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Open Problem Session Results

• Difficult to schedule a time when everyone is free! 
• Tuesdays/Thursdays were unpopular
• Proposed times:

• Monday 3pm
• Friday 3:30pm

• Thoughts? Preferences?
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Sublinear Graph Model: Query Models

• Adjacency list query model: 
𝑂(1) time per query

• Degree queries: given a 
vertex 𝑣 ∈ 𝑉, output 
𝐝𝐞𝐠(𝒗)

• Neighbor queries: given a 
vertex vertex 𝑣 ∈ 𝑉 and 𝑖 ∈
[𝑛], output the 𝒊-th
neighbor of 𝑣 or ⊥ if 𝑖 >
deg(𝑣)

𝑒

𝑐

𝑎
𝑑

𝒗

𝑏

Third neighbor 
of 𝑣 is 𝑐
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Approximate Average Degree

• Given a graph in the adjacency list query model, compute the 
approximate average degree !𝒅 of the nodes in the graph

•𝒅 denotes the average degree
• Correct with probability at least 𝟏 − 𝜹
• Constant, 𝒄-approximation

• 𝒄 = 𝟏 + ε
• 𝒄 = 𝟐 + 𝜺
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Lower Bounds

• When 𝑐 < 1, require linear queries
• An empty graph
• Graph with 1 edge

• Hence we consider 𝒅 ≥ 𝟏
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Lower Bounds

• When 𝑐 < 1, require linear queries
• An empty graph
• Graph with 1 edge

• Hence we consider 𝒅 ≥ 𝟏

Sampling and taking the average 
degree doesn’t work in general



CPSC 768

Type	equation	here.

Lower Bounds

• When 𝑐 < 1, require linear queries
• An empty graph
• Graph with 1 edge

• Hence we consider 𝒅 ≥ 𝟏

𝐺!

Cycle on 𝑛 vertices

Sampling and taking the average 
degree doesn’t work in general
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Type	equation	here.

Type	equation	here.

Lower Bounds

• When 𝑐 < 1, require linear queries
• An empty graph
• Graph with 1 edge

• Hence we consider 𝒅 ≥ 𝟏

𝐺!

Cycle on 𝑛 vertices 𝐺"

Sampling and taking the average 
degree doesn’t work in general

𝑛
"
#

𝑛 − 𝑛
"
#

𝑛
!
" stars each with 

degree 2𝑛
#
" − 2 + 𝑛

!
"
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Type	equation	here.

Type	equation	here.

Lower Bounds

• When 𝑐 < 1, require linear queries
• An empty graph
• Graph with 1 edge

• Hence we consider 𝒅 ≥ 𝟏

𝐺!

Cycle on 𝑛 vertices 𝐺"

Sampling and taking the average 
degree doesn’t work in general

𝑛
"
#

𝑛 − 𝑛
"
#

Average Degree: 2

𝑛
!
" stars each with 

degree 2𝑛
#
" − 2 + 𝑛

!
"
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Type	equation	here.

Type	equation	here.

Lower Bounds

• When 𝑐 < 1, require linear queries
• An empty graph
• Graph with 1 edge

• Hence we consider 𝒅 ≥ 𝟏

𝐺!

Cycle on 𝑛 vertices 𝐺"

Sampling and taking the average 
degree doesn’t work in general

𝑛
"
#

𝑛 − 𝑛
"
#

Average Degree: 2

Average Degree: (𝒏
𝟏
𝟑⋅ 𝟐𝒏

𝟐
𝟑 − 𝟑 + 𝒏

𝟏
𝟑 + 	𝟐(𝒏 − 𝒏

𝟏
𝟑))/𝒏 ≈ (𝟒 − 𝜺)

𝑛
!
" stars each with 

degree 2𝑛
#
" − 3 + 𝑛

!
"
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Type	equation	here.

Type	equation	here.

Lower Bounds 

• When 𝑐 < 1, require linear queries
• An empty graph
• Graph with 1 edge

• Hence we consider 𝒅 ≥ 𝟏

𝐺!

