
CPSC 768

CPSC 768:
Scalable and Private Graph Algorithms

Quanquan C. Liu
quanquan.liu@yale.edu

Lecture 7: Streaming Maximum Matching

CPSC 768

Announcements

• Check the latest announcement on Canvas:
• Scheduling lectures
• Link for joining CPSC 768 Slack

CPSC 768

Last Time: Maximum Matching in Bounded
Arboricity Graphs
• Problem: Given an insertion-only arbitrary-order stream of

edges, find an approximate size of the maximum matching in
the graph using small space

CPSC 768

Last Time: Maximum Matching in Bounded
Arboricity Graphs
• Problem: Given an insertion-only arbitrary-order stream of

edges, find an approximate size of the maximum matching in
the graph using small space

𝐺 𝑎

Input Graph

𝑏

𝑐
𝑑𝑔

ℎ 𝑓
𝑒

𝑐

𝑏

𝑎

𝑏

𝑒

𝑓

𝑏

𝑑

𝑑

𝑐

ℎ

𝑓

𝑔

𝑓

ℎ

𝑒

𝑒

𝑏

ℎ

𝑔

𝑔

𝑑

Input Stream

Small Memory

𝑒

𝑏

𝑐 𝑔

𝑓

Approx Matching Size: 2

CPSC 768

Arboricity of the Graph

• Arboricity of the graph
• Minimum number of forests to decompose the graph

CPSC 768

Properties of Arboricity

• Related to the density of the graph

By Nash-Williams Theorem:

𝜶 = max
𝐒

𝒎𝑺

𝒏𝒔 − 𝟏

CPSC 768

Properties of Arboricity

• Related to the density of the graph

• Every subgraph 𝑆 ⊆ 𝐺 has arboricity ≤ 𝜶

By Nash-Williams Theorem:

𝜶 = max
𝐒

𝒎𝑺

𝒏𝒔 − 𝟏

CPSC 768

Properties of Arboricity

• Related to the density of the graph

• Every subgraph 𝑆 ⊆ 𝐺 has arboricity ≤ 𝜶
• Subgraph 𝑆 has at most 𝜶 ⋅ 𝑽 𝑺 edges

By Nash-Williams Theorem:

𝜶 = max
𝐒

𝒎𝑺

𝒏𝒔 − 𝟏

CPSC 768

Maximum Matching

• A matching in a graph is a set of edges where no two edges
share an endpoint

CPSC 768

Maximum Matching

• A matching in a graph is a set of edges where no two edges
share an endpoint

Maximum Matching has
Maximum Cardinality

CPSC 768

Maximum Matching

• A matching in a graph is a set of edges where no two edges
share an endpoint

Maximum Matching has
Maximum Cardinality

Fractional Matching:

∀𝒗 ∈ 𝑽:&
𝒆∋𝒗

𝒇 𝒆 ≤ 𝟏
0.5

0.5 0.5

1

CPSC 768

Strategy for Streaming Algorithms

1. Figure out quantity to approximate and gives approximation of
the quantity we want to approximate

2. Approximate the quantity via sampling and prove
concentration bounds

CPSC 768

Strategy for Streaming Algorithms

1. Figure out quantity to approximate and gives
approximation of the quantity we want to approximate

2. Approximate the quantity via sampling and prove
concentration bounds

CPSC 768

Strategy for Streaming Algorithms

1. Approximate 𝑬𝜶 to approximate 𝑴(𝑮) the maximum
matching size
• 𝐸" is set of edges {𝑢, 𝑣} where 𝒖 and 𝒗 both incident to at

most 𝜶 edges that show up later in the stream

Lemma 1: 𝑀 𝐺 ≤ 𝐸! ≤ 𝛼 + 2 ⋅ 𝑀(𝐺)

CPSC 768

Strategy for Streaming Algorithms

Last time: Proved 𝐸" ≤ 𝛼 + 2 ⋅ 𝑀 𝐺 via defining fractional
matching 𝑌# =

$
"%$

if 𝑒 ∈ 𝐸" and 0 otherwise

Lemma 1: 𝑀 𝐺 ≤ 𝐸! ≤ 𝛼 + 2 ⋅ 𝑀(𝐺)

Edmond’s Matching Polytope Corollary:
Let 𝑌$ $∈& be a fractional matching where the maximum
weight on any edge is 𝜼. Then, ∑𝒆∈𝑬𝒀𝒆 ≤ 𝟏 + 𝜼 ⋅ 𝑴(𝑮).

CPSC 768

Strategy for Streaming Algorithms

Last time: Proved 𝐸" ≤ 𝛼 + 2 ⋅ 𝑀 𝐺 via defining fractional
matching 𝑌# =

$
"%$

if 𝑒 ∈ 𝐸" and 0 otherwise.

Thus, $
"%$

⋅ 𝐸" ≤ 1 + $
"%$

⋅ 𝑀 𝐺 = "%&
"%$

⋅ 𝑀 𝐺 and so

𝐸" ≤ 𝛼 + 2 ⋅ 𝑀 𝐺

Lemma 1: 𝑀 𝐺 ≤ 𝐸! ≤ 𝛼 + 2 ⋅ 𝑀(𝐺)

CPSC 768

Strategy for Streaming Algorithms

Last time: Proving 𝑀 𝐺 ≤ 𝐸" .

Lemma 1: 𝑀 𝐺 ≤ 𝐸! ≤ 𝛼 + 2 ⋅ 𝑀(𝐺)

CPSC 768

Strategy for Streaming Algorithms

Last time: Proving 𝑀 𝐺 ≤ 𝐸" .
• Defined 𝑩𝒖 for each 𝑢 ∈ 𝑉 as set of 𝜶 + 𝟏 edges incident to 𝒖

that arrive last in the stream

Lemma 1: 𝑀 𝐺 ≤ 𝐸! ≤ 𝛼 + 2 ⋅ 𝑀(𝐺)

CPSC 768

Strategy for Streaming Algorithms

Last time: Proving 𝑀 𝐺 ≤ 𝐸" .
• Defined 𝑩𝒖 for each 𝑢 ∈ 𝑉 as set of 𝜶 + 𝟏 edges incident to 𝒖

that arrive last in the stream
• Defined good edge 𝑢, 𝑣 ∈ 𝐵(∩ 𝐵)

