CPSC 768:

Scalable and Private Graph Algorithms

Lecture 5: Approximate Average Degree in the Sublinear Model; Arboricity and Orientation

Quanquan C. Liu

quanquan.liu@yale.edu

Outdegree Orientation

- $(1+\varepsilon)$-approx. for average degree + useful graph property!

Orient all edges from low to high degree, what's the max out-degree that you see?

Give an Ordering of the Vertices to Minimize Outdegree

- Order the vertices of the graph in total ordering

Give an Ordering of the Vertices to Minimize Outdegree

- Order the vertices of the graph in total ordering
- Orient the edges from vertices earlier in the ordering to later

Give an Ordering of the Vertices to Minimize Outdegree

- Order the vertices of the graph in total ordering
- Orient the edges from vertices earlier in the ordering to later

- Produces an ordering that minimizes the maximum outdegree

Ideas for an algorithm to achieve this?

Linear Time $O(n+m)$ Solution

- Repeated peel vertex with minimum remaining induced degree and put in order

Linear Time $O(n+m)$ Solution

- Repeated peel vertex with minimum remaining induced degree and put in order

Linear Time $O(n+m)$ Solution

- Repeated peel vertex with minimum remaining induced degree and put in order

Linear Time $O(n+m)$ Solution

- Repeated peel vertex with minimum remaining induced degree and put in order

Linear Time $O(n+m)$ Solution

- Repeated peel vertex with minimum remaining induced degree and put in order

Linear Time $O(n+m)$ Solution

- Repeated peel vertex with minimum remaining induced degree and put in order

Linear Time $O(n+m)$ Solution

- Repeated peel vertex with minimum remaining induced degree and put in order

Linear Time $O(n+m)$ Solution

- Repeated peel vertex with minimum remaining induced degree and put in order

Linear Time $O(n+m)$ Solution

- Repeated peel vertex with minimum remaining induced degree and put in order

Linear Time $O(n+m)$ Solution

- Repeated peel vertex with minimum remaining induced degree and put in order

Outdegree: 2

Can make linear time by using n buckets in $O(n)$ space

Degeneracy of the Graph

- This property is called the degeneracy of the graph

Degeneracy of the Graph

- This property is called the degeneracy of the graph
- Closely related to another concept called the arboricity of the graph

Degeneracy of the Graph

- This property is called the degeneracy of the graph
- Closely related to another concept called the arboricity of the graph
- Minimum number of forests to decompose the graph

Degeneracy of the Graph

- This property is called the degeneracy of the graph
- Closely related to another concept called the arboricity of the graph
- Minimum number of forests to decompose the graph

Degeneracy of the Graph

- This property is called the degeneracy \boldsymbol{d} of the graph
- Closely related to another concept called the arboricity α of the graph
- Minimum number of forests to decompose the graph

$$
\frac{d}{2} \leq \alpha \leq d
$$

Degeneracy of the Graph

- This property is called the degeneracy \boldsymbol{d} of the graph
- Closely related to another concept called the arboricity α of the graph
- Minimum number of forests to decompose the graph

By Nash-Williams Theorem:

$$
\frac{d}{2} \leq \alpha \leq d
$$

$$
\boldsymbol{\alpha}=\max _{\boldsymbol{s}}\left\{\left|\frac{\boldsymbol{m}_{\boldsymbol{S}}}{\boldsymbol{n}_{\boldsymbol{s}}-\mathbf{1}}\right|\right\}
$$

Degeneracy is Very Small in Real-Life

Graph	Num. Vertices	Num. Edges	d
dblp	425,957	$2,099,732$	113
brain-network	784,262	$267,844,669$	1200
wikipedia	$1,140,149$	$2,787,967$	124
youtube	$1,138,499$	$5,980,886$	51
stackoverflow	$2,601,977$	$28,183,518$	198
livejournal	$4,847,571$	$85,702,474$	372
orkut	$3,072,627$	$234,370,166$	253
usa-central	$14,081,816$	$16,933,413$	3
usa-road	$23,072,627$	$28,854,312$	3
twitter	$41,652,231$	$1,202,513,046$	2488
friendster	$65,608,366$	$1,806,067,135$	304

Triangle Counting in Bounded Arboricity Graphs

- Combinatorial triangle counting conjecture: $\Omega(m n)$ time

Triangle Counting in Bounded Arboricity Graphs

- Combinatorial triangle counting conjecture: $\Omega(m n)$ time
- Can use matrix multiplication in n^{ω} time (compared to n^{3} time)

Triangle Counting in Bounded Arboricity Graphs

- Combinatorial triangle counting conjecture: $\Omega(m n)$ time
- Can use matrix multiplication in n^{ω} time (compared to n^{3} time)
- Bounded arboricity graphs: $\boldsymbol{O}(m \alpha)$ time

Triangle Counting in Bounded Arboricity Graphs

- Combinatorial triangle counting conjecture: $\Omega(m n)$ time
- Can use matrix multiplication in n^{ω} time (compared to n^{3} time)
- Bounded arboricity graphs: $\boldsymbol{O}(m \alpha)$ time

Simple Algorithm (Chiba-Nishizeki '85)

