CPSC 768:

Scalable and Private Graph Algorithms

Lecture 4: Approximate Average Degree in the Sublinear Model

Quanquan C. Liu

 quanquan.liu@yale.edu
Open Problem Session Results

- Difficult to schedule a time when everyone is free!
- Tuesdays/Thursdays were unpopular
- Proposed times:
- Monday 3pm
- Friday 3:30pm
- Thoughts? Preferences?

Sublinear Graph Model: Query Models

- Adjacency list query model:

Third neighbor $O(1)$ time per query

- Degree queries: given a vertex $v \in V$, output $\operatorname{deg}(v)$
- Neighbor queries: given a vertex vertex $v \in V$ and $i \in$ [n], output the i-th neighbor of v or \perp if $i>$ $\operatorname{deg}(v)$

Approximate Average Degree

- Given a graph in the adjacency list query model, compute the approximate average degree \boldsymbol{d} of the nodes in the graph
- d denotes the average degree
- Correct with probability at least 1 - $\boldsymbol{\delta}$
- Constant, c-approximation
- $\boldsymbol{c}=\mathbf{1}+\varepsilon$
- $\boldsymbol{c}=2+\boldsymbol{\varepsilon}$

Lower Bounds

-When $c<1$, require linear queries

- An empty graph
- Graph with 1 edge
- Hence we consider $\bar{d} \geq 1$

Lower Bounds

-When $c<1$, require linear queries

- An empty graph
- Graph with 1 edge
- Hence we consider $\overline{\boldsymbol{d}} \geq \mathbf{1}$

Lower Bounds

- When $c<1$, require linear queries
- An empty graph
- Graph with 1 edge
- Hence we consider $\bar{d} \geq 1$

Sampling and taking the average degree doesn't work in general

Lower Bounds

-When $c<1$, require linear queries

- An empty graph
- Graph with 1 edge
- Hence we consider $\bar{d} \geq 1$

$n^{\frac{1}{3}}$ stars each with degree $2 n^{\frac{2}{3}}-2+n^{\frac{1}{3}}$

Sampling and taking the average degree doesn't work in general

Lower Bounds

- When $c<1$, require linear queries
- An empty graph
- Graph with 1 edge
- Hence we consider $\bar{d} \geq 1$

$n^{\frac{1}{3}}$ stars each with degree $2 n^{\frac{2}{3}}-2+n^{\frac{1}{3}}$

[^0]Average Degree: $\left(n^{\frac{1}{3}} \cdot\left(2 n^{\frac{2}{3}}-3+n^{\frac{1}{3}}\right)+2\left(n-n^{\frac{1}{3}}\right)\right) / n \approx(4-\varepsilon)$

Lower Bounds

- When $c<1$, require linear queries
- An empty graph
- Graph with 1 edge
- Hence we consider $\bar{d} \geq 1$

$n^{\frac{1}{3}}$ stars each with degree $2 n^{\frac{2}{3}}-3+n^{\frac{1}{3}}$

Sampling and taking the average degree doesn't work in general

Average Degree: $\left(n^{\frac{1}{3}} \cdot\left(2 n^{\frac{2}{3}}-3+n^{\frac{1}{3}}\right)+2\left(n-n^{\frac{1}{3}}\right)\right) / n \approx(4-\varepsilon)$

Lower Bounds

- When $c<1$, require linear queries
- An empty graph
- Graph with 1 edge
- Hence we consider $\bar{d} \geq 1$

$n^{\frac{1}{3}}$ stars each with
degree $2 n^{\frac{2}{3}}-2+n^{\frac{1}{3}}$

Requires $\Omega\left(n^{\frac{2}{3}}\right)$ samples

Average Degree: $\left(n^{\frac{1}{3}} \cdot\left(2 n^{\frac{2}{3}}-3+n^{\frac{1}{3}}\right)+2\left(n-n^{\frac{1}{3}}\right)\right) / n \approx(4-\varepsilon)$

Lower Bounds

- When $c<1$, require linear queries

Another problem: high variance, small number of nodes make *large* degree contributions

Average Degree: 2
G_{1}
Requires $\Omega\left(n^{\frac{2}{3}}\right)$ samples

However, the strategy works for almost regular graphs!