Lemma 1: 𝑀 𝐺 ≤ 𝐸! ≤ 𝛼 + 2 ⋅ 𝑀(𝐺)

CPSC 768

Strategy for Streaming Algorithms

Last time: Proving 𝑀 𝐺 ≤ 𝐸" .
• Defined 𝑩𝒖 for each 𝑢 ∈ 𝑉 as set of 𝜶 + 𝟏 edges incident to 𝒖

that arrive last in the stream
• Defined good edge 𝑢, 𝑣 ∈ 𝐵(∩ 𝐵)
• Defined wasted edge 𝑎, 𝑏 ∈ 𝐵* ⊕𝐵+

Lemma 1: 𝑀 𝐺 ≤ 𝐸! ≤ 𝛼 + 2 ⋅ 𝑀(𝐺)

𝐸! is exactly set of good edges

CPSC 768

Strategy for Streaming Algorithms

• Heavy vertices 𝑯: set of vertices with degree at least 𝛼 + 1

𝐸! is exactly set of good edges

CPSC 768

Strategy for Streaming Algorithms

• Heavy vertices 𝑯: set of vertices with degree at least 𝛼 + 1
• 𝒘 ≔ number of good edges with no endpoints in 𝐻

𝐸! is exactly set of good edges

CPSC 768

Strategy for Streaming Algorithms

• Heavy vertices 𝑯: set of vertices with degree at least 𝛼 + 1
• 𝒘 ≔ number of good edges with no endpoints in 𝐻
• 𝒙 ≔ number of good edges with one endpoint in 𝐻

𝐸! is exactly set of good edges

CPSC 768

Strategy for Streaming Algorithms

• Heavy vertices 𝑯: set of vertices with degree at least 𝛼 + 1
• 𝒘 ≔ number of good edges with no endpoints in 𝐻
• 𝒙 ≔ number of good edges with one endpoint in 𝐻
• 𝒚 ≔ number of good edges with two endpoints in 𝐻

𝐸! is exactly set of good edges

CPSC 768

Strategy for Streaming Algorithms

• Heavy vertices 𝑯: set of vertices with degree at least 𝛼 + 1
• 𝒘 ≔ number of good edges with no endpoints in 𝐻
• 𝒙 ≔ number of good edges with one endpoint in 𝐻
• 𝒚 ≔ number of good edges with two endpoints in 𝐻
• 𝒛 ≔ number of wasted edges with two endpoints in 𝐻

𝐸! is exactly set of good edges

CPSC 768

Strategy for Streaming Algorithms

• Heavy vertices 𝑯: set of vertices with degree at least 𝛼 + 1
• 𝒘 ≔ number of good edges with no endpoints in 𝐻
• 𝒙 ≔ number of good edges with one endpoint in 𝐻
• 𝒚 ≔ number of good edges with two endpoints in 𝐻
• 𝒛 ≔ number of wasted edges with two endpoints in 𝐻

𝐸! is exactly set of good edges

|𝐸!| = 𝑤 + 𝑥 + 𝑦

CPSC 768

Strategy for Streaming Algorithms

•𝒘 ≔ no endpoints in 𝐻
• 𝒙 ≔ one endpoint in 𝐻
• 𝒚 ≔ two endpoints in 𝐻
• 𝒛 ≔ wasted edges with

two endpoints in 𝐻

• First, figure out 𝑥 + 𝑦 by
stating some facts

|𝐸!| = 𝑤 + 𝑥 + 𝑦

CPSC 768

Strategy for Streaming Algorithms

•𝒘 ≔ no endpoints in 𝐻
• 𝒙 ≔ one endpoint in 𝐻
• 𝒚 ≔ two endpoints in 𝐻
• 𝒛 ≔ wasted edges with

two endpoints in 𝐻

• First, figure out 𝑥 + 𝑦 by
stating some facts

• Number of edges in the 𝑩𝒖
of every 𝒖 ∈ 𝑯 incident to
good edge

|𝐸!| = 𝑤 + 𝑥 + 𝑦

CPSC 768

Strategy for Streaming Algorithms

•𝒘 ≔ no endpoints in 𝐻
• 𝒙 ≔ one endpoint in 𝐻
• 𝒚 ≔ two endpoints in 𝐻
• 𝒛 ≔ wasted edges with

two endpoints in 𝐻

• First, figure out 𝑥 + 𝑦 by
stating some facts

• Number of edges in the 𝑩𝒖
of every 𝒖 ∈ 𝑯 incident to
good edge

• 𝛼 + 1 𝐻 = 𝑥 + 2𝑦 + 𝑧

|𝐸!| = 𝑤 + 𝑥 + 𝑦

CPSC 768

Strategy for Streaming Algorithms

•𝒘 ≔ no endpoints in 𝐻
• 𝒙 ≔ one endpoint in 𝐻
• 𝒚 ≔ two endpoints in 𝐻
• 𝒛 ≔ wasted edges with

two endpoints in 𝐻

• First, figure out 𝑥 + 𝑦 by
stating some facts

1. Number of edges in the
𝑩𝒖 of every 𝒖 ∈ 𝑯
incident to good edge
• 𝛼 + 1 𝐻 = 𝑥 + 2𝑦 + 𝑧

2. Good and wasted edges:
𝑧 + 𝑦 ≤ 𝛼 ⋅ |𝐻|

|𝐸!| = 𝑤 + 𝑥 + 𝑦

CPSC 768

Strategy for Streaming Algorithms

•𝒘 ≔ no endpoints in 𝐻
• 𝒙 ≔ one endpoint in 𝐻
• 𝒚 ≔ two endpoints in 𝐻
• 𝒛 ≔ wasted edges with

two endpoints in 𝐻

• First, figure out 𝑥 + 𝑦 by
stating some facts

1. Number of edges in the
𝑩𝒖 of every 𝒖 ∈ 𝑯
incident to good edge
• 𝛼 + 1 𝐻 = 𝑥 + 2𝑦 + 𝑧

2. Good and wasted edges:
𝑧 + 𝑦 ≤ 𝛼 ⋅ |𝐻|

|𝐸!| = 𝑤 + 𝑥 + 𝑦

CPSC 768

Properties of Arboricity

• Related to the density of the graph

• Every subgraph 𝑆 ⊆ 𝐺 has arboricity ≤ 𝜶
• Subgraph 𝑆 has at most 𝜶 ⋅ 𝑽 𝑺 edges

By Nash-Williams Theorem:

𝜶 = max
𝐒

𝒎𝑺

𝒏𝒔 − 𝟏

CPSC 768

Strategy for Streaming Algorithms

•𝒘 ≔ no endpoints in 𝐻
• 𝒙 ≔ one endpoint in 𝐻
• 𝒚 ≔ two endpoints in 𝐻
• 𝒛 ≔ wasted edges with

two endpoints in 𝐻

• First, figure out 𝑥 + 𝑦 by
stating some facts

1. Number of edges in the
𝑩𝒖 of every 𝒖 ∈ 𝑯
incident to good edge
• 𝛼 + 1 𝐻 = 𝑥 + 2𝑦 + 𝑧

2. Good and wasted edges:
𝑧 + 𝑦 ≤ 𝛼 ⋅ |𝐻|

|𝐸!| = 𝑤 + 𝑥 + 𝑦

All edges in 𝐻:
at most 𝛼 ⋅ |𝐻| of them

CPSC 768

Strategy for Streaming Algorithms

•𝒘 ≔ no endpoints in 𝐻
• 𝒙 ≔ one endpoint in 𝐻
• 𝒚 ≔ two endpoints in 𝐻
• 𝒛 ≔ wasted edges with

two endpoints in 𝐻

• Hence,
• 𝑥 + 2𝑦 + 𝑧 = 𝛼 + 1 𝐻

|𝐸!| = 𝑤 + 𝑥 + 𝑦

CPSC 768

Strategy for Streaming Algorithms

•𝒘 ≔ no endpoints in 𝐻
• 𝒙 ≔ one endpoint in 𝐻
• 𝒚 ≔ two endpoints in 𝐻
• 𝒛 ≔ wasted edges with

two endpoints in 𝐻

• Hence,
• 𝑥 + 2𝑦 + 𝑧 = 𝛼 + 1 𝐻
• − 𝑧 + 𝑦 ≥ −𝛼 ⋅ |𝐻|

|𝐸!| = 𝑤 + 𝑥 + 𝑦

CPSC 768

Strategy for Streaming Algorithms

•𝒘 ≔ no endpoints in 𝐻
• 𝒙 ≔ one endpoint in 𝐻
• 𝒚 ≔ two endpoints in 𝐻
• 𝒛 ≔ wasted edges with

two endpoints in 𝐻

• Hence,
• 𝑥 + 2𝑦 + 𝑧 = 𝛼 + 1 𝐻
• − 𝑧 + 𝑦 ≥ −𝛼 ⋅ |𝐻|
• 𝒙 + 𝒚 ≥ |𝑯|

|𝐸!| = 𝑤 + 𝑥 + 𝑦

CPSC 768

Strategy for Streaming Algorithms

•𝒘 ≔ no endpoints in 𝐻
• 𝒙 ≔ one endpoint in 𝐻
• 𝒚 ≔ two endpoints in 𝐻
• 𝒛 ≔ wasted edges with

two endpoints in 𝐻

• Hence,
• 𝑥 + 2𝑦 + 𝑧 = 𝛼 + 1 𝐻
• − 𝑧 + 𝑦 ≥ −𝛼 ⋅ |𝐻|
• 𝒙 + 𝒚 ≥ |𝑯|

|𝐸!| = 𝑤 + 𝑥 + 𝑦

Define 𝑬𝑳 be set of edges
with no endpoints in 𝑯

CPSC 768

Strategy for Streaming Algorithms

•𝒘 ≔ no endpoints in 𝐻
• 𝒙 ≔ one endpoint in 𝐻
• 𝒚 ≔ two endpoints in 𝐻
• 𝒛 ≔ wasted edges with

two endpoints in 𝐻

• Hence,
• 𝑥 + 2𝑦 + 𝑧 = 𝛼 + 1 𝐻
• − 𝑧 + 𝑦 ≥ −𝛼 ⋅ |𝐻|
• 𝒙 + 𝒚 ≥ |𝑯|

• Every edge in 𝑬𝑳 is good

|𝐸!| = 𝑤 + 𝑥 + 𝑦

Define 𝑬𝑳 be set of edges
with no endpoints in 𝑯

CPSC 768

Strategy for Streaming Algorithms

•𝒘 ≔ no endpoints in 𝐻
• 𝒙 ≔ one endpoint in 𝐻
• 𝒚 ≔ two endpoints in 𝐻
• 𝒛 ≔ wasted edges with

two endpoints in 𝐻

• Hence,
• 𝑥 + 2𝑦 + 𝑧 = 𝛼 + 1 𝐻
• − 𝑧 + 𝑦 ≥ −𝛼 ⋅ |𝐻|
• 𝒙 + 𝒚 ≥ |𝑯|

• Every edge in 𝑬𝑳 is good
• 𝒘 = 𝑬𝑳

|𝐸!| = 𝑤 + 𝑥 + 𝑦

Define 𝑬𝑳 be set of edges
with no endpoints in 𝑯

CPSC 768

Strategy for Streaming Algorithms

•𝒘 ≔ no endpoints in 𝐻
• 𝒙 ≔ one endpoint in 𝐻
• 𝒚 ≔ two endpoints in 𝐻
• 𝒛 ≔ wasted edges with

two endpoints in 𝐻

• Hence,
• 𝑥 + 2𝑦 + 𝑧 = 𝛼 + 1 𝐻
• − 𝑧 + 𝑦 ≥ −𝛼 ⋅ |𝐻|
• 𝒙 + 𝒚 ≥ |𝑯|

• Every edge in 𝑬𝑳 is good
• 𝒘 = 𝑬𝑳
• Therefore,

𝒙 + 𝒚 +𝒘 ≥ 𝑯 + |𝑬𝑳|

|𝐸!| = 𝑤 + 𝑥 + 𝑦

Define 𝑬𝑳 be set of edges
with no endpoints in 𝑯

CPSC 768

Strategy for Streaming Algorithms

•𝒘 ≔ no endpoints in 𝐻
• 𝒙 ≔ one endpoint in 𝐻
• 𝒚 ≔ two endpoints in 𝐻
• 𝒛 ≔ wasted edges with