1. For every edge, count number of triangles incident to lower degree endpoint
2. Divide total count by 3

Triangle Counting in Bounded Arboricity Graphs

- Proof of $O(m \alpha)$ time:

Simple Algorithm (Chiba-Nishizeki "85)

1. For every edge, count number of triangles incident to lower degree endpoint
2. Divide total count by 3

- Equivalent to showing $\sum_{e=(u, v) \in E} \min (d(u), d(v)) \leq 2 m \alpha$

Triangle Counting in Bounded Arboricity

 Graphs- Proof of $O(m \alpha)$ time:

Simple Algorithm (Chiba-Nishizeki ‘85)

1. For every edge, count number of triangles incident to lower degree endpoint
2. Divide total count by 3

- Equivalent to showing $\sum_{e=(u, v) \in E} \min (d(u), d(v)) \leq 2 m \alpha$
- Consider the arboricity decomposition of the graph

Triangle Counting in Bounded Arboricity Graphs

- Proof of $O(m \alpha)$ time:
- Equivalent to showing $\sum_{e=(u, v) \in E} \min (d(u), d(v)) \leq 2 m \alpha$
- Consider the arboricity decomposition of the graph

Triangle Counting in Bounded Arboricity Graphs

- Proof of $O(m \alpha)$ time:
- Equivalent to showing $\sum_{e=(u, v) \in E} \min (d(u), d(v)) \leq 2 m \alpha$
- Consider the arboricity decomposition of the graph

Triangle Counting in Bounded Arboricity Graphs

- Proof of $O(m \alpha)$ time:
- Equivalent to showing $\sum_{e=(u, v) \in E} \min (d(u), d(v)) \leq 2 m \alpha$
- Consider the arboricity decomposition of the graph

Triangle Counting in Bounded Arboricity Graphs

- Proof of $O(m \alpha)$ time:
- Equivalent to showing $\sum_{e=(u, v) \in E} \min (d(u), d(v)) \leq 2 m \alpha$
- Consider the arboricity decomposition of the graph

Triangle Counting in Bounded Arboricity Graphs

- Proof of $O(m \alpha)$ time:
- Equivalent to showing $\sum_{e=(u, v) \in E} \min (d(u), d(v)) \leq 2 m \alpha$
- Consider the arboricity decomposition of the graph
- Each vertex in F_{i} has one edge

Triangle Counting in Bounded Arboricity Graphs

- Proof of $O(m \alpha)$ time:
- Equivalent to showing $\sum_{e=(u, v) \in E} \min (d(u), d(v)) \leq 2 m \alpha$
- Consider the arboricity decomposition of the graph
- Each vertex in F_{i} has one edge

$$
\begin{aligned}
& \sum_{(u, v) \in E} \min (\operatorname{deg}(u), \operatorname{deg}(v)) \\
& \leq \sum_{1 \leq i \leq \alpha} \sum_{e \in F_{i}} \operatorname{deg}(t o(e)) \quad \begin{array}{c}
\text { Follows because } \\
\operatorname{deg}(t o(e)) \geq \min (\operatorname{deg}(u), \operatorname{deg}(v))
\end{array}
\end{aligned}
$$

Triangle Counting in Bounded Arboricity Graphs

- Proof of $\boldsymbol{O}(m \alpha)$ time:
- Equivalent to showing $\sum_{e=(u, v) \in E} \min (d(u), d(v)) \leq 2 m \alpha$
- Consider the arboricity decomposition of the graph
- Each vertex in F_{i} has one edge

$$
\begin{aligned}
& \sum_{(u, v) \in E} \min (\operatorname{deg}(u), \operatorname{deg}(v)) \\
& \leq \sum_{1 \leq i \leq \alpha} \sum_{e \in F_{i}} \operatorname{deg}(t o(e)) \quad \operatorname{deg}(t o(e)) \geq \min (\operatorname{deg}(u), \operatorname{deg}(v)) \\
& \leq \sum_{1 \leq i \leq \alpha} \sum_{v \in V} \operatorname{deg}(v) \quad \begin{array}{c}
\text { Fince each vertex has at most } \\
\text { one edge associated with it }
\end{array}
\end{aligned}
$$

Triangle Counting in Bounded Arboricity Graphs

- Proof of $\boldsymbol{O}(m \alpha)$ time:
- Equivalent to showing $\sum_{e=(u, v) \in E} \min (d(u), d(v)) \leq 2 m \alpha$
- Consider the arboricity decomposition of the graph
- Each vertex in F_{i} has one edge

$$
\begin{aligned}
& \sum_{(u, v) \in E} \min (\operatorname{deg}(u), \operatorname{deg}(v)) \\
& \begin{array}{l}
\leq \sum_{1 \leq i \leq \alpha} \sum_{e \in F_{i}} \operatorname{deg}(t o(e)) \\
\leq \sum_{1 \leq i \leq \alpha} \sum_{v \in V} \operatorname{deg}(v)=2 \alpha m
\end{array} \\
& \text { Follows because } \\
& \text { Since each vertex has at most } \\
& \text { one edge associated with it, } \\
& \text { the } \operatorname{deg}(t o(e)) \text { of vertex to (e) } \\
& \text { is counted at most once }
\end{aligned}
$$

Next Time

Bounded arboricity graphs in streaming model

