CPSC 768: Scalable and Private Graph Algorithms

Lecture 5: Approximate Average Degree in the Sublinear Model; Arboricity and Orientation

Quanquan C. Liu quanquan.liu@yale.edu

Outdegree Orientation

• $(1 + \varepsilon)$ -approx. for average degree + useful graph property!

Orient all edges from low to high degree, what's the max out-degree that you see?

Give an Ordering of the Vertices to Minimize Outdegree

• Order the vertices of the graph in total ordering

Give an Ordering of the Vertices to Minimize Outdegree

- Order the vertices of the graph in total ordering
- Orient the edges from vertices earlier in the ordering to later

Give an Ordering of the Vertices to Minimize Outdegree

- Order the vertices of the graph in total ordering
- Orient the edges from vertices earlier in the ordering to later

• Produces an ordering that minimizes the *maximum* outdegree

Ideas for an algorithm to achieve this?

 Repeated peel vertex with minimum remaining induced degree and put in order

 Repeated peel vertex with minimum remaining induced degree and put in order

CPSC 768

Can make linear time by using nbuckets in O(n) space

• This property is called the **degeneracy** of the graph

- This property is called the **degeneracy** of the graph
- Closely related to another concept called the arboricity of the graph

- This property is called the **degeneracy** of the graph
- Closely related to another concept called the arboricity of the graph
 - Minimum number of forests to decompose the graph

- This property is called the **degeneracy** of the graph
- Closely related to another concept called the arboricity of the graph

CPSC 768

• Minimum number of forests to decompose the graph

- This property is called the **degeneracy** *d* of the graph
- Closely related to another concept called the arboricity $\boldsymbol{\alpha}$ of the graph
 - Minimum number of forests to decompose the graph

$$\frac{d}{2} \leq \alpha \leq d$$

- This property is called the **degeneracy** *d* of the graph
- Closely related to another concept called the arboricity $\boldsymbol{\alpha}$ of the graph
 - Minimum number of forests to decompose the graph

CPSC 768

$$\frac{d}{2} \leq \alpha \leq d$$

By Nash-Williams Theorem:

$$\alpha = \max_{S} \left\{ \left[\frac{m_{S}}{n_{s} - 1} \right] \right\}$$

Degeneracy is Very Small in Real-Life

Graph	Num. Vertices	Num. Edges	d
dblp	425,957	2,099,732	113
brain-network	784,262	267,844,669	1200
wikipedia	1,140,149	2,787,967	124
youtube	1,138,499	5,980,886	51
stackoverflow	2,601,977	28,183,518	198
livejournal	4,847,571	85,702,474	372
orkut	3,072,627	234,370,166	253
usa-central	14,081,816	16,933,413	3
usa-road	23,072,627	28,854,312	3
twitter	41,652,231	1,202,513,046	2488
friendster	65,608,366	1,806,067,135	304

• Combinatorial triangle counting conjecture: $\Omega(mn)$ time

- Combinatorial triangle counting conjecture: $\Omega(mn)$ time
- Can use matrix multiplication in n^{ω} time (compared to n^3 time)

- Combinatorial triangle counting conjecture: $\Omega(mn)$ time
- Can use matrix multiplication in n^{ω} time (compared to n^3 time)
- Bounded arboricity graphs: $O(m\alpha)$ time

- Combinatorial triangle counting conjecture: $\Omega(mn)$ time
- Can use matrix multiplication in n^{ω} time (compared to n^3 time)
- Bounded arboricity graphs: $O(m\alpha)$ time

Simple Algorithm (Chiba-Nishizeki '85)

- 1. For every edge, count number of triangles incident to lower degree endpoint
- 2. Divide total count by 3

• Proof of $O(m\alpha)$ time:

Simple Algorithm (Chiba-Nishizeki '85)

- 1. For every edge, count number of triangles incident to lower degree endpoint
- 2. Divide total count by 3