- All vertices have degree in $[d, 10 d]$ for some known d
- Expectation of any sample is equal to \bar{d}
- $\sum_{i=1}^{n} \frac{1}{n} \cdot \operatorname{deg}\left(u_{i}\right)=\frac{1}{n} \cdot \sum_{i=1}^{n} \operatorname{deg}\left(u_{i}\right)=\bar{d}$
- Sample $k=\frac{50}{\varepsilon^{2}} \cdot \ln \left(\frac{1}{\delta}\right)$ samples

Additive Chernoff Bound: Let $Y_{1}, Y_{2}, \ldots, Y_{k}$ be independent random variables with values in $[0,1]$ and $Y=\sum_{i=1} Y_{i}$. Then, for any $b \geq 1$,

$$
\operatorname{Pr}[|Y-E[Y]|>b] \leq 2 \cdot \exp \left(-\frac{2 b^{2}}{k}\right)
$$

However, the strategy works for almost regular graphs!

- All vertices have degree in $[d, 10 d]$ for some known d
- Expectation of any sample is equal to \bar{d}
- $\sum_{i=1}^{n} \frac{1}{n} \cdot \operatorname{deg}\left(u_{i}\right)=\frac{1}{n} \cdot \sum_{i=1}^{n} \operatorname{deg}\left(u_{i}\right)=\bar{d}$

$$
\begin{aligned}
& Y_{i}=\operatorname{deg}\left(u_{i}\right) \text { not in } \\
& {[0,1], \text { what do we do? }}
\end{aligned}
$$

- Sample $k=\frac{50}{\varepsilon^{2}} \cdot \ln \left(\frac{1}{\delta}\right)$ samples

Additive Chernoff Bound: Let $Y_{1}, Y_{2}, \ldots, Y_{k}$ be independent random variables with values in $[0,1]$ and $Y=\sum_{i=1} Y_{i}$. Then, for any $b \geq 1$,

$$
\operatorname{Pr}[|Y-E[Y]|>b] \leq 2 \cdot \exp \left(-\frac{2 b^{2}}{k}\right)
$$

However, the strategy works for almost regular graphs!

- All vertices have degree in $[d, 10 d]$ for some known d
- Expectation of any sample is equal to \bar{d}
- $\sum_{i=1}^{n} \frac{1}{n} \cdot \operatorname{deg}\left(u_{i}\right)=\frac{1}{n} \cdot \sum_{i=1}^{n} \operatorname{deg}\left(u_{i}\right)=\bar{d}$

Full Analysis Left as an Exercise for the Reader

- Sample $k=\frac{50}{\varepsilon^{2}} \cdot \ln \left(\frac{1}{\delta}\right)$ samples

Additive Chernoff Bound: Let $Y_{1}, Y_{2}, \ldots, Y_{k}$ be independent random variables with values in $[0,1]$ and $Y=\sum_{i=1} Y_{i}$. Then, for any $b \geq 1$,

$$
\operatorname{Pr}[|Y-E[Y]|>b] \leq 2 \cdot \exp \left(-\frac{2 b^{2}}{k}\right)
$$

However, the strategy works for almost regular graphs!

- All vertices have degree in $[d, 10 d]$ for some known d
- Expectation of any sample is equal to \bar{d}
- $\sum_{i=1}^{n} \frac{1}{n} \cdot \operatorname{deg}\left(u_{i}\right)=\frac{1}{n} \cdot \sum_{i=1}^{n} \operatorname{deg}\left(u_{i}\right)=\bar{d}$
- Sample $k=\frac{50}{\varepsilon^{2}} \cdot \ln \left(\frac{1}{\delta}\right)$ samples

Normalization is a BIG issue in general! Need to normalize by $1 / n!$!