two endpoints in 𝐻

• Hence,
• 𝑥 + 2𝑦 + 𝑧 = 𝛼 + 1 𝐻
• − 𝑧 + 𝑦 ≥ −𝛼 ⋅ |𝐻|
• 𝒙 + 𝒚 ≥ |𝑯|

• Every edge in 𝑬𝑳 is good
• 𝒘 = 𝑬𝑳
• Therefore,

𝒙 + 𝒚 +𝒘 ≥ 𝑯 + |𝑬𝑳|

|𝐸!| = 𝑤 + 𝑥 + 𝑦 ≥ 𝑯 + |𝑬𝑳|

Define 𝑬𝑳 be set of edges
with no endpoints in 𝑯

CPSC 768

Strategy for Streaming Algorithms

• Relate back to 𝑴 𝑮 • Hence,
• 𝑥 + 2𝑦 + 𝑧 = 𝛼 + 1 𝐻
• − 𝑧 + 𝑦 ≥ −𝛼 ⋅ |𝐻|
• 𝒙 + 𝒚 ≥ |𝑯|

• Every edge in 𝑬𝑳 is good
• 𝒘 = 𝑬𝑳
• Therefore,

𝒙 + 𝒚 +𝒘 ≥ 𝑯 + |𝑬𝑳|

|𝐸!| = 𝑤 + 𝑥 + 𝑦 ≥ 𝑯 + |𝑬𝑳|

Define 𝑬𝑳 be set of edges
with no endpoints in 𝑯

CPSC 768

Strategy for Streaming Algorithms

• Relate back to 𝑴 𝑮
• What is the size of 𝑀 𝐺 in

relation to |𝐻| and 𝐸- ?

• Hence,
• 𝑥 + 2𝑦 + 𝑧 = 𝛼 + 1 𝐻
• − 𝑧 + 𝑦 ≥ −𝛼 ⋅ |𝐻|
• 𝒙 + 𝒚 ≥ |𝑯|

• Every edge in 𝑬𝑳 is good
• 𝒘 = 𝑬𝑳
• Therefore,

𝒙 + 𝒚 +𝒘 ≥ 𝑯 + |𝑬𝑳|

|𝐸!| = 𝑤 + 𝑥 + 𝑦 ≥ 𝑯 + |𝑬𝑳|

Define 𝑬𝑳 be set of edges
with no endpoints in 𝑯

CPSC 768

Strategy for Streaming Algorithms

• Relate back to 𝑴 𝑮
• What is the size of 𝑀 𝐺 in

relation to |𝐻| and 𝐸- ?
• Every edge in 𝐸- could be

in matching

• Hence,
• 𝑥 + 2𝑦 + 𝑧 = 𝛼 + 1 𝐻
• − 𝑧 + 𝑦 ≥ −𝛼 ⋅ |𝐻|
• 𝒙 + 𝒚 ≥ |𝑯|

• Every edge in 𝑬𝑳 is good
• 𝒘 = 𝑬𝑳
• Therefore,

𝒙 + 𝒚 +𝒘 ≥ 𝑯 + |𝑬𝑳|

|𝐸!| = 𝑤 + 𝑥 + 𝑦 ≥ 𝑯 + |𝑬𝑳|

Define 𝑬𝑳 be set of edges
with no endpoints in 𝑯

CPSC 768

Strategy for Streaming Algorithms

• Relate back to 𝑴 𝑮
• What is the size of 𝑀 𝐺 in

relation to |𝐻| and 𝐸- ?
• Every edge in 𝐸- could be

in matching
• Remaining edges incident

to 𝐻
• At most one edge

incident to each 𝑢 ∈ 𝐻

• Hence,
• 𝑥 + 2𝑦 + 𝑧 = 𝛼 + 1 𝐻
• − 𝑧 + 𝑦 ≥ −𝛼 ⋅ |𝐻|
• 𝒙 + 𝒚 ≥ |𝑯|

• Every edge in 𝑬𝑳 is good
• 𝒘 = 𝑬𝑳
• Therefore,

𝒙 + 𝒚 +𝒘 ≥ 𝑯 + |𝑬𝑳|

|𝐸!| = 𝑤 + 𝑥 + 𝑦 ≥ 𝑯 + |𝑬𝑳|

CPSC 768

Strategy for Streaming Algorithms

• Relate back to 𝑴 𝑮
• What is the size of 𝑀 𝐺 in

relation to |𝐻| and 𝐸- ?
• Every edge in 𝐸- could be

in matching
• Remaining edges incident

to 𝐻
• At most one edge

incident to each 𝑢 ∈ 𝐻

• Hence,
• 𝑥 + 2𝑦 + 𝑧 = 𝛼 + 1 𝐻
• − 𝑧 + 𝑦 ≥ −𝛼 ⋅ |𝐻|
• 𝒙 + 𝒚 ≥ |𝑯|

• Every edge in 𝑬𝑳 is good
• 𝒘 = 𝑬𝑳
• Therefore,

𝒙 + 𝒚 +𝒘 ≥ 𝑯 + |𝑬𝑳|

|𝐸!| = 𝑤 + 𝑥 + 𝑦 ≥ 𝑯 + 𝑬𝑳 ≥ 𝑴(𝑮)

CPSC 768

Strategy for Streaming Algorithms

• Most of our work is proving:

Lemma 1: 𝑀 𝐺 ≤ 𝐸! ≤ 𝛼 + 2 ⋅ 𝑀(𝐺)

CPSC 768

Strategy for Streaming Algorithms

1. Figure out quantity to approximate and gives approximation of
the quantity we want to approximate

2. Approximate the quantity via sampling and prove
concentration bounds

CPSC 768

Approximating 𝐸2
• Let 𝑮𝒕 be the graph defined by the prefix of the stream

consisting of first 𝒕 edges

CPSC 768

Approximating 𝐸2
• Let 𝑮𝒕 be the graph defined by the prefix of the stream

consisting of first 𝒕 edges
• Let 𝑬𝜶𝒕 be the set of good edges in this prefix

CPSC 768

Approximating 𝐸2
• Let 𝑮𝒕 be the graph defined by the prefix of the stream

consisting of first 𝒕 edges
• Let 𝑬𝜶𝒕 be the set of good edges in this prefix
• Let 𝑬∗ = max

