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Outdegree Orientation

• 1 + 𝜀 -approx. for average degree + useful graph property!

Orient all edges from low to 
high degree, what’s the max 

out-degree that you see?
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Give an Ordering of the Vertices to 
Minimize Outdegree
• Order the vertices of the graph in total ordering
• Orient the edges from vertices earlier in the ordering to later

• Produces an ordering that minimizes the maximum outdegree

Ideas for an algorithm to achieve this?
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Linear Time 𝑂(𝑛 +𝑚) Solution

• Repeated peel vertex with minimum remaining induced degree 
and put in order

Can make linear time by using 𝑛 
buckets in 𝑂(𝑛) space 

Outdegree: 2
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Degeneracy of the Graph

• This property is called the degeneracy 𝒅 of the graph
• Closely related to another concept called the arboricity 𝜶 of the 

graph
• Minimum number of forests to decompose the graph

𝒅
𝟐 ≤ 𝜶 ≤ 𝒅
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Degeneracy of the Graph

• This property is called the degeneracy 𝒅 of the graph
• Closely related to another concept called the arboricity 𝜶 of the 

graph
• Minimum number of forests to decompose the graph

𝒅
𝟐 ≤ 𝜶 ≤ 𝒅

By Nash-Williams Theorem:

𝜶 = max
𝐒

𝒎𝑺

𝒏𝒔 − 𝟏
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Degeneracy is Very Small in Real-Life
Graph Num. Vertices Num. Edges d

dblp 425,957 2,099,732 113

brain-network 784,262 267,844,669 1200

wikipedia 1,140,149 2,787,967 124

youtube 1,138,499 5,980,886 51

stackoverflow 2,601,977 28,183,518 198

livejournal 4,847,571 85,702,474 372

orkut 3,072,627 234,370,166 253

usa-central 14,081,816 16,933,413 3

usa-road 23,072,627 28,854,312 3

twitter 41,652,231 1,202,513,046 2488

friendster 65,608,366 1,806,067,135 304
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Triangle Counting in Bounded Arboricity 
Graphs
• Combinatorial triangle counting conjecture: Ω(𝑚𝑛) time
• Can use matrix multiplication in 𝑛! time (compared to 𝑛" time)
• Bounded arboricity graphs: 𝑶 𝒎𝜶 time

Simple Algorithm (Chiba-Nishizeki ‘85)
1. For every edge, count number of triangles 

incident to lower degree endpoint
2. Divide total count by 3
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Triangle Counting in Bounded Arboricity 
Graphs
• Proof of 𝑶 𝒎𝜶 time:

• Equivalent to showing ∑𝒆$ 𝒖,𝒗 ∈𝑬𝐦𝐢𝐧 𝒅 𝒖 , 𝒅 𝒗 ≤ 𝟐𝒎𝜶
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!
!,# ∈%

min deg 𝑢 , deg 𝑣

≤ !
&'(')

!
*∈+!

deg 𝑡𝑜 𝑒
Follows because 

deg 𝑡𝑜 𝑒 ≥ min(deg 𝑢 , deg 𝑣 )
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Triangle Counting in Bounded Arboricity 
Graphs
• Proof of 𝑶 𝒎𝜶 time:

• Equivalent to showing ∑𝒆$ 𝒖,𝒗 ∈𝑬𝐦𝐢𝐧 𝒅 𝒖 , 𝒅 𝒗 ≤ 𝟐𝒎𝜶
• Consider the arboricity decomposition of the graph
• Each vertex in 𝐹* has one edge

!
!,# ∈%

min deg 𝑢 , deg 𝑣

≤ !
&'(')

!
*∈+!

deg 𝑡𝑜 𝑒

≤ !
&'(')

!
#∈:

deg(𝑣)

Follows because 
deg 𝑡𝑜 𝑒 ≥ min(deg 𝑢 , deg 𝑣 )

Since each vertex has at most 
one edge associated with it
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Triangle Counting in Bounded Arboricity 
Graphs
• Proof of 𝑶 𝒎𝜶 time:

• Equivalent to showing ∑𝒆$ 𝒖,𝒗 ∈𝑬𝐦𝐢𝐧 𝒅 𝒖 , 𝒅 𝒗 ≤ 𝟐𝒎𝜶
• Consider the arboricity decomposition of the graph
• Each vertex in 𝐹* has one edge

!
!,# ∈%

min deg 𝑢 , deg 𝑣

≤ !
&'(')

!
*∈+!

deg 𝑡𝑜 𝑒

≤ !
&'(')

!
#∈:

deg 𝑣 = 2𝛼𝑚

Follows because 
deg 𝑡𝑜 𝑒 ≥ min(deg 𝑢 , deg 𝑣 )

Since each vertex has at most 
one edge associated with it, 

the deg 𝑡𝑜 𝑒  of vertex 𝑡𝑜 𝑒  
is counted at most once
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Next Time

Bounded arboricity graphs in streaming model


