These lecture notes have not undergone rigorous peer-review. Please email quanquan.liu@yale.edu if you see any errors.

1 Introduction

Today we'll discuss estimating the size of the maximum cardinality matching in an insertion-only stream. Our lecture will focus on the recent result of McGregor and Vorotnikova [MV18] which builds off the result of Cormode, Jowhari, Monemizadeh, and Muthukrishnan [CJMM16]. In insertion-only streams, edges arrive in arbitrary order and are inserted into the graph. Elements appear one at a time and if you do not store an element in your (small) memory when you see it, you cannot recall that element until the next pass of the stream. The goal is to minimize the number of passes of the stream and the space used for storing elements from the stream to compute the property of interest. Today's lecture focuses on streaming algorithms for maximum matching in low arboricity graphs. A matching in a graph is a set of edges where no two edges in the set share an endpoint. The maximum matching in the graph is a matching of maximum cardinality.

2 Properties of Arboricity

Recall from our previous lecture that the arboricity of a graph is defined as the minimum number of forests to decompose the edges of a graph. The arboricity of a graph is related to the degeneracy and density of the graph. Typically, the arboricity is denoted by α. The arboricity of the graph posesses a number of interesting properties:

- By the Nash-Williams theorem, we can show that that $\alpha=\max _{S \subseteq V}\left\{\left\lceil\frac{E(S)}{|S|-1}\right\rceil\right\}$ where $E(S)$ is the set of edges in the induced subgraph given by S.
- The arboricity of planar graphs is ≤ 3.
- The arboricity of any subgraph of G is at most the arboricity of G.
- In a graph with α arboricity and n nodes, the number of edges in the graph is $\leq n \alpha$.

3 Streaming Maximum Matching in Low Arboricity Graphs

The general strategy for streaming approximation algorithms is the following:

1. Figure out the quantity we can approximate using sampling where the quantity also gives an estimate of the property you want to eventually compute.
2. Approximate the desired quantity via sampling and prove concentration bounds.

Let $M(G)$ be the maximum size of a matching in input graph G and $M(G)$ is the property we want to compute. For a stream of length m, let G^{t} be the prefix of the stream consisting of the first t elements. Let B_{u}^{t} be the last $\alpha+1$ edges incident to $u \in V$ that appears in G^{t}. Let E_{α}^{t} be the set of edges $\{u, v\}$ in the stream where $\{u, v\} \in G^{t}$. That is, E_{α}^{t} consists of the set of edges $\{u, v\}$ where the number of edges incident to u and v that appear in the stream after $\{u, v\}$ is at most α. We say an edge $\{u, v\}$ is good if $\{u, v\} \in B_{u} \cap B_{v}$, and an edge is wasted if $\{u, v\} \in B_{u} \oplus B_{v}=\left(B_{u} \cup B_{v}\right) \backslash\left(B_{u} \cap B_{v}\right)$. Then, E_{α}^{t} is precisely the set of good edges in G^{t}. In other words, $E_{\alpha}^{t}=\bigcup_{u \neq v \in V}\left(B_{u}^{t} \cap B_{v}^{t}\right)$.

The size of E_{α} is the quantity we want to approximate using our algorithm. So, we first relate $\left|E_{\alpha}\right|$ to $M(G)$.

Lemma 3.1. $M\left(G^{t}\right) \leq\left|E_{\alpha}^{t}\right| \leq(\alpha+2) \cdot M\left(G^{t}\right)$.
Proof. We'll first prove the right-hand side of this expression. To do this, we define a fractional matching using E_{α}^{t}. Let $Y_{e}=\frac{1}{\alpha+1}$ if $e \in E_{\alpha}^{t}$ and $Y_{e}=0$ otherwise. Then, $\left\{Y_{e}\right\}_{e \in E}$ is a fractional matching with maximum weight $\frac{1}{\alpha+1} .{ }^{1}$ We now show a corollary of Edmond's matching polytope theorem. Edmond's matching polytope theorem implies that if the weight of a fractional matching on any induced subgraph $S \subseteq G$ is at most $\frac{|S|-1}{2}$, then the weight on the entire graph is at most $M(G)$. Now, we show the following corollary:
Corollary 3.2. Let $\left\{Y_{e}\right\}_{e \in E}$ be a fractional matching where the maximum weight on any edge is ε. Then, $\sum_{e \in E} Y_{e} \leq(1+\varepsilon) \cdot M(G)$.