𝒕
𝑬𝜶𝒕

Then, 𝑴 𝑮 ≤ 𝑬∗ ≤ 𝜶 + 𝟐 ⋅ 𝑴 𝑮
since 𝐸∗ ≥ 𝐸+ and 𝑀 𝐺, ≤ 𝑀 𝐺

CPSC 768

Approximating 𝐸2
• Let 𝑮𝒕 be the graph defined by the prefix of the stream

consisting of first 𝒕 edges
• Let 𝑬𝜶𝒕 be the set of good edges in this prefix
• Let 𝑬∗ = max

𝒕
𝑬𝜶𝒕

Then, 𝑴 𝑮 ≤ 𝑬∗ ≤ 𝜶 + 𝟐 ⋅ 𝑴 𝑮
since 𝐸∗ ≥ 𝐸+ and 𝑀 𝐺, ≤ 𝑀 𝐺

Question: does 𝐸() ever
drop as 𝑡 increases?

CPSC 768

Approximating 𝐸∗

Theorem: Can approximate 𝐸∗ to 1 + 𝜀 -
approximation in 𝑂 -./ 0

1!
 space whp.

CPSC 768

Approximating 𝐸∗

• Intuition: sample edges from 𝐸". to obtain accurate
approximation of 𝐸".

Theorem: Can approximate 𝐸∗ to 1 + 𝜀 -
approximation in 𝑂 -./ 0

1!
 space whp.

CPSC 768

Approximating 𝐸∗ Algorithm

• Intuition: sample edges from 𝐸". to obtain accurate
approximation of 𝐸".

• For each sampled edge 𝑒 = {𝑢, 𝑣}, store 𝒄𝒆𝒖 and 𝒄𝒆𝒗 for degrees
of 𝑢 and 𝑣 in the rest of the stream

CPSC 768

Approximating 𝐸∗ Algorithm

• Intuition: sample edges from 𝐸". to obtain accurate
approximation of 𝐸".

• For each sampled edge 𝑒 = {𝑢, 𝑣}, store 𝒄𝒆𝒖 and 𝒄𝒆𝒗 for degrees
of 𝑢 and 𝑣 in the rest of the stream

• If either 𝒄𝒆𝒖 or 𝒄𝒆𝒗 exceeds 𝛼 delete {𝑢, 𝑣}

CPSC 768

Approximating 𝐸∗ Algorithm

1. Initialize 𝑆 ← ∅, 𝑝 = 1, estimate = 0

CPSC 768

Approximating 𝐸∗ Algorithm

1. Initialize 𝑆 ← ∅, 𝑝 = 1, estimate = 0
2. For each {𝑢, 𝑣} in stream:

CPSC 768

Approximating 𝐸∗ Algorithm

1. Initialize 𝑆 ← ∅, 𝑝 = 1, estimate = 0
2. For each {𝑢, 𝑣} in stream:

a) With probability 𝑝 add 𝑆 ← 𝑆 ∪ {𝑢, 𝑣}, initialize counters

Add new sampled edges

CPSC 768

Approximating 𝐸∗ Algorithm

1. Initialize 𝑆 ← ∅, 𝑝 = 1, estimate = 0
2. For each {𝑢, 𝑣} in stream:

a) With probability 𝑝 add 𝑆 ← 𝑆 ∪ {𝑢, 𝑣}, initialize counters
b) For each edge 𝑒1 ∈ 𝑆, if 𝑒1 shares endpoint 𝑤 with 𝑒:

CPSC 768

Approximating 𝐸∗ Algorithm

1. Initialize 𝑆 ← ∅, 𝑝 = 1, estimate = 0
2. For each {𝑢, 𝑣} in stream:

a) With probability 𝑝 add 𝑆 ← 𝑆 ∪ {𝑢, 𝑣}, initialize counters
b) For each edge 𝑒1 ∈ 𝑆, if 𝑒1 shares endpoint 𝑤 with 𝑒:

i. Increment 𝑐#!
2

Check the counters of
previously sampled edges

CPSC 768

Approximating 𝐸∗ Algorithm

1. Initialize 𝑆 ← ∅, 𝑝 = 1, estimate = 0
2. For each {𝑢, 𝑣} in stream:

a) With probability 𝑝 add 𝑆 ← 𝑆 ∪ {𝑢, 𝑣}, initialize counters
b) For each edge 𝑒1 ∈ 𝑆, if 𝑒1 shares endpoint 𝑤 with 𝑒:

i. Increment 𝑐#!
2

ii. If 𝑐#!
2 > 𝛼, remove 𝑒1 and corresponding counters from 𝑆

Remove edge if it is no longer in 𝑬𝜶𝒕

CPSC 768

Approximating 𝐸∗ Algorithm

1. Initialize 𝑆 ← ∅, 𝑝 = 1, estimate = 0
2. For each {𝑢, 𝑣} in stream:

a) With probability 𝑝 add 𝑆 ← 𝑆 ∪ {𝑢, 𝑣}, initialize counters
b) For each edge 𝑒1 ∈ 𝑆, if 𝑒1 shares endpoint 𝑤 with 𝑒:

i. Increment 𝑐#!
2

ii. If 𝑐#!
2 > 𝛼, remove 𝑒1 and corresponding counters from 𝑆

c) If 𝑆 > 80 𝜀4& log 𝑛:

CPSC 768

Approximating 𝐸∗ Algorithm

1. Initialize 𝑆 ← ∅, 𝑝 = 1, estimate = 0
2. For each {𝑢, 𝑣} in stream:

a) With probability 𝑝 add 𝑆 ← 𝑆 ∪ {𝑢, 𝑣}, initialize counters
b) For each edge 𝑒1 ∈ 𝑆, if 𝑒1 shares endpoint 𝑤 with 𝑒:

i. Increment 𝑐#!
2

ii. If 𝑐#!
2 > 𝛼, remove 𝑒1 and corresponding counters from 𝑆

c) If 𝑆 > 80 𝜀4& log 𝑛:
i. Set 𝑝 ← 5

&
If you used too much space, reduce

sampling rate

CPSC 768

Approximating 𝐸∗ Algorithm

1. Initialize 𝑆 ← ∅, 𝑝 = 1, estimate = 0
2. For each {𝑢, 𝑣} in stream:

a) With probability 𝑝 add 𝑆 ← 𝑆 ∪ {𝑢, 𝑣}, initialize counters
b) For each edge 𝑒1 ∈ 𝑆, if 𝑒1 shares endpoint 𝑤 with 𝑒:

i. Increment 𝑐#!
2

ii. If 𝑐#!
2 > 𝛼, remove 𝑒1 and corresponding counters from 𝑆

c) If 𝑆 > 80 𝜀4& log 𝑛:
i. Set 𝑝 ← 5

&
ii. Remove each edge in 𝑆 with probability ½

Resample previous samples

CPSC 768

Approximating 𝐸∗ Algorithm
1. Initialize 𝑆 ← ∅, 𝑝 = 1, estimate = 0
2. For each {𝑢, 𝑣} in stream:

a) With probability 𝑝 add 𝑆 ← 𝑆 ∪ {𝑢, 𝑣}, initialize counters
b) For each edge 𝑒1 ∈ 𝑆, if 𝑒1 shares endpoint 𝑤 with 𝑒:

i. Increment 𝑐#!
2

ii. If 𝑐#!
2 > 𝛼, remove 𝑒1 and corresponding counters from 𝑆

c) If 𝑆 > 80 𝜀4& log 𝑛:
i. Set 𝑝 ← 5

&
ii. Remove each edge in 𝑆 with probability ½

d) Estimate ← max(estimate, 𝑆 /𝑝)
Update estimate of 𝑬∗

CPSC 768

Approximating 𝐸∗ Algorithm

• Proof: Let 𝝉 = 𝟒𝟎 𝐥𝐨𝐠 𝒏
𝜺𝟐

and level 𝑖 (starting with 𝑖 = 2) be
𝟐𝒊4𝟏 ⋅ 𝝉 ≤ 𝑬𝜶𝒕 < 𝟐𝒊 ⋅ 𝝉

• Define level 𝑖 = 1 to be 𝟎 ≤ 𝑬𝜶𝒕 < 𝟐 ⋅ 𝝉

Theorem: Can approximate 𝐸∗ to 1 + 𝜀 -
approximation in 𝑂 -./ 0

1!
 space whp.

CPSC 768

Approximating 𝐸∗ Algorithm

• Proof: Let 𝝉 = 𝟒𝟎 𝐥𝐨𝐠 𝒏
𝜺𝟐

and level 𝑖 (starting with 𝑖 = 2) be
𝟐𝒊4𝟏 ⋅ 𝝉 ≤ 𝑬𝜶𝒕 < 𝟐𝒊 ⋅ 𝝉

• Define level 𝑖 = 1 to be 𝟎 ≤ 𝑬𝜶𝒕 < 𝟐 ⋅ 𝝉

• Edge 𝑒 is sampled in level 𝒊 with probability 1
2"

for 𝑖 ≥ 2

Theorem: Can approximate 𝐸∗ to 1 + 𝜀 -
approximation in 𝑂 -./ 0

1!
 space whp.

CPSC 768

Approximating 𝐸∗ Algorithm

• Proof: Let 𝝉 = 𝟒𝟎 𝐥𝐨𝐠 𝒏
𝜺𝟐

and level 𝑖 (starting with 𝑖 = 2) be
𝟐𝒊4𝟏 ⋅ 𝝉 ≤ 𝑬𝜶𝒕 < 𝟐𝒊 ⋅ 𝝉

• Define level 𝑖 = 1 to be 𝟎 ≤ 𝑬𝜶𝒕 < 𝟐 ⋅ 𝝉

• Edge 𝑒 is sampled in level 𝒊 with probability 1
2"

for 𝑖 ≥ 2

• For any level 𝑖, let’s show the probability we get 1 + 𝜀 -approx.
of 𝐸".

CPSC 768

Approximating 𝐸∗ Algorithm

• Proof: Let 𝝉 = 𝟒𝟎 𝐥𝐨𝐠 𝒏
𝜺𝟐

and level 𝑖 (starting with 𝑖 = 2) be
𝟐𝒊4𝟏 ⋅ 𝝉 ≤ 𝑬𝜶𝒕 < 𝟐𝒊 ⋅ 𝝉

• Define level 𝑖 = 1 to be 𝟎 ≤ 𝑬𝜶𝒕 < 𝟐 ⋅ 𝝉

• Edge 𝑒 is sampled in level 𝒊 with probability 1
2"

for 𝑖 ≥ 2

• For any level 𝑖, let’s show the probability we get 1 + 𝜀 -approx.
of 𝐸".

• Let 𝑆9. be the number of edges sampled in level 𝑖 after 𝑡
updates

CPSC 768

Approximating 𝐸∗ Algorithm
• Proof: Let 𝝉 = 𝟒𝟎 𝐥𝐨𝐠 𝒏

𝜺𝟐
and level 𝑖

(starting with 𝑖 = 2) be
𝟐𝒊1𝟏 ⋅ 𝝉 ≤ 𝑬𝜶𝒕 < 𝟐𝒊 ⋅ 𝝉

• Define level 𝑖 = 1 to be 𝟎 ≤ 𝑬𝜶𝒕 < 𝟐 ⋅
𝝉

• Edge 𝑒 is sampled in level 𝒊 with
probability 5

6"
for 𝑖 ≥ 2

• For any level 𝑖, let’s show the
probability we get 1 + 𝜀 -approx. of
𝐸78

• Let 𝑆98 be the number of edges
sampled in level 𝑖 after 𝑡 updates

• Multiplicative Chernoff Bound:
• Pr 𝑋 − 𝜇 ≥ 𝜀 ⋅ 𝜇 ≤ 2exp(− :";

<
)