Cycle on 𝑛 vertices 𝐺"

Requires 𝛀 𝒏
𝟐
𝟑  samples 

𝑛
"
#

𝑛 − 𝑛
"
#

Average Degree: 2

𝑛
!
" stars each with 

degree 2𝑛
#
" − 2 + 𝑛

!
"

Average Degree: (𝒏
𝟏
𝟑⋅ 𝟐𝒏

𝟐
𝟑 − 𝟑 + 𝒏

𝟏
𝟑 + 	𝟐(𝒏 − 𝒏

𝟏
𝟑))/𝒏 ≈ (𝟒 − 𝜺)
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Type	equation	here.

Type	equation	here.

Lower Bounds 

• When 𝑐 < 1, require linear queries
• An empty graph
• Graph with 1 edge

• Hence we consider 𝒅 ≥ 𝟏

𝐺!

Cycle on 𝑛 vertices 𝐺"

Requires 𝛀 𝒏
𝟐
𝟑  samples 

𝑛
"
#

𝑛 − 𝑛
"
#

Average Degree: 2

𝑛
!
" stars each with 

degree 2𝑛
#
" − 2 + 𝑛

!
"

Average Degree: (𝒏
𝟏
𝟑⋅ 𝟐𝒏

𝟐
𝟑 − 𝟑 + 𝒏

𝟏
𝟑 + 	𝟐(𝒏 − 𝒏

𝟏
𝟑))/𝒏 ≈ (𝟒 − 𝜺)

Another problem: high variance, 
small number of nodes make 
*large* degree contributions
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However, the strategy works for almost
regular graphs!
• All vertices have degree in [𝒅, 𝟏𝟎𝒅] for some known 𝒅
• Expectation of any sample is equal to 𝑑

• ∑12"3 "
3
⋅ deg 𝑢1 = "

3
⋅ ∑12"3 deg 𝑢1 = 𝑑

• Sample 𝒌 = 𝟓𝟎
𝜺𝟐
⋅ 𝐥𝐧 𝟏

𝜹
samples

Additive Chernoff Bound: Let 𝑌", 𝑌8, … , 𝑌9  be independent random 
variables with values in [𝟎, 𝟏] and 𝒀 = ∑𝒊2𝟏𝒀𝒊 . Then, for any 𝒃 ≥ 𝟏, 

𝑷𝒓 𝒀 − 𝑬 𝒀 > 𝒃 ≤ 𝟐 ⋅ exp −
𝟐𝒃𝟐

𝒌
.
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However, the strategy works for almost
regular graphs!
• All vertices have degree in [𝒅, 𝟏𝟎𝒅] for some known 𝒅
• Expectation of any sample is equal to 𝑑

• ∑12"3 "
3
⋅ deg 𝑢1 = "

3
⋅ ∑12"3 deg 𝑢1 = 𝑑

• Sample 𝒌 = 𝟓𝟎
𝜺𝟐
⋅ 𝐥𝐧 𝟏

𝜹
samples

Additive Chernoff Bound: Let 𝑌", 𝑌8, … , 𝑌9  be independent random 
variables with values in [𝟎, 𝟏] and 𝒀 = ∑𝒊2𝟏𝒀𝒊 . Then, for any 𝒃 ≥ 𝟏, 

𝑷𝒓 𝒀 − 𝑬 𝒀 > 𝒃 ≤ 𝟐 ⋅ exp −
𝟐𝒃𝟐

𝒌
.

𝒀𝒊 = 𝐝𝐞𝐠 𝒖𝒊  not in 
[𝟎, 𝟏], what do we do?
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However, the strategy works for almost
regular graphs!
• All vertices have degree in [𝒅, 𝟏𝟎𝒅] for some known 𝒅
• Expectation of any sample is equal to 𝑑

• ∑12"3 "
3
⋅ deg 𝑢1 = "

3
⋅ ∑12"3 deg 𝑢1 = 𝑑

• Sample 𝒌 = 𝟓𝟎
𝜺𝟐
⋅ 𝐥𝐧 𝟏

𝜹
samples

Additive Chernoff Bound: Let 𝑌", 𝑌8, … , 𝑌9  be independent random 
variables with values in [𝟎, 𝟏] and 𝒀 = ∑𝒊2𝟏𝒀𝒊 . Then, for any 𝒃 ≥ 𝟏, 

𝑷𝒓 𝒀 − 𝑬 𝒀 > 𝒃 ≤ 𝟐 ⋅ exp −
𝟐𝒃𝟐

𝒌
.