Proof. Let S be an arbitrary subset of vertices, and let $E(S)$ be the edges in the induced subgraph of S. We know that $|E(S)| \leq \frac{|S|(|S|-1)}{2}$ and by the definition of fractional matching, $\sum_{e \in E(S)} Y_{e}=\frac{\sum_{u \in V} \sum_{v \in N(v)} f(\{u, v\})}{2}=$ $\frac{\sum_{u \in V^{1}}}{2}=\frac{|S|}{2}$ where $\sum_{v \in N(v)} f(\{u, v\})=1$ by the constraints of the fractional matching. Thus, we know that

$$
\begin{aligned}
\sum_{e \in E(S)} & \leq \min \left(\frac{|S|}{2}, \frac{\varepsilon|S|(|S|-1)}{2}\right) \\
& \leq \frac{|S|-1}{2} \cdot \min \left(\frac{|S|}{|S|-1}, \varepsilon|S|\right) \\
& \leq \frac{|S|-1}{2} \cdot(1+\varepsilon) .
\end{aligned}
$$

We can show the last inequality by considering two cases:

- If $\frac{|S|}{|S|-1} \leq \varepsilon|S|$, then

$$
\begin{aligned}
1+\frac{1}{|S|-1} & \leq \varepsilon+1 \\
\frac{|S|}{|S|-1} & \leq 1+\varepsilon
\end{aligned}
$$

- If $\varepsilon|S| \leq \frac{|S|}{|S|-1}$, then

$$
\begin{aligned}
\varepsilon & \leq \frac{1}{|S|-1} \\
\varepsilon|S|-\varepsilon & \leq 1 \\
\varepsilon|S| & \leq 1+\varepsilon .
\end{aligned}
$$

Finally, let $Z_{e}=\frac{Y_{e}}{1+\varepsilon}$. We can use Edmond's polytope theorem to show that $\sum_{e \in E} Z_{e} \leq \frac{|S|-1}{2} \leq M(G)$ and so $\sum_{e \in E} Y_{e} \leq(1+\varepsilon) \sum_{e \in E} Z_{e} \leq(1+\varepsilon) \cdot M(G)$. We have proven our corollary.

Using the above corollary with maximum weight $\frac{1}{\alpha+1}$ implies that $\sum_{e \in E} Y_{e}=\frac{\left|E_{\alpha}^{t}\right|}{\alpha+1} \leq\left(1+\frac{1}{\alpha+1}\right) M(G)=$ $\frac{\alpha+2}{\alpha+1} \cdot M(G)$. Hence, we have that $\left|E_{\alpha}^{t}\right| \leq(\alpha+2) \cdot M(G)$.

Now, we prove the left inequality. To prove the left inequality, let H be the set of vertices in G^{t} with degree at least $\alpha+1$. These are the heavy vertices. We also define the following variables:

[^0]- $w:=$ the number of good edges with no endpoints in H,
- $x:=$ the number of good edges with exactly one endpoint in H,
- $y:=$ the number of good edges with two endpoints in H,
- $z:=$ the number of wasted edges with no endpoints in H.

First, $\left|E_{\alpha}^{t}\right|=w+x+y$. Now, we show the following additional equalities. We will first calculate the number of edges in the B_{u} of every $u \in H$ in terms of the variables we defined above. Since every vertex $u \in H$ is heavy, $\left|B_{u}\right|=\alpha+1$. Hence, $\sum_{u \in H}\left|B_{u}\right|=(\alpha+1)|H|$. Every edge in each of these B_{u} must either be a good edge or a wasted edge since they have at least one endpoint, namely u, which has at most α edges incident to it in the rest of G^{t}. For each edge counted in x, it has one endpoint in H so it is counted in exactly one B_{u} in H. Furthermore, for each edge counted in z, it is also counted in the B_{u} of exactly one of its two endpoints since it is wasted (i.e. the other endpoint doesn't have at most α edges that come after it). This leaves every good edge counted in y which is counted in exactly two B_{u} 's. Hence, $\sum_{u \in H}\left|B_{u}\right|=x+2 y+z=(\alpha+1)|H|$.