CPSC 768

Approximating 𝐸∗ Algorithm
• Proof: Let 𝝉 = 𝟒𝟎 𝐥𝐨𝐠 𝒏

𝜺𝟐
and level 𝑖

(starting with 𝑖 = 2) be
𝟐𝒊1𝟏 ⋅ 𝝉 ≤ 𝑬𝜶𝒕 < 𝟐𝒊 ⋅ 𝝉

• Define level 𝑖 = 1 to be 𝟎 ≤ 𝑬𝜶𝒕 < 𝟐 ⋅
𝝉

• Edge 𝑒 is sampled in level 𝒊 with
probability 5

6"
for 𝑖 ≥ 2

• For any level 𝑖, let’s show the
probability we get 1 + 𝜀 -approx. of
𝐸78

• Let 𝑆98 be the number of edges
sampled in level 𝑖 after 𝑡 updates

• Multiplicative Chernoff Bound:
• Pr 𝑋 − 𝜇 ≥ 𝜀 ⋅ 𝜇 ≤ 2exp(− :";

<
)

• 𝜇 = 𝑝9 ⋅ 𝐸". for 𝑖 ≥ 2

CPSC 768

Approximating 𝐸∗ Algorithm
• Proof: Let 𝝉 = 𝟒𝟎 𝐥𝐨𝐠 𝒏

𝜺𝟐
and level 𝑖

(starting with 𝑖 = 2) be
𝟐𝒊1𝟏 ⋅ 𝝉 ≤ 𝑬𝜶𝒕 < 𝟐𝒊 ⋅ 𝝉

• Define level 𝑖 = 1 to be 𝟎 ≤ 𝑬𝜶𝒕 < 𝟐 ⋅
𝝉

• Edge 𝑒 is sampled in level 𝒊 with
probability 5

6"
for 𝑖 ≥ 2

• For any level 𝑖, let’s show the
probability we get 1 + 𝜀 -approx. of
𝐸78

• Let 𝑆98 be the number of edges
sampled in level 𝑖 after 𝑡 updates

• Multiplicative Chernoff Bound:
• Pr 𝑋 − 𝜇 ≥ 𝜀 ⋅ 𝜇 ≤ 2exp(− :";

<
)

• 𝜇 = 𝑝9 ⋅ 𝐸". for 𝑖 ≥ 2

• Pr |𝑆9. − 𝜇 ≥ 𝜀 ⋅ 𝜇 ≤ 2exp(4:
" =#$ ⋅5%
<

)

≤ 2 exp − :"⋅?@ ABC D
<⋅:"

= $
EBAF D

CPSC 768

Approximating 𝐸∗ Algorithm
• Proof: Let 𝝉 = 𝟒𝟎 𝐥𝐨𝐠 𝒏

𝜺𝟐
and level 𝑖

(starting with 𝑖 = 2) be
𝟐𝒊1𝟏 ⋅ 𝝉 ≤ 𝑬𝜶𝒕 < 𝟐𝒊 ⋅ 𝝉

• Define level 𝑖 = 1 to be 𝟎 ≤ 𝑬𝜶𝒕 < 𝟐 ⋅
𝝉

• Edge 𝑒 is sampled in level 𝒊 with
probability 5

6"
for 𝑖 ≥ 2

• For any level 𝑖, let’s show the
probability we get 1 + 𝜀 -approx. of
𝐸78

• Let 𝑆98 be the number of edges
sampled in level 𝑖 after 𝑡 updates

• Multiplicative Chernoff Bound:
• Pr 𝑋 − 𝜇 ≥ 𝜀 ⋅ 𝜇 ≤ 2exp(− :";

<
)

• 𝜇 = 𝑝9 ⋅ 𝐸". for 𝑖 ≥ 2

• Pr |𝑆9. − 𝜇 ≥ 𝜀 ⋅ 𝜇 ≤ 2exp(4:
" =#$ ⋅5%
<

)

≤ 2 exp − :"⋅?@ ABC D
<⋅:"

= $
EBAF D

• What do you notice about the above
calculation?

CPSC 768

Approximating 𝐸∗ Algorithm
• Proof: Let 𝝉 = 𝟒𝟎 𝐥𝐨𝐠 𝒏

𝜺𝟐
and level 𝑖

(starting with 𝑖 = 2) be
𝟐𝒊1𝟏 ⋅ 𝝉 ≤ 𝑬𝜶𝒕 < 𝟐𝒊 ⋅ 𝝉

• Define level 𝑖 = 1 to be 𝟎 ≤ 𝑬𝜶𝒕 < 𝟐 ⋅
𝝉

• Edge 𝑒 is sampled in level 𝒊 with
probability 5

6"
for 𝑖 ≥ 2

• For any level 𝑖, let’s show the
probability we get 1 + 𝜀 -approx. of
𝐸78

• Let 𝑆98 be the number of edges
sampled in level 𝑖 after 𝑡 updates

• Multiplicative Chernoff Bound:
• Pr 𝑋 − 𝜇 ≥ 𝜀 ⋅ 𝜇 ≤ 2exp(− :";

<
)

• 𝜇 = 𝑝9 ⋅ 𝐸". for 𝑖 ≥ 2

• Pr |𝑆9. − 𝜇 ≥ 𝜀 ⋅ 𝜇 ≤ 2exp(4:
" =#$ ⋅5%
<

)

≤ 2 exp − :"⋅?@ ABC D
<⋅:"

= $
EBAF D

• What do you notice about the above
calculation?

CPSC 768

Approximating 𝐸∗ Algorithm
• True if 𝜇 ≥ 23 -./ 0

41!
• Multiplicative Chernoff Bound:

• Pr 𝑋 − 𝜇 ≥ 𝜀 ⋅ 𝜇 ≤ 2exp(− :";
<
)

• 𝜇 = 𝑝9 ⋅ 𝐸". for 𝑖 ≥ 2

• Pr |𝑆9. − 𝜇 ≥ 𝜀 ⋅ 𝜇 ≤ 2exp(4:
" =#$ ⋅5%
<

)

≤ 2 exp − :"⋅?@ ABC D
<⋅:"

= $
EBAF D

• What do you notice about the above
calculation?

CPSC 768

Approximating 𝐸∗ Algorithm
• True if 𝜇 ≥ 23 -./ 0

41!

• What if 𝜇 < 23 -./ 0
41!

?
• Thoughts?