Full Analysis Left as an 
Exercise for the Reader
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However, the strategy works for almost
regular graphs!
• All vertices have degree in [𝒅, 𝟏𝟎𝒅] for some known 𝒅
• Expectation of any sample is equal to 𝑑

• ∑12"3 "
3
⋅ deg 𝑢1 = "

3
⋅ ∑12"3 deg 𝑢1 = 𝑑

• Sample 𝒌 = 𝟓𝟎
𝜺𝟐
⋅ 𝐥𝐧 𝟏

𝜹
samples

Additive Chernoff Bound: Let 𝑌", 𝑌8, … , 𝑌9  be independent random 
variables with values in [𝟎, 𝟏] and 𝒀 = ∑𝒊2𝟏𝒀𝒊 . Then, for any 𝒃 ≥ 𝟏, 

𝑷𝒓 𝒀 − 𝑬 𝒀 > 𝒃 ≤ 𝟐 ⋅ exp −
𝟐𝒃𝟐

𝒌
.

Normalization is a BIG 
issue in general! Need 
to normalize by 1/n!!
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A 2 + 𝜀 -Approximate Algorithm

• Gets worse approximation but bucketing is a very important 
concept used in many algorithms
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A 2 + 𝜀 -Approximate Algorithm

• Gets worse approximation but bucketing is a very important 
concept used in many algorithms

• Separate estimating nodes with different degrees
• Let 𝜷 = 𝜺

𝒄
(constant 𝑐) and 𝑡 = 𝑂 ;<= 3

>
, then 𝑖-th bucket is 

defined as



CPSC 768

A 2 + 𝜀 -Approximate Algorithm

• Gets worse approximation but bucketing is a very important 
concept used in many algorithms

• Separate estimating nodes with different degrees
• Let 𝜷 = 𝜺

𝒄
(constant 𝑐) and 𝑡 = 𝑂 ;<= 3

>
, then 𝑖-th bucket is 

defined as

𝑩𝒊 = 𝒗 ∈ 𝑽	 𝟏 + 𝜷 𝒊?𝟏 < 𝐝𝐞𝐠 𝒗 ≤ 𝟏 + 𝜷 𝒊}

for 𝑖 ∈ 0, 1, … , 𝑡 − 1
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A 2 + 𝜀 -Approximate Algorithm

• Key point: intuitively we want to correctly estimate sizes of 
each bucket

• Knowing the correct sizes lets us get good approximations 
of the average degree
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of the average degree

• Problem: some buckets are small with large degrees!
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A 2 + 𝜀 -Approximate Algorithm

• Key point: intuitively we want to correctly estimate sizes of 
each bucket

• Knowing the correct sizes lets us get good approximations 
of the average degree

• Problem: some buckets are small with large degrees!
• Solution: just ignore the small buckets
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A 2 + 𝜀 -Approximate Algorithm

• Key point: intuitively we want to correctly estimate sizes of 
each bucket

• Knowing the correct sizes lets us get good approximations 
of the average degree

• Problem: some buckets are small with large degrees!
• Solution: just ignore the small buckets

Also the classification of small or large 
depends on our samples
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A 2 + 𝜀 -Approximate Algorithm

• Algorithm:
• Take 𝑺 = 𝚯 𝒏 ⋅ 𝐥𝐨𝐠 𝟏

𝜹
⋅ 𝟏
𝜺𝟒
log𝟐 𝒏 samples

You’ve seen log 6
7 ⋅ 68! 

factors many times now!
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A 2 + 𝜀 -Approximate Algorithm

• Algorithm:
• Take 𝑺 = 𝚯 𝒏 ⋅ 𝐥𝐨𝐠 𝟏

𝜹
⋅ 𝟏
𝜺𝟒
log𝟐 𝒏 samples

• For 𝑖 ∈ 0, … , 𝑡 − 1 : Iterate through every 
bucket
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A 2 + 𝜀 -Approximate Algorithm