Additive Chernoff Bound: Let $Y_{1}, Y_{2}, \ldots, Y_{k}$ be independent random variables with values in $[0,1]$ and $Y=\sum_{i=1} Y_{i}$. Then, for any $b \geq 1$,

$$
\operatorname{Pr}[|\boldsymbol{Y}-E[Y]|>b] \leq 2 \cdot \exp \left(-\frac{2 b^{2}}{k}\right)
$$

A $(2+\varepsilon)$-Approximate Algorithm

- Gets worse approximation but bucketing is a very important concept used in many algorithms

A $(2+\varepsilon)$-Approximate Algorithm

- Gets worse approximation but bucketing is a very important concept used in many algorithms
- Separate estimating nodes with different degrees
- Let $\boldsymbol{\beta}=\frac{\varepsilon}{c}$ (constant c) and $t=O\left(\frac{\log n}{\varepsilon}\right)$, then i-th bucket is defined as

A $(2+\varepsilon)$-Approximate Algorithm

- Gets worse approximation but bucketing is a very important concept used in many algorithms
- Separate estimating nodes with different degrees
- Let $\boldsymbol{\beta}=\frac{\varepsilon}{c}$ (constant c) and $t=O\left(\frac{\log n}{\varepsilon}\right)$, then i-th bucket is defined as

$$
B_{i}=\left\{v \in V \mid(1+\beta)^{i-1}<\operatorname{deg}(v) \leq(1+\beta)^{i}\right\}
$$

$$
\text { for } i \in\{0,1, \ldots, t-1\}
$$

A $(2+\varepsilon)$-Approximate Algorithm

- Key point: intuitively we want to correctly estimate sizes of each bucket
- Knowing the correct sizes lets us get good approximations of the average degree

A $(2+\varepsilon)$-Approximate Algorithm

- Key point: intuitively we want to correctly estimate sizes of each bucket
- Knowing the correct sizes lets us get good approximations of the average degree
- Problem: some buckets are small with large degrees!

A $(2+\varepsilon)$-Approximate Algorithm

- Key point: intuitively we want to correctly estimate sizes of each bucket
- Knowing the correct sizes lets us get good approximations of the average degree
- Problem: some buckets are small with large degrees!
- Solution: just ignore the small buckets

A $(2+\varepsilon)$-Approximate Algorithm

- Key point: intuitively we want to correctly estimate sizes of each bucket
- Knowing the correct sizes lets us get good approximations of the average degree
- Problem: some buckets are small with large degrees!
- Solution: just ignore the small buckets

> Also the classification of small or large depends on our samples

A $(2+\varepsilon)$-Approximate Algorithm

- Algorithm: You've seen $\log \left(\frac{1}{\delta}\right) \cdot \frac{1}{\varepsilon^{2}}$ factors many times now!
- Take $|\boldsymbol{S}|=\boldsymbol{\Theta}\left(\sqrt{\boldsymbol{n}} \cdot \log \left(\frac{1}{\delta}\right) \cdot \frac{1}{\varepsilon^{4}} \log ^{2} n\right)$ samples

A $(2+\varepsilon)$-Approximate Algorithm

- Algorithm:
- Take $|\boldsymbol{S}|=\boldsymbol{\Theta}\left(\sqrt{\boldsymbol{n}} \cdot \log \left(\frac{1}{\delta}\right) \cdot \frac{1}{\varepsilon^{4}} \log ^{2} n\right)$ samples
- For $i \in\{0, \ldots, t-1\}$:

A $(2+\varepsilon)$-Approximate Algorithm

- Algorithm:
- Take $|\boldsymbol{S}|=\boldsymbol{\Theta}\left(\sqrt{\boldsymbol{n}} \cdot \log \left(\frac{1}{\delta}\right) \cdot \frac{1}{\varepsilon^{4}} \log ^{2} n\right)$ samples
- For $i \in\{0, \ldots, t-1\}$:
- $S_{i} \leftarrow S \cap B_{i}$

