
CPSC 768: SCALABLE AND PRIVATE GRAPH ALGORITHMS Lectures 6 and 7

These lecture notes have not undergone rigorous peer-review. Please email quanquan.liu@yale.edu if
you see any errors.

1 Introduction

Today we’ll discuss estimating the size of the maximum cardinality matching in an insertion-only stream.
Our lecture will focus on the recent result of McGregor and Vorotnikova [MV18] which builds off the result
of Cormode, Jowhari, Monemizadeh, and Muthukrishnan [CJMM16]. In insertion-only streams, edges
arrive in arbitrary order and are inserted into the graph. Elements appear one at a time and if you do not
store an element in your (small) memory when you see it, you cannot recall that element until the next
pass of the stream. The goal is to minimize the number of passes of the stream and the space used for
storing elements from the stream to compute the property of interest. Today’s lecture focuses on streaming
algorithms for maximum matching in low arboricity graphs. A matching in a graph is a set of edges where
no two edges in the set share an endpoint. The maximum matching in the graph is a matching of maximum
cardinality.

2 Properties of Arboricity

Recall from our previous lecture that the arboricity of a graph is defined as the minimum number of forests
to decompose the edges of a graph. The arboricity of a graph is related to the degeneracy and density of the
graph. Typically, the arboricity is denoted by α. The arboricity of the graph posesses a number of interesting
properties:

• By the Nash-Williams theorem, we can show that that α = maxS⊆V

{
⌈ E(S)
|S|−1⌉

}
where E(S) is the

set of edges in the induced subgraph given by S.

• The arboricity of planar graphs is ≤ 3.

• The arboricity of any subgraph of G is at most the arboricity of G.

• In a graph with α arboricity and n nodes, the number of edges in the graph is ≤ nα.

3 Streaming Maximum Matching in Low Arboricity Graphs

The general strategy for streaming approximation algorithms is the following:

1. Figure out the quantity we can approximate using sampling where the quantity also gives an estimate
of the property you want to eventually compute.

2. Approximate the desired quantity via sampling and prove concentration bounds.

Let M(G) be the maximum size of a matching in input graph G and M(G) is the property we want
to compute. For a stream of length m, let Gt be the prefix of the stream consisting of the first t elements.
Let Bt

u be the last α + 1 edges incident to u ∈ V that appears in Gt. Let Et
α be the set of edges {u, v} in

the stream where {u, v} ∈ Gt. That is, Et
α consists of the set of edges {u, v} where the number of edges

incident to u and v that appear in the stream after {u, v} is at most α. We say an edge {u, v} is good if
{u, v} ∈ Bu ∩ Bv, and an edge is wasted if {u, v} ∈ Bu ⊕ Bv = (Bu ∪ Bv) \ (Bu ∩ Bv). Then, Et

α is
precisely the set of good edges in Gt. In other words, Et

α =
⋃

u̸=v∈V
(
Bt

u ∩Bt
v

)
.

The size of Eα is the quantity we want to approximate using our algorithm. So, we first relate |Eα| to
M(G).

Quanquan C. Liu quanquan@mit.edu 1

mailto:quanquan.liu@yale.edu

CPSC 768: SCALABLE AND PRIVATE GRAPH ALGORITHMS Lectures 6 and 7

Lemma 3.1. M(Gt) ≤ |Et
α| ≤ (α+ 2) ·M(Gt).

Proof. We’ll first prove the right-hand side of this expression. To do this, we define a fractional matching
using Et

α. Let Ye = 1
α+1 if e ∈ Et

α and Ye = 0 otherwise. Then, {Ye}e∈E is a fractional matching with
maximum weight 1

α+1 .1 We now show a corollary of Edmond’s matching polytope theorem. Edmond’s
matching polytope theorem implies that if the weight of a fractional matching on any induced subgraph
S ⊆ G is at most |S|−1

2 , then the weight on the entire graph is at most M(G). Now, we show the following
corollary:

Corollary 3.2. Let {Ye}e∈E be a fractional matching where the maximum weight on any edge is ε. Then,∑
e∈E Ye ≤ (1 + ε) ·M(G).