• Algorithm:
• Take 𝑺 = 𝚯 𝒏 ⋅ 𝐥𝐨𝐠 𝟏

𝜹
⋅ 𝟏
𝜺𝟒
log𝟐 𝒏 samples

• For 𝑖 ∈ 0, … , 𝑡 − 1 :
• 𝑆1 ← 𝑆 ∩ 𝐵1

Figure out how many 
sampled elements are in 

each bucket
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A 2 + 𝜀 -Approximate Algorithm

• Algorithm:
• Take 𝑺 = 𝚯 𝒏 ⋅ 𝐥𝐨𝐠 𝟏

𝜹
⋅ 𝟏
𝜺𝟒
log𝟐 𝒏 samples

• For 𝑖 ∈ 0, … , 𝑡 − 1 :
• 𝑆1 ← 𝑆 ∩ 𝐵1
• If 𝑆1 ≥

>
3
⋅ @
A⋅B

, then set 𝜌1 ←
@&
@

If large number of samples, 
go ahead and estimate size 

of the bucket 
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A 2 + 𝜀 -Approximate Algorithm

• Algorithm:
• Take 𝑺 = 𝚯 𝒏 ⋅ 𝐥𝐨𝐠 𝟏

𝜹
⋅ 𝟏
𝜺𝟒
log𝟐 𝒏 samples

• For 𝑖 ∈ 0, … , 𝑡 − 1 :
• 𝑆1 ← 𝑆 ∩ 𝐵1
• If 𝑆1 ≥

>
3
⋅ @
A⋅B

, then set 𝜌1 ←
@&
@

• Else, 𝜌1 ← 0
Otherwise, bucket is small 

and ignore the bucket
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A 2 + 𝜀 -Approximate Algorithm

• Algorithm:
• Take 𝑺 = 𝚯 𝒏 ⋅ 𝐥𝐨𝐠 𝟏

𝜹
⋅ 𝟏
𝜺𝟒
log𝟐 𝒏 samples

• For 𝑖 ∈ 0, … , 𝑡 − 1 :
• 𝑆1 ← 𝑆 ∩ 𝐵1
• If 𝑆1 ≥

>
3
⋅ @
A⋅B

, then set 𝜌1 ←
@&
@

• Else, 𝜌1 ← 0
• Return ∑12CB?" 𝜌1 1 + 𝛽 1?" Return number of 

elements in the bucket 
times degree of bucket 
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A 2 + 𝜀 -Approximate Algorithm
• Algorithm:

• Take 𝑺 = 𝚯$
%

𝒏 ⋅ 𝐥𝐨𝐠 𝟏
𝜹
⋅

𝟏
𝜺𝟒
log𝟐 𝒏 samples

• For 𝑖 ∈ 0, … , 𝑡 − 1 :
• 𝑆& ← 𝑆 ∩ 𝐵&
• If 𝑆& ≥

'
(
⋅ )
*⋅,

, then set 
𝜌& ←

)"
)

• Else, 𝜌& ← 0
• Return ∑&-.,/0𝜌& 1 + 𝛽 &/0

• First, let’s compute 𝐸 𝜌&
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A 2 + 𝜀 -Approximate Algorithm
• Algorithm:

• Take 𝑺 = 𝚯$
%

𝒏 ⋅ 𝐥𝐨𝐠 𝟏
𝜹
⋅

𝟏
𝜺𝟒
log𝟐 𝒏 samples

• For 𝑖 ∈ 0, … , 𝑡 − 1 :
• 𝑆& ← 𝑆 ∩ 𝐵&
• If 𝑆& ≥

'
(
⋅ )
*⋅,

, then set 
𝜌& ←

)"
)

• Else, 𝜌& ← 0
• Return ∑&-.,/0𝜌& 1 + 𝛽 &/0

• First, let’s compute 𝐸 𝜌&

• 𝐸 )"
|)|

= 𝐸 ∑2-0
) 3#

"