• Equivalent to showing $\sum_{e=(u,v)\in E} \min(d(u), d(v)) \le 2m\alpha$

• Proof of $O(m\alpha)$ time:

Simple Algorithm (Chiba-Nishizeki '85)

- 1. For every edge, count number of triangles incident to lower degree endpoint
- 2. Divide total count by 3

- Equivalent to showing $\sum_{e=(u,v)\in E} \min(d(u), d(v)) \le 2m\alpha$
- Consider the arboricity decomposition of the graph

- Proof of $O(m\alpha)$ time:
 - Equivalent to showing $\sum_{e=(u,v)\in E} \min(d(u), d(v)) \le 2m\alpha$
 - Consider the arboricity decomposition of the graph

- Proof of $O(m\alpha)$ time:
 - Equivalent to showing $\sum_{e=(u,v)\in E} \min(d(u), d(v)) \le 2m\alpha$
 - Consider the arboricity decomposition of the graph

CPSC 768

- Proof of $O(m\alpha)$ time:
 - Equivalent to showing $\sum_{e=(u,v)\in E} \min(d(u), d(v)) \le 2m\alpha$
 - Consider the arboricity decomposition of the graph

- Proof of $O(m\alpha)$ time:
 - Equivalent to showing $\sum_{e=(u,v)\in E} \min(d(u), d(v)) \le 2m\alpha$
 - Consider the arboricity decomposition of the graph

- Proof of $O(m\alpha)$ time:
 - Equivalent to showing $\sum_{e=(u,v)\in E} \min(d(u), d(v)) \le 2m\alpha$
 - Consider the arboricity decomposition of the graph
 - Each vertex in F_i has one edge

- Proof of $O(m\alpha)$ time:
 - Equivalent to showing $\sum_{e=(u,v)\in E} \min(d(u), d(v)) \le 2m\alpha$
 - Consider the arboricity decomposition of the graph
 - Each vertex in F_i has one edge

 $\min(\deg(u), \deg(v))$ $(u,v) \in E$ \leq $1 \leq i \leq \alpha \ e \in F_i$

 $\sum \operatorname{Aleg}(to(e)) \xrightarrow{\text{Follows because}} \operatorname{deg}(to(e)) \ge \min(\operatorname{deg}(u), \operatorname{deg}(v))$

CPSC 768

• Proof of $O(m\alpha)$ time:

 $\min(\deg(u), \deg(v))$

- Equivalent to showing $\sum_{e=(u,v)\in E} \min(d(u), d(v)) \le 2m\alpha$
- Consider the arboricity decomposition of the graph
- Each vertex in F_i has **one edge**

$$(u,v) \in E$$

$$\leq \sum_{1 \leq i \leq \alpha} \sum_{e \in F_i} \deg(to(e))$$

$$\leq \sum_{1 \leq i \leq \alpha} \sum_{v \in V} \deg(v)$$

Follows because $deg(to(e)) \ge min(deg(u), deg(v))$

CPSC 768

Since each vertex has at most one edge associated with it

- Proof of $O(m\alpha)$ time:
 - Equivalent to showing $\sum_{e=(u,v)\in E} \min(d(u), d(v)) \le 2m\alpha$
 - Consider the arboricity decomposition of the graph
 - Each vertex in F_i has **one edge**

$$(u,v) \in E$$

$$\leq \sum_{1 \leq i \leq \alpha} \sum_{e \in F_i} \deg(to(e))$$

$$\leq \sum_{1 \leq i \leq \alpha} \sum_{v \in V} \deg(v) = 2\alpha m$$

 $\sum \min(\deg(u), \deg(v))$

Follows because $deg(to(e)) \ge min(deg(u), deg(v))$

> Since each vertex has at most one edge associated with it, the deg(to(e)) of vertex to(e)is counted at most once

> > **CPSC 768**

Next Time

Bounded arboricity graphs in streaming model