• Multiplicative Chernoff Bound:
• Pr 𝑋 − 𝜇 ≥ 𝜀 ⋅ 𝜇 ≤ 2exp(− :";

<
)

• 𝜇 = 𝑝9 ⋅ 𝐸". for 𝑖 ≥ 2

• Pr |𝑆9. − 𝜇 ≥ 𝜀 ⋅ 𝜇 ≤ 2exp(4:
" =#$ ⋅5%
<

)

≤ 2 exp − :"⋅?@ ABC D
<⋅:"

= $
EBAF D

• What do you notice about the above
calculation?

CPSC 768

Approximating 𝐸∗ Algorithm
• True if 𝜇 ≥ 23 -./ 0

41!

• What if 𝜇 < 23 -./ 0
41!

?
• Thoughts?

• Multiplicative Chernoff Bound:
• Pr 𝑋 − 𝜇 ≥ 𝜀 ⋅ 𝜇 ≤ 2exp(− :";

<
)

• 𝜇 = 𝑝9 ⋅ 𝐸". for 𝑖 ≥ 2

• Pr |𝑆9. − 𝜇 ≥ 𝜀 ⋅ 𝜇 ≤ 2exp(4:
" =#$ ⋅5%
<

)

≤ 2 exp − :"⋅?@ ABC D
<⋅:"

= $
EBAF D

• What do you notice about the above
calculation?

Need to prove that 𝑝3
matches the level whp

CPSC 768

Approximating 𝐸∗ Algorithm
• Take the union bound
over 𝑡 ≤ 𝑛5, then with
probability at least 1 −

6
7.-8 0

:

• Multiplicative Chernoff Bound:
• Pr 𝑋 − 𝜇 ≥ 𝜀 ⋅ 𝜇 ≤ 2exp(− :";

<
)

• 𝜇 = 𝑝9 ⋅ 𝐸". for 𝑖 ≥ 2

• Pr |𝑆9. − 𝜇 ≥ 𝜀 ⋅ 𝜇 ≤ 2exp(4:
" =#$ ⋅5%
<

)

≤ 2 exp − :"⋅?@ ABC D
<⋅:"

= $
EBAF D

CPSC 768

Approximating 𝐸∗ Algorithm
• Take the union bound
over 𝑡 ≤ 𝑛5, then with
probability at least 1 −

6
7.-8 0

:

• 9"
#

:"
= 𝐸+, ± 𝜀 ⋅ |𝐸+, | for

all 𝑡

• Multiplicative Chernoff Bound:
• Pr 𝑋 − 𝜇 ≥ 𝜀 ⋅ 𝜇 ≤ 2exp(− :";

<
)

• 𝜇 = 𝑝9 ⋅ 𝐸". for 𝑖 ≥ 2

• Pr |𝑆9. − 𝜇 ≥ 𝜀 ⋅ 𝜇 ≤ 2exp(4:
" =#$ ⋅5%
<

)

≤ 2 exp − :"⋅?@ ABC D
<⋅:"

= $
EBAF D

CPSC 768

Approximating 𝐸∗ Algorithm
• Take the union bound
over 𝑡 ≤ 𝑛5, then with
probability at least 1 −

6
7.-8 0

:

• 9"
#

:"
= 𝐸+, ± 𝜀 ⋅ |𝐸+, | for

all 𝑡

• Multiplicative Chernoff Bound:
• Pr 𝑋 − 𝜇 ≥ 𝜀 ⋅ 𝜇 ≤ 2exp(− :";

<
)

• 𝜇 = 𝑝9 ⋅ 𝐸". for 𝑖 ≥ 2

• Pr |𝑆9. − 𝜇 ≥ 𝜀 ⋅ 𝜇 ≤ 2exp(4:
" =#$ ⋅5%
<

)

≤ 2 exp − :"⋅?@ ABC D
<⋅:"

= $
EBAF D

Theorem: Can approximate 𝐸∗ to 1 + 𝜀 -
approximation in 𝑂 -./ 0

1!
 space whp.

CPSC 768

Approximating 𝐸∗ Algorithm
• Take the union bound
over 𝑡 ≤ 𝑛5, then with
probability at least 1 −

6
7.-8 0

:

• 9"
#

:"
= 𝐸+, ± 𝜀 ⋅ |𝐸+, | for

all 𝑡

• Multiplicative Chernoff Bound:
• Pr 𝑋 − 𝜇 ≥ 𝜀 ⋅ 𝜇 ≤ 2exp(− :";

<
)

• 𝜇 = 𝑝9 ⋅ 𝐸". for 𝑖 ≥ 2

• Pr |𝑆9. − 𝜇 ≥ 𝜀 ⋅ 𝜇 ≤ 2exp(4:
" =#$ ⋅5%
<

)

≤ 2 exp − :"⋅?@ ABC D
<⋅:"

= $
EBAF D

Theorem: Can approximate 𝐸∗ to 1 + 𝜀 -
approximation in 𝑂 -./ 0

1!
 space whp.

Lemma 1: 𝑀 𝐺 ≤ 𝐸∗ ≤ 𝛼 + 2 ⋅ 𝑀(𝐺)

CPSC 768

Approximating 𝐸∗ Algorithm
• Take the union bound
over 𝑡 ≤ 𝑛5, then with
probability at least 1 −

6
7.-8 0

:

• 9"
#

:"
= 𝐸+, ± 𝜀 ⋅ |𝐸+, | for

all 𝑡

• Multiplicative Chernoff Bound:
• Pr 𝑋 − 𝜇 ≥ 𝜀 ⋅ 𝜇 ≤ 2exp(− :";

<
)

• 𝜇 = 𝑝9 ⋅ 𝐸". for 𝑖 ≥ 2

• Pr |𝑆9. − 𝜇 ≥ 𝜀 ⋅ 𝜇 ≤ 2exp(4:
" =#$ ⋅5%
<

)

≤ 2 exp − :"⋅?@ ABC D
<⋅:"

= $
EBAF D

Theorem: Can approximate 𝑴(𝑮) to
𝟐 + 𝜶 𝟏 + 𝜺 -approximation in 𝑶 𝐥𝐨𝐠 𝒏 ⋅𝐥𝐨𝐠 𝜶

𝜺𝟐
 space

whp.

CPSC 768

On Wednesday

• Streaming Bipartite Matching using Auction Algorithms
• Another more intuitive way to solve maximum matching in

bipartite graphs than Hungarian algorithm or maxflow!