)
• 𝜎2& = 1 if sample 𝑗 falls in bucket 
𝑖 and 0 otherwise

• Each sample has probability 4"
(of being in bucket 𝑖

• 𝐸 ∑%&!
' (5

6

'
=

' ⋅
76
8

'
= *6

+
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A 2 + 𝜀 -Approximate Algorithm
• Algorithm:

• Take 𝑺 = 𝚯$
%

𝒏 ⋅ 𝐥𝐨𝐠 𝟏
𝜹
⋅

𝟏
𝜺𝟒
log𝟐 𝒏 samples

• For 𝑖 ∈ 0, … , 𝑡 − 1 :
• 𝑆& ← 𝑆 ∩ 𝐵&
• If 𝑆& ≥

'
(
⋅ )
*⋅,

, then set 
𝜌& ←

)"
)

• Else, 𝜌& ← 0
• Return ∑&-.,/0𝜌& 1 + 𝛽 &/0

• First, let’s compute 𝐸 𝜌&

• 𝐸 )"
|)|

= 𝐸 ∑2-0
) 3#

"

)
• 𝜎2& = 1 if sample 𝑗 falls in bucket 
𝑖 and 0 otherwise

• Each sample has probability 4"
(of being in bucket 𝑖

• 𝐸 ∑,&!
' (5

6

'
=

' ⋅
76
8

'
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+



CPSC 768

A 2 + 𝜀 -Approximate Algorithm
• Algorithm:

• Take 𝑺 = 𝚯$
%

𝒏 ⋅ 𝐥𝐨𝐠 𝟏
𝜹
⋅

𝟏
𝜺𝟒
log𝟐 𝒏 samples

• For 𝑖 ∈ 0, … , 𝑡 − 1 :
• 𝑆& ← 𝑆 ∩ 𝐵&
• If 𝑆& ≥

'
(
⋅ )
*⋅,

, then set 
𝜌& ←

)"
)

• Else, 𝜌& ← 0
• Return ∑&-.,/0𝜌& 1 + 𝛽 &/0

• First, let’s compute 𝐸 𝜌&

• 𝐸 )"
|)|

= 𝐸 ∑&-0
) 3#

"

)
• 𝜎2& = 1 if sample 𝑗 falls in bucket 
𝑖 and 0 otherwise

• Each sample has probability 4"
(of being in bucket 𝑖

• 𝐸 ∑,&!
' (5

6

'
=

' ⋅
76
8

'
= *6

+

With enough samples from the 
bucket we can estimate the size of 

the bucket!
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A 2 + 𝜀 -Approximate Algorithm
• Algorithm:

• Take 𝑺 = 𝚯$
%

𝒏 ⋅ 𝐥𝐨𝐠 𝟏
𝜹
⋅

𝟏
𝜺𝟒
log𝟐 𝒏 samples

• For 𝑖 ∈ 0, … , 𝑡 − 1 :
• 𝑆& ← 𝑆 ∩ 𝐵&
• If 𝑆& ≥

'
(
⋅ )
*⋅,

, then set 
𝜌& ←

)"
)

• Else, 𝜌& ← 0
• Return ∑&-.,/0𝜌& 1 + 𝛽 &/0

• Do we get enough samples?
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A 2 + 𝜀 -Approximate Algorithm
• Algorithm:

• Take 𝑺 = 𝚯$
%

𝒏 ⋅ 𝐥𝐨𝐠 𝟏
𝜹
⋅

𝟏
𝜺𝟒
log𝟐 𝒏 samples

• For 𝑖 ∈ 0, … , 𝑡 − 1 :
• 𝑆& ← 𝑆 ∩ 𝐵&
• If 𝑆& ≥

'
(
⋅ )
*⋅,

, then set 
𝜌& ←

)"
)

• Else, 𝜌& ← 0
• Return ∑&-.,/0𝜌& 1 + 𝛽 &/0

• Do we get enough samples?

