ approximation in $O\left(\frac{\log(n)}{\varepsilon^2}\right)$ space whp.

- Intuition: sample edges from E_{α}^{t} to obtain accurate approximation of $|E_{\alpha}^{t}|$
- For each sampled edge $e = \{u, v\}$, store c_e^u and c_e^v for degrees of u and v in the rest of the stream

- Intuition: sample edges from E_{α}^{t} to obtain accurate approximation of $|E_{\alpha}^{t}|$
- For each sampled edge $e = \{u, v\}$, store c_e^u and c_e^v for degrees of u and v in the rest of the stream
 - If either c_e^u or c_e^v exceeds α delete $\{u, v\}$

1. Initialize $S \leftarrow \emptyset$, p = 1, estimate = 0

- 1. Initialize $S \leftarrow \emptyset$, p = 1, estimate = 0
- 2. For each $\{u, v\}$ in stream:

- 1. Initialize $S \leftarrow \emptyset$, p = 1, estimate = 0
- 2. For each $\{u, v\}$ in stream:

Add new sampled edges

a) With probability p add $S \leftarrow S \cup \{u, v\}$, initialize counters

- 1. Initialize $S \leftarrow \emptyset$, p = 1, estimate = 0
- 2. For each $\{u, v\}$ in stream:
 - a) With probability p add $S \leftarrow S \cup \{u, v\}$, initialize counters
 - b) For each edge $e' \in S$, if e' shares endpoint w with e:

- 1. Initialize $S \leftarrow \emptyset$, p = 1, estimate = 0
- 2. For each $\{u, v\}$ in stream:
 - a) With probability p add $S \leftarrow S \cup \{u, v\}$, initialize counters
 - b) For each edge $e' \in S$, if e' shares endpoint w with e:
 - i. Increment $c_{e'}^w$

Check the counters of previously sampled edges

- 1. Initialize $S \leftarrow \emptyset$, p = 1, estimate = 0
- 2. For each $\{u, v\}$ in stream:
 - a) With probability p add $S \leftarrow S \cup \{u, v\}$, initialize counters
 - b) For each edge $e' \in S$, if e' shares endpoint w with e:
 - i. Increment $c_{e'}^w$
 - ii. If $c_{e'}^w > \alpha$, remove e' and corresponding counters from *S*

Remove edge if it is no longer in E_{α}^{t}

- 1. Initialize $S \leftarrow \emptyset$, p = 1, estimate = 0
- 2. For each $\{u, v\}$ in stream:
 - a) With probability p add $S \leftarrow S \cup \{u, v\}$, initialize counters
 - b) For each edge $e' \in S$, if e' shares endpoint w with e:
 - i. Increment $c_{e'}^w$

ii. If $c_{e'}^w > \alpha$, remove e' and corresponding counters from Sc) If $|S| > 80 \varepsilon^{-2} \log n$:

- 1. Initialize $S \leftarrow \emptyset$, p = 1, estimate = 0
- 2. For each $\{u, v\}$ in stream:
 - a) With probability p add $S \leftarrow S \cup \{u, v\}$, initialize counters
 - b) For each edge $e' \in S$, if e' shares endpoint w with e:
 - i. Increment $c_{e'}^w$

i. Set $p \leftarrow \frac{p}{2}$

ii. If $c_{e'}^w > \alpha$, remove e' and corresponding counters from *S* c) If $|S| > 80 \varepsilon^{-2} \log n$:

If you used too much space, reduce sampling rate

- 1. Initialize $S \leftarrow \emptyset$, p = 1, estimate = 0
- 2. For each $\{u, v\}$ in stream:
 - a) With probability p add $S \leftarrow S \cup \{u, v\}$, initialize counters
 - b) For each edge $e' \in S$, if e' shares endpoint w with e:
 - i. Increment $c_{e'}^w$