Figure out how many sampled elements are in each bucket

A $(2+\varepsilon)$-Approximate Algorithm

- Algorithm:
- Take $|\boldsymbol{S}|=\boldsymbol{\Theta}\left(\sqrt{\boldsymbol{n}} \cdot \log \left(\frac{1}{\delta}\right) \cdot \frac{1}{\varepsilon^{4}} \log ^{2} \boldsymbol{n}\right)$ samples
- For $i \in\{0, \ldots, t-1\}$:
- $S_{i} \leftarrow S \cap B_{i}$
- If $\left|S_{i}\right| \geq \sqrt{\frac{\varepsilon}{n}} \cdot \frac{|S|}{c \cdot t}$, then set $\rho_{i} \leftarrow \frac{\left|S_{i}\right|}{|S|}$

> If large number of samples, go ahead and estimate size of the bucket

A $(2+\varepsilon)$-Approximate Algorithm

- Algorithm:
- Take $|\boldsymbol{S}|=\boldsymbol{\Theta}\left(\sqrt{\boldsymbol{n}} \cdot \log \left(\frac{1}{\delta}\right) \cdot \frac{1}{\varepsilon^{4}} \log ^{2} n\right)$ samples
- For $i \in\{0, \ldots, t-1\}$:
- $S_{i} \leftarrow S \cap B_{i}$
- If $\left|S_{i}\right| \geq \sqrt{\frac{\varepsilon}{n}} \cdot \frac{|S|}{c \cdot t}$, then set $\rho_{i} \leftarrow \frac{\left|S_{i}\right|}{|S|}$
- Else, $\rho_{i} \leftarrow 0$

Otherwise, bucket is small and ignore the bucket

A $(2+\varepsilon)$-Approximate Algorithm

- Algorithm:
- Take $|\boldsymbol{S}|=\boldsymbol{\Theta}\left(\sqrt{\boldsymbol{n}} \cdot \log \left(\frac{1}{\delta}\right) \cdot \frac{1}{\varepsilon^{4}} \log ^{2} \boldsymbol{n}\right)$ samples
- For $i \in\{0, \ldots, t-1\}$:
- $S_{i} \leftarrow S \cap B_{i}$
- If $\left|S_{i}\right| \geq \sqrt{\frac{\varepsilon}{n}} \cdot \frac{|S|}{c \cdot t}$, then set $\rho_{i} \leftarrow \frac{\left|S_{i}\right|}{|S|}$
- Else, $\rho_{i} \leftarrow 0$
- Return $\sum_{i=0}^{t-1} \rho_{i}(1+\beta)^{i-1}$

Return number of elements in the bucket times degree of bucket

A $(2+\varepsilon)$-Approximate Algorithm

- Algorithm:
- Take $|\boldsymbol{S}|=\boldsymbol{\Theta}\left(\sqrt{\boldsymbol{n}} \cdot \log \left(\frac{1}{\delta}\right)\right.$.
$\left.\frac{1}{\varepsilon^{4}} \log ^{2} n\right)$ samples
- For $i \in\{0, \ldots, t-1\}$:
- $S_{i} \leftarrow S \cap B_{i}$
- If $\left|S_{i}\right| \geq \sqrt{\frac{\varepsilon}{n}} \cdot \frac{|S|}{c \cdot t}$, then set $\rho_{i} \leftarrow \frac{\left|S_{i}\right|}{|S|}$
- Else, $\rho_{i} \leftarrow 0$
- Return $\sum_{i=0}^{t-1} \rho_{i}(1+\beta)^{i-1}$
- First, let's compute $E\left[\rho_{i}\right]$

A $(2+\varepsilon)$-Approximate Algorithm

- Algorithm:
- Take $|\boldsymbol{S}|=\boldsymbol{\Theta}\left(\sqrt{\boldsymbol{n}} \cdot \log \left(\frac{1}{\delta}\right)\right.$. $\frac{1}{\varepsilon^{4}} \log ^{2} n$) samples
- For $i \in\{0, \ldots, t-1\}$:
- $S_{i} \leftarrow S \cap B_{i}$
- If $\left|S_{i}\right| \geq \sqrt{\frac{\varepsilon}{n}} \cdot \frac{|S|}{c \cdot t}$, then set $\rho_{i} \leftarrow \frac{\left|S_{i}\right|}{|S|}$
- Else, $\rho_{i} \leftarrow 0$
- Return $\sum_{i=0}^{t-1} \rho_{i}(1+\beta)^{i-1}$
- First, let's compute $E\left[\rho_{i}\right]$
- $E\left[\frac{\left|S_{i}\right|}{|S|}\right]=E\left[\sum_{j=1}^{|S|} \frac{\sigma_{j}^{i}}{|S|}\right]$
- $\sigma_{j}^{i}=1$ if sample j falls in bucket i and 0 otherwise