Proof. Let S be an arbitrary subset of vertices, and let E(S) be the edges in the induced subgraph of S. We

know that |E(S)| ≤ |S|(|S|−1)
2 and by the definition of fractional matching,

∑
e∈E(S) Ye =

∑
u∈V

∑
v∈N(v) f({u,v})

2 =∑
u∈V 1

2 = |S|
2 where

∑
v∈N(v) f({u, v}) = 1 by the constraints of the fractional matching. Thus, we know

that ∑
e∈E(S)

≤ min

(
|S|
2
,
ε|S|(|S| − 1)

2

)

≤ |S| − 1

2
·min

(
|S|
|S| − 1

, ε|S|
)

≤ |S| − 1

2
· (1 + ε).

We can show the last inequality by considering two cases:

• If |S|
|S|−1 ≤ ε|S|, then

1 +
1

|S| − 1
≤ ε+ 1

|S|
|S| − 1

≤ 1 + ε.

• If ε|S| ≤ |S|
|S|−1 , then

ε ≤ 1

|S| − 1

ε|S| − ε ≤ 1

ε|S| ≤ 1 + ε.

Finally, let Ze =
Ye
1+ε . We can use Edmond’s polytope theorem to show that

∑
e∈E Ze ≤ |S|−1

2 ≤M(G)
and so

∑
e∈E Ye ≤ (1 + ε)

∑
e∈E Ze ≤ (1 + ε) ·M(G). We have proven our corollary.

Using the above corollary with maximum weight 1
α+1 implies that

∑
e∈E Ye =

|Et
α|

α+1 ≤ (1+ 1
α+1)M(G) =

α+2
α+1 ·M(G). Hence, we have that |Et

α| ≤ (α+ 2) ·M(G).
Now, we prove the left inequality. To prove the left inequality, let H be the set of vertices in Gt with

degree at least α+ 1. These are the heavy vertices. We also define the following variables:
1A fractional matching is defined to a set of weights f(e) on every edge e where ∀v ∈ V :

∑
e∋v f(e) ≤ 1.

Quanquan C. Liu quanquan@mit.edu 2

mailto:quanquan.liu@yale.edu

CPSC 768: SCALABLE AND PRIVATE GRAPH ALGORITHMS Lectures 6 and 7

• w := the number of good edges with no endpoints in H ,

• x := the number of good edges with exactly one endpoint in H ,

• y := the number of good edges with two endpoints in H ,

• z := the number of wasted edges with no endpoints in H .

First, |Et
α| = w + x + y. Now, we show the following additional equalities. We will first calculate

the number of edges in the Bu of every u ∈ H in terms of the variables we defined above. Since every
vertex u ∈ H is heavy, |Bu| = α + 1. Hence,

∑
u∈H |Bu| = (α + 1)|H|. Every edge in each of these

Bu must either be a good edge or a wasted edge since they have at least one endpoint, namely u, which has
at most α edges incident to it in the rest of Gt. For each edge counted in x, it has one endpoint in H so it
is counted in exactly one Bu in H . Furthermore, for each edge counted in z, it is also counted in the Bu

of exactly one of its two endpoints since it is wasted (i.e. the other endpoint doesn’t have at most α edges
that come after it). This leaves every good edge counted in y which is counted in exactly two Bu’s. Hence,∑

u∈H |Bu| = x+ 2y + z = (α+ 1)|H|.
Now, we can also compute z + y ≤ α|H| since z + y is a subset of the total number of edges in the

induced subgraph consisting of H . Since we know that the graph has arboricity α, we also know that (by
the properties of arboricity) that the induced subgraph consisting of H has at most α|H| edges. Hence, we
can sum our inequalities: x+ 2y + z = (α+ 1)|H| and −z − y ≥ −α|H| to obtain x+ y ≥ |H|. Finally,
let EL be the set of edges with no endpoints in H . Every edge in EL is good and w = |EL|. Therefore,
|Et

α| = w + x+ y = |H|+ |EL|. We can show that |H|+ |EL| ≥ M(G) since we can partition the set of
edges in the maximum matching to edges in EL and edges incident to H . All of the edges in EL can be in
the matching and at most one edge incident to each vertex in H is in the matching. We have successfully
proven our lower bound: |Et

α| ≥M(G).

