CPSC 768:
Scalable and Private Graph Algorithms

Lecture 5: Approximate Average Degree in the
Sublinear Model; Arboricity and Orientation

Quanquan C. Liu
gquangquan.liu@yale.edu

CPSC 768



Outdegree Orientation

* (1 + &)-approx. for average degree + useful graph property!
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Orient all edges from low to
high degree, what’s the max
out-degree that you see?




Give an Ordering of the Vertices to
Minimize Outdegree

* Order the vertices of the graph in total ordering
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Give an Ordering of the Vertices to
Minimize Outdegree

* Order the vertices of the graph in total ordering
* Orient the edges from vertices earlier in the ordering to later
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Give an Ordering of the Vertices to
Minimize Outdegree

* Order the vertices of the graph in total ordering
* Orient the edges from vertices earlier in the ordering to later

T 3 2

* Produces an ordering that minimizes the maximum outdegree

ldeas for an algorithm to achieve this?
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Linear Time O(n + m) Solution

* Repeated peel vertex with minimum remaining induced degree
and put in order
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Linear Time O(n + m) Solution

* Repeated peel vertex with minimum remaining induced degree
and put in order

@ @ & © O O

CPSC 768



Linear Time O(n + m) Solution

* Repeated peel vertex with minimum remaining induced degree
and put in order
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Linear Time O(n + m) Solution

* Repeated peel vertex with minimum remaining induced degree
and put in order

O ® © 06 @ O @00

CPSC 768



Linear Time O(n + m) Solution

* Repeated peel vertex with minimum remaining induced degree
and put in order
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Linear Time O(n + m) Solution

* Repeated peel vertex with minimum remaining induced degree
and put in order

Outdegree: 2

€ —oF 3 v

Can make linear time by using n
buckets in O(n) space
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Degeneracy of the Graph

 This property is called the degeneracy of the graph
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* Closely related to another concept called the arboricity of the
graph
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Degeneracy of the Graph

 This property is called the degeneracy d of the graph

* Closely related to another concept called the arboricity a of the
graph
« Minimum number of forests to decompose the graph

d< <d
E_a_
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Degeneracy of the Graph

 This property is called the degeneracy d of the graph

* Closely related to another concept called the arboricity a of the
graph
« Minimum number of forests to decompose the graph

By Nash-Williams Theorem:

‘ * max{ 1]}

IA

d
— <
2
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Degeneracy is Very Small in Real-Life

dblp 425,957 2,099,732 113
brain-network 784,262 267,844,669 1200
wikipedia 1,140,149 2,787,967 124
youtube 1,138,499 5,980,886 51
stackoverflow 2,601,977 28,183,518 198
livejournal 4,847,571 85,702,474 372
orkut 3,072,627 234,370,166 253
usa-central 14,081,816 16,933,413 3
usa-road 23,072,627 28,854,312 3
twitter 41,652,231 1,202,513,046 2488
friendster 65,608,366 1,806,067,135 304
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Triangle Counting in Bounded Arboricity
Graphs

» Combinatorial triangle counting conjecture: QQ(mn) time
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Triangle Counting in Bounded Arboricity
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» Combinatorial triangle counting conjecture: QQ(mn) time

» Can use matrix multiplication in n® time (compared to n3 time)
* Bounded arboricity graphs: O(ma) time
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Triangle Counting in Bounded Arboricity
Graphs

» Combinatorial triangle counting conjecture: QQ(mn) time
» Can use matrix multiplication in n® time (compared to n3 time)
* Bounded arboricity graphs: O(ma) time

Simple Algorithm (Chiba-Nishizeki ‘85)
1. For every edge, count number of triangles
incident to lower degree endpoint
2. Divide total count by 3
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Triangle Counting in Bounded Arboricity

Graphs

* Proof of O(ma) time:

Simple Algorithm (Chiba-Nishizeki ‘85)
1. For every edge, count number of triangles
incident to lower degree endpoint
2. Divide total count by 3

» Equivalent to showing ¥,_ ,, ;e min(d(w), d(v)) < 2ma
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Triangle Counting in Bounded Arboricity

Graphs
Simple Algorithm (Chiba-Nishizeki ‘85)

* Proof of O(ma) time: |1. For every edge, count number of triangles
incident to lower degree endpoint

2. Divide total count by 3

» Equivalent to showing ¥,_ ,, ;e min(d(w), d(v)) < 2ma
« Consider the arboricity decomposition of the graph
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Triangle Counting in Bounded Arboricity

Graphs

* Proof of O(ma) time:

» Equivalent to showing X, ,, ,yep min(d(u), d(v)) < 2ma

» Consider the arboricity decomposition of the graph
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Triangle Counting in Bounded Arboricity
Graphs

* Proof of O(ma) time:
» Equivalent to showing X, ,, ,yep min(d(u), d(v)) < 2ma
» Consider the arboricity decomposition of the graph

O

O
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Triangle Counting in Bounded Arboricity
Graphs

* Proof of O(ma) time:
» Equivalent to showing Y, _,, ;e min(d(uw), d(v)) < 2ma
« Consider the arboricity decomposition of the graph
* Each vertex in F; has one edge

O
O

O
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Triangle Counting in Bounded Arboricity
Graphs

* Proof of O(ma) time:
» Equivalent to showing Y, _, ;e min(d(u), d(v)) < 2ma
« Consider the arboricity decomposition of the graph
* Each vertex in F; has one edge

2 min(deg(u), deg(v))

(u,v)EE
Follows because O
< 2 2 deg(to (8)) deg(to(e)) = min(deg(u), deg(v))

1<i<a e€F;
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Triangle Counting in Bounded Arboricity
Graphs

* Proof of O(ma) time:
» Equivalent to showing Y, _, ;e min(d(u), d(v)) < 2ma
« Consider the arboricity decomposition of the graph
* Each vertex in F; has one edge

2 min(deg(u), deg(v))
(u,v)EE
Follows because O
= 2 2 deg(to (e)) deg(to (e)) > min(deg(u), deg(v))
1<i<a e€F;
Since each vertex has at most
2 z deg(v) one edge associated with it O

1<i<a veV
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Triangle Counting in Bounded Arboricity
Graphs

* Proof of O(ma) time:
» Equivalent to showing Y, _, ;e min(d(u), d(v)) < 2ma
« Consider the arboricity decomposition of the graph
* Each vertex in F; has one edge

2 min(deg(u), deg(v))

(uw,v)EE
Follows because O
< deg(ta (e)) deg(to(e)) = min(deg(u), deg(v))
1<i< eF
isae Since each vertex has at most

2 z deg(v) — 2am one edge associated with it, O

the deg(to (e)) of vertex to(e)
1<isa vev is counted at most once
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Next Time

Bounded arboricity graphs in streaming model

CPSC 768