A $(2+\varepsilon)$-Approximate Algorithm

- Algorithm:
- Take $|\boldsymbol{S}|=\boldsymbol{\Theta}\left(\sqrt{\boldsymbol{n}} \cdot \log \left(\frac{1}{\delta}\right)\right.$. $\left.\frac{1}{\varepsilon^{4}} \log ^{2} n\right)$ samples
- For $i \in\{0, \ldots, t-1\}$:
- $S_{i} \leftarrow S \cap B_{i}$
- If $\left|S_{i}\right| \geq \sqrt{\frac{\varepsilon}{n}} \cdot \frac{|S|}{c \cdot t}$, then set $\rho_{i} \leftarrow \frac{\left|S_{i}\right|}{|S|}$
- Else, $\rho_{i} \leftarrow 0$
- Return $\sum_{i=0}^{t-1} \rho_{i}(1+\beta)^{i-1}$
- First, let's compute $E\left[\rho_{i}\right]$
- $E\left[\frac{\left|S_{i}\right|}{|S|}\right]=E\left[\sum_{j=1}^{|S|} \frac{\sigma_{j}^{i}}{|S|}\right]$
- $\sigma_{j}^{i}=1$ if sample j falls in bucket i and 0 otherwise
- Each sample has probability $\frac{\left|B_{i}\right|}{n}$ of being in bucket i

$$
\text { - } E\left[\sum_{j=1}^{|S|} \frac{\sigma_{j}^{i}}{|S|}\right]=\frac{\left(|S| \cdot \frac{\left|B_{i}\right|}{n}\right)}{|S|}=\frac{\left|B_{i}\right|}{n}
$$

A $(2+\varepsilon)$-Approximate Algorithm

- Algorithm:
- Take $|\boldsymbol{S}|=\boldsymbol{\Theta}\left(\sqrt{\boldsymbol{n}} \cdot \log \left(\frac{1}{\delta}\right)\right.$.
$\left.\frac{1}{\varepsilon^{4}} \log ^{2} n\right)$ samples
- For $i \in\{0, \ldots, t-1\}$:
- $S_{i} \leftarrow S \cap B_{i}$
- If $\left|S_{i}\right| \geq \sqrt{\frac{\varepsilon}{n}} \cdot \frac{|S|}{c \cdot t}$, then set $\rho_{i} \leftarrow \frac{\left|S_{i}\right|}{|S|}$
- Else, $\rho_{i} \leftarrow 0$
- Return $\sum_{i=0}^{t-1} \rho_{i}(1+\beta)^{i-1}$

With enough samples from the bucket we can estimate the size of the bucket!

$$
\text { - } E\left[\sum_{j=1}^{|S|} \frac{\sigma_{j}^{i}}{|S|}\right]=\frac{\left(|S| \cdot \frac{\left|B_{i}\right|}{n}\right)}{|S|}=\frac{\left|B_{i}\right|}{n}
$$

A $(2+\varepsilon)$-Approximate Algorithm

- Algorithm:
- Take $|S|=\Theta\left(\sqrt{n} \cdot \log \left(\frac{1}{\delta}\right)\right.$.
$\left.\frac{1}{\varepsilon^{4}} \log ^{2} n\right)$ samples
- For $i \in\{0, \ldots, t-1\}$:
- $S_{i} \leftarrow S \cap B_{i}$
- If $\left|S_{i}\right| \geq \sqrt{\frac{\varepsilon}{n}} \cdot \frac{|S|}{c \cdot t}$, then set $\rho_{i} \leftarrow \frac{\left|S_{i}\right|}{|S|}$
- Else, $\rho_{i} \leftarrow 0$
- Return $\sum_{i=0}^{t-1} \rho_{i}(1+\beta)^{i-1}$
- Do we get enough samples?