ii. If $c_{e'}^w > \alpha$, remove e' and corresponding counters from *S*

- c) If $|S| > 80 \varepsilon^{-2} \log n$:
 - i. Set $p \leftarrow \frac{p}{2}$

Resample previous samples

ii. Remove each edge in S with probability $\frac{1}{2}$

CPSC 768

- 1. Initialize $S \leftarrow \emptyset$, p = 1, estimate = 0
- 2. For each $\{u, v\}$ in stream:
 - a) With probability p add $S \leftarrow S \cup \{u, v\}$, initialize counters
 - b) For each edge $e' \in S$, if e' shares endpoint w with e:
 - i. Increment $c_{e'}^w$
 - ii. If $c_{e'}^w > \alpha$, remove e' and corresponding counters from *S* c) If $|S| > 80 \varepsilon^{-2} \log n$:
 - i. Set $p \leftarrow \frac{p}{2}$
 - ii. Remove each edge in S with probability $\frac{1}{2}$
 - d) Estimate $\leftarrow \max(\text{estimate}, |S|/p)$

Update estimate of E^*

Theorem: Can approximate E^* to $(1 + \varepsilon)$ -approximation in $O\left(\frac{\log(n)}{\varepsilon^2}\right)$ space whp.

• Proof: Let $\tau = \frac{40 \log n}{\epsilon^2}$ and level *i* (starting with i = 2) be $2^{i-1} \cdot \tau \le |E_{\alpha}^t| < 2^i \cdot \tau$

• Define level i = 1 to be $0 \le |E_{\alpha}^t| < 2 \cdot \tau$

Theorem: Can approximate E^* to $(1 + \varepsilon)$ -approximation in $O\left(\frac{\log(n)}{\varepsilon^2}\right)$ space whp.

• Proof: Let $\tau = \frac{40 \log n}{\epsilon^2}$ and level *i* (starting with i = 2) be $2^{i-1} \cdot \tau \le |E_{\alpha}^t| < 2^i \cdot \tau$

- Define level i = 1 to be $0 \le |E_{\alpha}^{t}| < 2 \cdot \tau$
- Edge *e* is sampled in level *i* with probability $\frac{1}{2^i}$ for $i \ge 2$

- Proof: Let $\tau = \frac{40 \log n}{\epsilon^2}$ and level *i* (starting with i = 2) be $2^{i-1} \cdot \tau \le |E_{\alpha}^t| < 2^i \cdot \tau$
- Define level i = 1 to be $0 \le |E_{\alpha}^t| < 2 \cdot \tau$
- Edge *e* is sampled in level *i* with probability $\frac{1}{2^i}$ for $i \ge 2$
- For any level *i*, let's show the probability we get $(1 + \varepsilon)$ -approx. of E_{α}^{t}

• Proof: Let $\tau = \frac{40 \log n}{\epsilon^2}$ and level *i* (starting with i = 2) be $2^{i-1} \cdot \tau \le |E_{\alpha}^t| < 2^i \cdot \tau$

- Define level i = 1 to be $0 \le |E_{\alpha}^t| < 2 \cdot \tau$
- Edge *e* is sampled in level *i* with probability $\frac{1}{2^i}$ for $i \ge 2$
- For any level *i*, let's show the probability we get $(1 + \varepsilon)$ -approx. of E_{α}^{t}
 - Let S_i^t be the number of edges sampled in level *i* after *t* updates

- Proof: Let $\tau = \frac{40 \log n}{\epsilon^2}$ and level *i* (starting with i = 2) be $2^{i-1} \cdot \tau \le |E_{\alpha}^t| < 2^i \cdot \tau$
- Define level i = 1 to be $0 \le |E_{\alpha}^{t}| < 2 \cdot \tau$
- Edge *e* is **sampled in level** *i* with probability $\frac{1}{2^i}$ for $i \ge 2$
- For any level *i*, let's show the probability we get $(1 + \varepsilon)$ -approx. of E_{α}^{t}
 - Let S_i^t be the number of edges sampled in level *i* after *t* updates

• Multiplicative Chernoff Bound:

•
$$\Pr[|X - \mu| \ge \varepsilon \cdot \mu] \le 2\exp(-\frac{\varepsilon^2 \mu}{3})$$