Now, we can also compute $z+y \leq \alpha|H|$ since $z+y$ is a subset of the total number of edges in the induced subgraph consisting of H. Since we know that the graph has arboricity α, we also know that (by the properties of arboricity) that the induced subgraph consisting of H has at most $\alpha|H|$ edges. Hence, we can sum our inequalities: $x+2 y+z=(\alpha+1)|H|$ and $-z-y \geq-\alpha|H|$ to obtain $x+y \geq|H|$. Finally, let E_{L} be the set of edges with no endpoints in H. Every edge in E_{L} is good and $w=\left|E_{L}\right|$. Therefore, $\left|E_{\alpha}^{t}\right|=w+x+y=|H|+\left|E_{L}\right|$. We can show that $|H|+\left|E_{L}\right| \geq M(G)$ since we can partition the set of edges in the maximum matching to edges in E_{L} and edges incident to H. All of the edges in E_{L} can be in the matching and at most one edge incident to each vertex in H is in the matching. We have successfully proven our lower bound: $\left|E_{\alpha}^{t}\right| \geq M(G)$.

Now we have the following algorithm for estimating $\left|E_{\alpha}^{t}\right|$ for every $t \leq m$. For every sampled edge, $e=\{u, v\}$, the algorithm also stores counters c_{e}^{u} nad c_{e}^{v} for the degrees of u and v in the rest of the stream. This requires an additional factor of $O(\log (\alpha))$ space. Thus, the algorithm maintains the invariant that each edge stored in the sample is a good edge with respect to the current G^{t}. The algorithm is given below in Algorithm 1.

Theorem 1 (Multiplicative Chernoff Bound). The Chernoff Bound is a probabilistic inequality that provides an upper bound on the tail distribution of sums of independent random variables. There are many variants of the bound; we present the common multiplicative version. Formally, it is expressed as:

$$
\operatorname{Pr}(|X-\mu| \geq \varepsilon \cdot \mu) \leq 2 \exp \left(-\frac{\varepsilon^{2} \mu}{3}\right)
$$

where X is a random variable representing the sum of independent random variables in $[0,1]$, and μ is the expected value of X.

Now, we show that we get an $(1+\varepsilon)$-approximation with high probability. First, we note that $E_{t}^{*}=$ $\max _{t^{\prime} \leq t}\left(\left|E_{\alpha}^{t^{\prime}}\right|\right)$ follows $M\left(G^{t}\right) \leq E_{t}^{*} \leq(2+\alpha) M\left(G^{t}\right)$ since $E_{t}^{*} \geq\left|E_{\alpha}^{t}\right|, M\left(G^{t^{\prime}}\right) \leq M\left(G^{t}\right)$, and Lemma 3.1.

We now show our main lemma for our algorithm.
Lemma 3.3. Algorithm 1 returns a $(1+\varepsilon)$-approximation of $\left|E_{\alpha}^{t}\right|$ for every $t \leq m$ with high probability.

Algorithm 1: Sampling $\left\|E_{\alpha}^{t}\right\|$	
	nction Alg (α, ε, n)
2	$S \leftarrow \emptyset$
3	$p \leftarrow 1$
4	estimate $\leftarrow 0$
5	for each $e=\{u, v\}$ do
6	With probability p add e to S and initialize counters $c_{e}^{u} \leftarrow 0$ and $c_{e}^{v} \leftarrow 0$
7	for each edge $e^{\prime} \in S$ do
8	if e^{\prime} shares endpoint w with e then
9	increment $c_{e^{\prime}}^{w}$
10	if $c_{e^{\prime}}^{w}>\alpha$ then
11	\| remove e^{\prime} and corresponding counters from S
12	end
13	end
14	end
15	if $\|S\|>80 \varepsilon^{-2} \log (n)$ then
16	$p \leftarrow p / 2$
17	Remove each edge in S and counters with probability $1 / 2$
18	end
19	estimate $\leftarrow \max ($ estimate,,$\|S\| / p)$
20	end
21	return estimate