Now we have the following algorithm for estimating |Et
α| for every t ≤ m. For every sampled edge,

e = {u, v}, the algorithm also stores counters cue nad cve for the degrees of u and v in the rest of the stream.
This requires an additional factor of O(log(α)) space. Thus, the algorithm maintains the invariant that each
edge stored in the sample is a good edge with respect to the current Gt. The algorithm is given below
in Algorithm 1.

Theorem 1 (Multiplicative Chernoff Bound). The Chernoff Bound is a probabilistic inequality that
provides an upper bound on the tail distribution of sums of independent random variables. There are
many variants of the bound; we present the common multiplicative version. Formally, it is expressed
as:

Pr(|X − µ| ≥ ε · µ) ≤ 2 exp

(
−ε2µ

3

)
,

where X is a random variable representing the sum of independent random variables in [0, 1], and µ is
the expected value of X .

Now, we show that we get an (1 + ε)-approximation with high probability. First, we note that E∗
t =

maxt′≤t(|Et′
α |) follows M(Gt) ≤ E∗

t ≤ (2+α)M(Gt) since E∗
t ≥ |Et

α|, M(Gt′) ≤M(Gt), and Lemma 3.1.
We now show our main lemma for our algorithm.

Lemma 3.3. Algorithm 1 returns a (1 + ε)-approximation of |Et
α| for every t ≤ m with high probability.

Quanquan C. Liu quanquan@mit.edu 3

mailto:quanquan.liu@yale.edu

CPSC 768: SCALABLE AND PRIVATE GRAPH ALGORITHMS Lectures 6 and 7

Algorithm 1: Sampling |Et
α|

1 Function Alg(α, ε, n)
2 S ← ∅
3 p← 1
4 estimate← 0
5 for each e = {u, v} do
6 With probability p add e to S and initialize counters cue ← 0 and cve ← 0
7 for each edge e′ ∈ S do
8 if e′ shares endpoint w with e then
9 increment cwe′

10 if cwe′ > α then
11 remove e′ and corresponding counters from S
12 end
13 end
14 end
15 if |S| > 80ε−2 log(n) then
16 p← p/2
17 Remove each edge in S and counters with probability 1/2

18 end
19 estimate← max(estimate, |S|/p)
20 end
21 return estimate

Proof. First, let τ = 40 logn
ε2

and define level i (starting with i = 2) to be the level that contains |Et
α| if

2i−1 · τ < E∗
t ≤ 2i · τ . Level i = 1 is defined as 0 ≤ E∗

t ≤ 2 · τ . Suppose in a perfect situation, edge e is
sampled in level i with probability p′i =

1
2i

for i ≥ 2 and with probability p′1 = 1 for i = 1.
In that case, we can use the multiplicative Chernoff bound to bound the probability that our estimate

concentrates. However, it is not the case that pi is guaranteed to be 1
2i

since it is determined adaptively
by Algorithm 1. Hence, we need a slightly more complicated analysis than simply using the multiplicative
Chernoff bound with p′i. We consider two cases. If pi ≥ p′i, then we can lower bound the probability of
success by what we would obtain using p′i and we can use the multiplicative Chernoff bound in this case.
Now, suppose that pi < p′i; then, we show that this case never occurs in Algorithm 1 with probability at least
1− 1

n3 . (We can amplify this probability to any 1− 1
poly(n) by changing the constant 80.) We now formally

present these arguments.
If pi ≥ p′i, then we use the multiplicative Chernoff bound to bound our probability of success. Note that

since we consider E∗
t instead of |Et

α| for every t, we need only consider the time stamps t where E∗
t = |Et

α|.
Below, we have µ = pi · |Et

α|. Let St be the sample of edges for Gt.