- Proof: Let $\tau = \frac{40 \log n}{\epsilon^2}$ and level *i* (starting with i = 2) be $2^{i-1} \cdot au \leq |\dot{E}_{\alpha}^t| < 2^i \cdot au$
- Define level i = 1 to be $0 \le |E_{\alpha}^t| < 2 \cdot$ $\mu = p_i \cdot |E_{\alpha}^t|$ for $i \ge 2$ τ
- Edge *e* is **sampled in level** *i* with probability $\frac{1}{2^i}$ for $i \ge 2$
- For any level *i*, let's show the probability we get $(1 + \varepsilon)$ -approx. of E^t_{α}
 - Let S_i^t be the number of edges sampled in level *i* after *t* updates

- Multiplicative Chernoff Bound:
 - $\Pr[|X \mu| \ge \varepsilon \cdot \mu] \le 2\exp(-\frac{\varepsilon^2 \mu}{3})$
- Proof: Let $\tau = \frac{40 \log n}{\epsilon^2}$ and level *i* (starting with i = 2) be $2^{i-1} \cdot \tau \le |E_{\alpha}^t| < 2^i \cdot \tau$
- Define level i = 1 to be $0 \le |E_{\alpha}^t| < 2 \cdot \tau$
- Edge *e* is **sampled in level** *i* with probability $\frac{1}{2^i}$ for $i \ge 2$
- For any level *i*, let's show the probability we get $(1 + \varepsilon)$ -approx. of E_{α}^{t}
 - Let S_i^t be the number of edges sampled in level *i* after *t* updates

- Multiplicative Chernoff Bound:
 - $\Pr[|X \mu| \ge \varepsilon \cdot \mu] \le 2\exp(-\frac{\varepsilon^2 \mu}{3})$
- $\mu = p_i \cdot |E_{\alpha}^t|$ for $i \ge 2$ • $\Pr[||S_i^t - \mu| \ge \varepsilon \cdot \mu] \le 2\exp(\frac{-\varepsilon^2 |E_{\alpha}^t| \cdot p_i}{3})$ $\le 2\exp\left(-\frac{\varepsilon^2 \cdot 40 \log n}{3 \cdot \varepsilon^2}\right) = \frac{1}{\operatorname{poly}(n)}$

- Proof: Let $\tau = \frac{40 \log n}{\epsilon^2}$ and level *i* (starting with i = 2) be $2^{i-1} \cdot \tau \le |E_{\alpha}^t| < 2^i \cdot \tau$
- Define level i = 1 to be $0 \le |E_{\alpha}^t| < 2 \cdot \tau$
- Edge *e* is **sampled in level** *i* with probability $\frac{1}{2^i}$ for $i \ge 2$
- For any level *i*, let's show the probability we get $(1 + \varepsilon)$ -approx. of E_{α}^{t}
 - Let S_i^t be the number of edges sampled in level *i* after *t* updates

- Multiplicative Chernoff Bound:
 - $\Pr[|X \mu| \ge \varepsilon \cdot \mu] \le 2\exp(-\frac{\varepsilon^2 \mu}{3})$
- $\mu = p_i \cdot |E_{\alpha}^t|$ for $i \ge 2$ • $\Pr[||S_i^t - \mu| \ge \varepsilon \cdot \mu] \le 2\exp(\frac{-\varepsilon^2 |E_{\alpha}^t| \cdot p_i}{3})$ $\le 2\exp\left(-\frac{\varepsilon^2 \cdot 40 \log n}{3 \cdot \varepsilon^2}\right) = \frac{1}{\operatorname{poly}(n)}$
- What do you notice about the above calculation?

- Proof: Let $\tau = \frac{40 \log n}{\epsilon^2}$ and level *i* (starting with i = 2) be $2^{i-1} \cdot \tau \le |E_{\alpha}^t| < 2^i \cdot \tau$
- Define level i = 1 to be $0 \le |E_{\alpha}^t| < 2 \cdot \tau$
- Edge *e* is **sampled in level** *i* with probability $\frac{1}{2^i}$ for $i \ge 2$
- For any level *i*, let's show the probability we get $(1 + \varepsilon)$ -approx. of E_{α}^{t}
 - Let S_i^t be the number of edges sampled in level *i* after *t* updates