Proof. First, let $\tau=\frac{40 \log n}{\varepsilon^{2}}$ and define level i (starting with $i=2$) to be the level that contains $\left|E_{\alpha}^{t}\right|$ if $2^{i-1} \cdot \tau<E_{t}^{*} \leq 2^{i} \cdot \tau$. Level $i=1$ is defined as $0 \leq E_{t}^{*} \leq 2 \cdot \tau$. Suppose in a perfect situation, edge e is sampled in level i with probability $p_{i}^{\prime}=\frac{1}{2^{i}}$ for $i \geq 2$ and with probability $p_{1}^{\prime}=1$ for $i=1$.

In that case, we can use the multiplicative Chernoff bound to bound the probability that our estimate concentrates. However, it is not the case that p_{i} is guaranteed to be $\frac{1}{2^{i}}$ since it is determined adaptively by Algorithm 1. Hence, we need a slightly more complicated analysis than simply using the multiplicative Chernoff bound with p_{i}^{\prime}. We consider two cases. If $p_{i} \geq p_{i}^{\prime}$, then we can lower bound the probability of success by what we would obtain using p_{i}^{\prime} and we can use the multiplicative Chernoff bound in this case. Now, suppose that $p_{i}<p_{i}^{\prime}$; then, we show that this case never occurs in Algorithm 1 with probability at least $1-\frac{1}{n^{3}}$. (We can amplify this probability to any $1-\frac{1}{\text { poly }(n)}$ by changing the constant 80 .) We now formally present these arguments.

If $p_{i} \geq p_{i}^{\prime}$, then we use the multiplicative Chernoff bound to bound our probability of success. Note that since we consider E_{t}^{*} instead of $\left|E_{\alpha}^{t}\right|$ for every t, we need only consider the time stamps t where $E_{t}^{*}=\left|E_{\alpha}^{t}\right|$. Below, we have $\mu=p_{i} \cdot\left|E_{\alpha}^{t}\right|$. Let S^{t} be the sample of edges for G_{t}.

$$
\begin{aligned}
\operatorname{Pr}[|X-\mu| \geq \varepsilon \cdot \mu] & \leq 2 \exp \left(-\frac{\varepsilon^{2} \mu}{3}\right) \\
\operatorname{Pr}\left[\left|S^{t}-p_{i} \cdot\right| E_{\alpha}^{t}| | \geq \varepsilon \cdot p_{i} \cdot\left|E_{\alpha}^{t}\right|\right] & \leq 2 \exp \left(-\frac{\varepsilon^{2}\left|E_{\alpha}^{t}\right| p_{i}}{3}\right) \\
& \leq 2 \exp \left(-\frac{\varepsilon^{2}\left|E_{\alpha}^{t}\right| p_{i}^{\prime}}{3}\right) \quad \text { by our assumption that } p_{i} \geq p_{i}^{\prime} \\
& \leq 2 \exp \left(-\frac{20 \log n}{3}\right) \quad \text { by our definition of } p_{i}^{\prime} \text { so that } p_{i}^{\prime} \cdot E_{t}^{*} \geq \tau / 2 \\
& \leq 2 \exp (-6 \log n)=\frac{1}{n^{6}} .
\end{aligned}
$$