Quanquan C. Liu quanquan@mit.edu 4

mailto:quanquan.liu@yale.edu

CPSC 768: SCALABLE AND PRIVATE GRAPH ALGORITHMS Lectures 6 and 7

Pr [|X − µ| ≥ ε · µ] ≤ 2 exp

(
−ε2µ

3

)
Pr
[
|St − pi · |Et

α|| ≥ ε · pi · |Et
α|
]
≤ 2 exp

(
−ε2|Et

α|pi
3

)
≤ 2 exp

(
−ε2|Et

α|p′i
3

)
by our assumption that pi ≥ p′i

≤ 2 exp

(
−20 log n

3

)
by our definition of p′i so that p′i · E∗

t ≥ τ/2

≤ 2 exp (−6 log n) = 1

n6
.

We can adjust the constant 80 in Algorithm 1 to ensure high probability.
Now, we consider the case when pi < p′i. We show that with probability at least 1 − 1

n3 , this case does
not occur. We prove this via induction on t. For t = 1, pi = p′i trivially since both equal 1. Now, we assume
our claim holds for t and show it holds for t+1. Suppose for the sake of contradiction that with probability
greater than 1

n3 , pi < p′i. First, note that E∗
t cannot decrease so p′i cannot decrease as t increases. Then, the

only reason that pi < p′i is if we sample more than 80 logn
ε2

elements of Et
α at probability pi = p′i. Again, we

only consider cases where |Et
α| = E∗

t . Then, we can use the Chernoff bound to show that

Pr
[
|St − p′i · |Et

α|| ≥ C · p′i · |Et
α|
]
≤ 2 exp

(
−C2p′i · |Et

α|
3

)
.

for some C which we compute below.
Let µ = p′i · |Et

α|. Note that if µ ≥ 10 logn
ε2

, then we can directly set C = ε and obtain our desired
contradiction. Thus, we show the case when µ < 10 logn

ε2
. Since we sampled more than 80 logn

ε2
elements, it

must be the case that St ≥ 80 logn
ε2

and C ≥ St−µ
µ = St

µ − 1 ≥ 7St

8µ . Substituting this C into our bound gives

Pr
[
|St − µ| ≥ C · µ

]
≤ 2 exp

(
−C2µ

3

)
≤ 2 exp

(
−
(7S

t

8µ)2µ

3

)

= 2 exp

(
−49(St)2

192µ

)
≤ 2 exp

(
−49 · 640 log n

192ε2

)
≤ 1

n160
.

We now union bound over all possible t ≤ n2 to obtain our probability of failure is at most 1
n158 . This

contradicts our assumption and it must be the case that pi ≥ p′i for t+ 1.

Now, combining Lemma 3.1 with Lemma 3.3 gives us our final theorem.

Quanquan C. Liu quanquan@mit.edu 5

mailto:quanquan.liu@yale.edu

CPSC 768: SCALABLE AND PRIVATE GRAPH ALGORITHMS Lectures 6 and 7

Theorem 3.4. With probability at least 1− 1
n3 ,2 and using O

(
log(n) log(α)

ε2

)
space, we can find a (1+ε)(2+

α)-approximation of the size of the maximum matching in an one-pass, arbitrary-order stream where α is
the (given) arboricity of the graph.

References

[CJMM16] Graham Cormode, Hossein Jowhari, Morteza Monemizadeh, and Shanmugavelayutham
Muthukrishnan. The sparse awakens: Streaming algorithms for matching size estimation in
sparse graphs. arXiv preprint arXiv:1608.03118, 2016.

[MV18] Andrew McGregor and Sofya Vorotnikova. A simple, space-efficient, streaming algorithm for
matchings in low arboricity graphs. In 1st Symposium on Simplicity in Algorithms (SOSA 2018).
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018.

2Can be amplified to high probability by changing the constant 80 in Algorithm 1

Quanquan C. Liu quanquan@mit.edu 6

mailto:quanquan.liu@yale.edu

	Introduction
	Properties of Arboricity
	Streaming Maximum Matching in Low Arboricity Graphs