- Multiplicative Chernoff Bound:
 - $\Pr[|X \mu| \ge \varepsilon \cdot \mu] \le 2\exp(-\frac{\varepsilon^2 \mu}{3})$
- $\mu = p_i \cdot |E_{\alpha}^t|$ for $i \ge 2$
- $\Pr[||S_i^t \mu| \ge \varepsilon \cdot \mu] \le 2\exp(\frac{-\varepsilon^2 |E_{\alpha}^t| \cdot p_i}{3})$ $\le 2\exp(-\frac{\varepsilon^2 \cdot 40 \log n}{3 \cdot \varepsilon^2}) = \frac{1}{\operatorname{poly}(n)}$
- What do you notice about the above calculation?

• True if $\mu \geq \frac{40 \log n}{3\epsilon^2}$

• Multiplicative Chernoff Bound:

•
$$\Pr[|X - \mu| \ge \varepsilon \cdot \mu] \le 2\exp(-\frac{\varepsilon^2 \mu}{3})$$

•
$$\mu = p_i \cdot |E_{\alpha}^t|$$
 for $i \ge 2$

CPSC 768

•
$$\Pr[||S_i^t - \mu| \ge \varepsilon \cdot \mu] \le 2\exp(\frac{-\varepsilon^2 |E_\alpha^t| \cdot p_i}{3})$$

 $\le 2\exp(-\frac{\varepsilon^2 \cdot 40 \log n}{3 \cdot \varepsilon^2}) = \frac{1}{\operatorname{poly}(n)}$

• What do you notice about the above calculation?

• True if
$$\mu \geq \frac{40 \log n}{3\epsilon^2}$$

• What if $\mu < \frac{40 \log n}{3\epsilon^2}$
• Thoughts?

• Multiplicative Chernoff Bound:

•
$$\Pr[|X - \mu| \ge \varepsilon \cdot \mu] \le 2\exp(-\frac{\varepsilon^2 \mu}{3})$$

•
$$\mu = p_i \cdot |E_{\alpha}^t|$$
 for $i \ge 2$

•
$$\Pr[||S_i^t - \mu| \ge \varepsilon \cdot \mu] \le 2\exp(\frac{-\varepsilon^2 |E_\alpha^t| \cdot p_i}{3})$$

 $\le 2\exp(-\frac{\varepsilon^2 \cdot 40 \log n}{3 \cdot \varepsilon^2}) = \frac{1}{\operatorname{poly}(n)}$

• What do you notice about the above calculation?

• True if
$$\mu \geq \frac{40 \log n}{3\epsilon^2}$$

• What if $\mu < \frac{40 \log n}{3\epsilon^2}$
• Thoughts?

Need to prove that p_i matches the level whp • Multiplicative Chernoff Bound:

•
$$\Pr[|X - \mu| \ge \varepsilon \cdot \mu] \le 2\exp(-\frac{\varepsilon^2 \mu}{3})$$

•
$$\mu = p_i \cdot |E_{\alpha}^t|$$
 for $i \ge 2$

•
$$\Pr[||S_i^t - \mu| \ge \varepsilon \cdot \mu] \le 2\exp(\frac{-\varepsilon^2 |E_\alpha^t| \cdot p_i}{3})$$

 $\le 2\exp(-\frac{\varepsilon^2 \cdot 40 \log n}{3 \cdot \varepsilon^2}) = \frac{1}{\operatorname{poly}(n)}$

• What do you notice about the above calculation?

- Take the union bound over $t \le n^2$, then with probability at least $1 - \frac{1}{poly(n)}$:
- Multiplicative Chernoff Bound:

•
$$\Pr[|X - \mu| \ge \varepsilon \cdot \mu] \le 2\exp(-\frac{\varepsilon^2 \mu}{3})$$

•
$$\mu = p_i \cdot |E_{\alpha}^{\circ}|$$
 for $i \ge 2$
• $\Pr[||S_i^t - \mu| \ge \varepsilon \cdot \mu] \le 2\exp(\frac{-\varepsilon^2 |E_{\alpha}^t| \cdot p_i}{3})$
 $\le 2\exp\left(-\frac{\varepsilon^2 \cdot 40 \log n}{3 \cdot \varepsilon^2}\right) = \frac{1}{\operatorname{poly}(n)}$