• 𝑆& ≥
'
(
⋅ (
*⋅,
⋅ log 0

9
⋅ 0
'$
⋅ log: 𝑛

• ≥ log 0
9
⋅ 0
'%
⋅ log: 𝑛
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A 2 + 𝜀 -Approximate Algorithm
• Algorithm:

• Take 𝑺 = 𝚯$
%

𝒏 ⋅ 𝐥𝐨𝐠 𝟏
𝜹
⋅

𝟏
𝜺𝟒
log𝟐 𝒏 samples

• For 𝑖 ∈ 0, … , 𝑡 − 1 :
• 𝑆& ← 𝑆 ∩ 𝐵&
• If 𝑆& ≥

'
(
⋅ )
*⋅,

, then set 
𝜌& ←

)"
)

• Else, 𝜌& ← 0
• Return ∑&-.,/0𝜌& 1 + 𝛽 &/0

• Do we get enough samples?

• 𝑆& ≥
'
(
⋅ (
*⋅,
⋅ log 0

9
⋅ 0
'$
⋅ log: 𝑛

• ≥ 𝐥𝐨𝐠 𝟏
𝜹
⋅ 𝟏
𝜺𝟐
⋅ 𝐥𝐨𝐠𝟐 𝒏

Large enough sample using the 
techniques we’ve learned (i.e. 

Chernoff bound and median trick)
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A 2 + 𝜀 -Approximate Algorithm
• Algorithm:

• Take 𝑺 = 𝚯$
%

𝒏 ⋅ 𝐥𝐨𝐠 𝟏
𝜹
⋅

𝟏
𝜺𝟒
log𝟐 𝒏 samples

• For 𝑖 ∈ 0, … , 𝑡 − 1 :
• 𝑆& ← 𝑆 ∩ 𝐵&
• If 𝑆& ≥

'
(
⋅ )
*⋅,

, then set 
𝜌& ←

)"
)

• Else, 𝜌& ← 0
• Return ∑&-.,/0𝜌& 1 + 𝛽 &/0

• Do we get enough samples?

• 𝑆& ≥
'
(
⋅ (
*⋅,
⋅ log 0

9
⋅ 0
'$
⋅ log: 𝑛

• ≥ 𝐥𝐨𝐠 𝟏
𝜹
⋅ 𝟏
𝜺𝟐
⋅ 𝐥𝐨𝐠𝟐 𝒏

Extra factors of log 𝑛  is for union 
bound over all vertices
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A 2 + 𝜀 -Approximate Algorithm
• Algorithm:

• Take 𝑺 = 𝚯$
%

𝒏 ⋅ 𝐥𝐨𝐠 𝟏
𝜹
⋅

𝟏
𝜺𝟒
log𝟐 𝒏 samples

• For 𝑖 ∈ 0, … , 𝑡 − 1 :
• 𝑆& ← 𝑆 ∩ 𝐵&
• If 𝑆& ≥

'
(
⋅ )
*⋅,

, then set 
𝜌& ←

)"
)

• Else, 𝜌& ← 0
• Return ∑&-.,/0𝜌& 1 + 𝛽 &/0

• Do we get enough samples?
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'
(
⋅ (
*⋅,
⋅ log 0

9
⋅ 0
'$
⋅ log: 𝑛

• ≥ 𝐥𝐨𝐠 𝟏
𝜹
⋅ 𝟏
𝜺𝟐
⋅ 𝐥𝐨𝐠𝟐 𝒏

Hence, we get 

(1 + 𝜀)-approx. of  
!!
"
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• How much do we lose from 
our ignored buckets?

• Big-big: both endpoints 
belong to big buckets

• Counted from both 
sides

• Big-small: one endpoints 
in big bucket one in small

• Count from one side
• 2-approx

• How much do we lose from our 
ignored buckets?

• Small-small: both endpoints in 
small buckets

• 𝑩𝒊 ≤
𝟐 𝜺⋅𝒏

𝒄𝒕
whp

• At most 𝑡 ⋅ 2 ⋅ >⋅3
AB

= 8 >3
A

nodes 
in small buckets

At most H IJ
K

H
= 𝑂 𝜀 ⋅ 𝑛   edges

Fine given our 
assumption that 𝒅 ≥ 𝟏!
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Food for Thought Till Next Time

• 1 + 𝜀 -approx. for average degree + useful graph property!

Orient all edges from low to 
high degree, what’s the max 

out-degree that you see?