We can adjust the constant 80 in Algorithm 1 to ensure high probability.
Now, we consider the case when $p_{i}<p_{i}^{\prime}$. We show that with probability at least $1-\frac{1}{n^{3}}$, this case does not occur. We prove this via induction on t. For $t=1, p_{i}=p_{i}^{\prime}$ trivially since both equal 1 . Now, we assume our claim holds for t and show it holds for $t+1$. Suppose for the sake of contradiction that with probability greater than $\frac{1}{n^{3}}, p_{i}<p_{i}^{\prime}$. First, note that E_{t}^{*} cannot decrease so p_{i}^{\prime} cannot decrease as t increases. Then, the only reason that $p_{i}<p_{i}^{\prime}$ is if we sample more than $\frac{80 \log n}{\varepsilon^{2}}$ elements of E_{α}^{t} at probability $p_{i}=p_{i}^{\prime}$. Again, we only consider cases where $\left|E_{\alpha}^{t}\right|=E_{t}^{*}$. Then, we can use the Chernoff bound to show that

$$
\operatorname{Pr}\left[\left|S^{t}-p_{i}^{\prime} \cdot\right| E_{\alpha}^{t}| | \geq C \cdot p_{i}^{\prime} \cdot\left|E_{\alpha}^{t}\right|\right] \leq 2 \exp \left(-\frac{C^{2} p_{i}^{\prime} \cdot\left|E_{\alpha}^{t}\right|}{3}\right)
$$

for some C which we compute below.
Let $\mu=p_{i}^{\prime} \cdot\left|E_{\alpha}^{t}\right|$. Note that if $\mu \geq \frac{10 \log n}{\varepsilon^{2}}$, then we can directly set $C=\varepsilon$ and obtain our desired contradiction. Thus, we show the case when $\mu<\frac{10 \log n}{\varepsilon^{2}}$. Since we sampled more than $\frac{80 \log n}{\varepsilon^{2}}$ elements, it must be the case that $S^{t} \geq \frac{80 \log n}{\varepsilon^{2}}$ and $C \geq \frac{S^{t}-\mu}{\mu}=\frac{S^{t}}{\mu}-1 \geq \frac{7 S^{t}}{8 \mu}$. Substituting this C into our bound gives

$$
\begin{aligned}
\operatorname{Pr}\left[\left|S^{t}-\mu\right| \geq C \cdot \mu\right] & \leq 2 \exp \left(-\frac{C^{2} \mu}{3}\right) \\
& \leq 2 \exp \left(-\frac{\left(\frac{7 S^{t}}{8 \mu}\right)^{2} \mu}{3}\right) \\
& =2 \exp \left(-\frac{49\left(S^{t}\right)^{2}}{192 \mu}\right) \\
& \leq 2 \exp \left(-\frac{49 \cdot 640 \log n}{192 \varepsilon^{2}}\right) \\
& \leq \frac{1}{n^{160}} .
\end{aligned}
$$

We now union bound over all possible $t \leq n^{2}$ to obtain our probability of failure is at most $\frac{1}{n^{158}}$. This contradicts our assumption and it must be the case that $p_{i} \geq p_{i}^{\prime}$ for $t+1$.

Now, combining Lemma 3.1 with Lemma 3.3 gives us our final theorem.

Theorem 3.4. With probability at least $1-\frac{1}{n^{3}},{ }^{2}$ and using $O\left(\frac{\log (n) \log (\alpha)}{\varepsilon^{2}}\right)$ space, we can find a $(1+\varepsilon)(2+$ α)-approximation of the size of the maximum matching in an one-pass, arbitrary-order stream where α is the (given) arboricity of the graph.

References

[CJMM16] Graham Cormode, Hossein Jowhari, Morteza Monemizadeh, and Shanmugavelayutham Muthukrishnan. The sparse awakens: Streaming algorithms for matching size estimation in sparse graphs. arXiv preprint arXiv:1608.03118, 2016.
[MV18] Andrew McGregor and Sofya Vorotnikova. A simple, space-efficient, streaming algorithm for matchings in low arboricity graphs. In 1st Symposium on Simplicity in Algorithms (SOSA 2018). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018.

[^1]
[^0]: ${ }^{1}$ A fractional matching is defined to a set of weights $f(e)$ on every edge e where $\forall v \in V: \sum_{e \ni v} f(e) \leq 1$.

[^1]: ${ }^{2}$ Can be amplified to high probability by changing the constant 80 in Algorithm 1