• Take the union bound over $t \le n^2$, then with probability at least 1 – 1

$$\overline{\frac{S_i^t}{p_i}} = |E_{\alpha}^t| \pm \varepsilon \cdot |E_{\alpha}^t| for$$
all t

• Multiplicative Chernoff Bound:

•
$$\Pr[|X - \mu| \ge \varepsilon \cdot \mu] \le 2\exp(-\frac{\varepsilon^2 \mu}{3})$$

• $\mu = p_i \cdot |E_{\alpha}^t|$ for $i \ge 2$

•
$$\Pr[||S_i^t - \mu| \ge \varepsilon \cdot \mu] \le 2\exp(\frac{-\varepsilon^2 |E_\alpha^t| \cdot p_i}{3})$$

 $\le 2\exp(-\frac{\varepsilon^2 \cdot 40 \log n}{3 \cdot \varepsilon^2}) = \frac{1}{\operatorname{poly}(n)}$

• Take the union bound over $t \le n^2$, then with probability at least 1 –

• $\frac{S_i^t}{p_i} = |E_{\alpha}^t| \pm \varepsilon \cdot |E_{\alpha}^t|$ for

 $\overline{\mathrm{poly}(n)}$.

all t

• Multiplicative Chernoff Bound:

•
$$\Pr[|X - \mu| \ge \varepsilon \cdot \mu] \le 2\exp(-\frac{\varepsilon^2 \mu}{3})$$

• $\mu = p_i \cdot |E_{\alpha}^t|$ for $i \ge 2$

•
$$\Pr[||S_i^t - \mu| \ge \varepsilon \cdot \mu] \le 2\exp(\frac{-\varepsilon^2 |E_\alpha^t| \cdot p_i}{3})$$

 $\le 2\exp(-\frac{\varepsilon^2 \cdot 40 \log n}{3 \cdot \varepsilon^2}) = \frac{1}{\operatorname{poly}(n)}$

Theorem: Can approximate E^* to $(1 + \varepsilon)$ -approximation in $O\left(\frac{\log(n)}{\varepsilon^2}\right)$ space whp.

 Take the union bound over $t \leq n^2$, then with probability at least 1 –

poly(n)

all t

• Multiplicative Chernoff Bound: • $\Pr[|X - \mu| \ge \varepsilon \cdot \mu] \le 2\exp(-\frac{\varepsilon^2 \mu}{2})$ • $\mu = p_i \cdot |E_{\alpha}^t|$ for $i \geq 2$ $\sum_{i=1}^{poly(n)} \frac{S_{i}^{t}}{p_{i}} = |\underbrace{\text{Lemma 1: } M(G)}_{L\alpha| \pm \varepsilon \cdot |L\alpha| \text{ IOI }} \leq E^{*} \leq (\alpha + 2) \cdot M(G)^{3} + 2 \cdot |L\alpha| |I| \leq C \cdot |L\alpha| |I| \leq C \cdot |L\alpha| |I| = C \cdot |L\alpha| = C \cdot |L\alpha| |I| = C \cdot |L\alpha| = C$

> Theorem: Can approximate E^* to $(1 + \varepsilon)$ approximation in $O\left(\frac{\log(n)}{\varepsilon^2}\right)$ space whp.

> > **CPSC 768**

• Multiplicative Chernoff Bound: Take the union bound • $\Pr[|X - \mu| \ge \varepsilon \cdot \mu] \le 2\exp(-\frac{\varepsilon^2 \mu}{2})$ over $t \leq n^2$, then with probability at least 1 -- - - - IEtlfori > 7 Theorem: Can approximate M(G) to $(2 + \alpha)(1 + \varepsilon)$ -approximation in $O\left(\frac{\log(n) \cdot \log(\alpha)}{\varepsilon^2}\right)$ space pol whp.

On Wednesday

- Streaming Bipartite Matching using Auction Algorithms
 - Another more intuitive way to solve maximum matching in bipartite graphs than Hungarian algorithm or maxflow!