A $(2+\varepsilon)$-Approximate Algorithm

- Algorithm:
- Take $|S|=\Theta\left(\sqrt{n} \cdot \log \left(\frac{1}{\delta}\right)\right.$.
$\frac{1}{\varepsilon^{4}} \log ^{2} n$) samples
- For $i \in\{0, \ldots, t-1\}$:
- $S_{i} \leftarrow S \cap B_{i}$
- If $\left.\left|S_{i}\right| \geq \sqrt{\frac{\varepsilon}{n}} \cdot \frac{|S|}{c \cdot t} \right\rvert\,$, then set $\rho_{i} \leftarrow \frac{\left|S_{i}\right|}{|S|}$
- Else, $\rho_{i} \leftarrow 0$
- Return $\sum_{i=0}^{t-1} \rho_{i}(1+\beta)^{i-1}$
- Do we get enough samples?
- $\left|S_{i}\right| \geq \sqrt{\frac{\varepsilon}{n}} \cdot \frac{\sqrt{n}}{c \cdot t} \cdot \log \left(\frac{1}{\delta}\right) \cdot \frac{1}{\varepsilon^{4}} \cdot \log ^{2}(n)$
- $\geq \log \left(\frac{1}{\delta}\right) \cdot \frac{1}{\varepsilon^{2}} \cdot \log ^{2}(n)$

A $(2+\varepsilon)$-Approximate Algorithm

- Algorithm:
- Take $|S|=\Theta\left(\sqrt{n} \cdot \log \left(\frac{1}{\delta}\right)\right.$.
$\left.\frac{1}{\varepsilon^{4}} \log ^{2} n\right)$ samples
- For $i \in\{0, \ldots, t-1\}$:
- $S_{i} \leftarrow S \cap B_{i}$
- If $\left.\left|S_{i}\right| \geq \sqrt{\frac{\varepsilon}{n}} \cdot \frac{|S|}{c \cdot t} \right\rvert\,$, then set $\rho_{i} \leftarrow \frac{\left|S_{i}\right|}{|S|}$
- Else, $\rho_{i} \leftarrow 0$
- Return $\sum_{i=0}^{t-1} \rho_{i}(1+\beta)^{i-1}$
- Do we get enough samples?
- $\left|S_{i}\right| \geq \sqrt{\frac{\varepsilon}{n}} \cdot \frac{\sqrt{n}}{c \cdot t} \cdot \log \left(\frac{1}{\delta}\right) \cdot \frac{1}{\varepsilon^{4}} \cdot \log ^{2}(n)$
- $\geq \log \left(\frac{1}{\delta}\right) \cdot \frac{1}{\varepsilon^{2}} \cdot \log ^{2}(n)$

Large enough sample using the techniques we've learned (i.e. Chernoff bound and median trick)

A $(2+\varepsilon)$-Approximate Algorithm

- Algorithm:
- Take $|S|=\Theta\left(\sqrt{n} \cdot \log \left(\frac{1}{\delta}\right)\right.$.
$\left.\frac{1}{\varepsilon^{4}} \log ^{2} n\right)$ samples
- For $i \in\{0, \ldots, t-1\}$:
- $S_{i} \leftarrow S \cap B_{i}$
- If $\left|S_{i}\right| \geq \sqrt{\frac{\varepsilon}{n}} \cdot \frac{|S|}{c \cdot t}$, then set $\rho_{i} \leftarrow \frac{\left|S_{i}\right|}{|S|}$
- Else, $\rho_{i} \leftarrow 0$
- Return $\sum_{i=0}^{t-1} \rho_{i}(1+\beta)^{i-1}$
- Do we get enough samples?
- $\left|S_{i}\right| \geq \sqrt{\frac{\varepsilon}{n}} \cdot \frac{\sqrt{n}}{c \cdot t} \cdot \log \left(\frac{1}{\delta}\right) \cdot \frac{1}{\varepsilon^{4}} \cdot \log ^{2}(n)$
- $\geq \log \left(\frac{1}{\delta}\right) \cdot \frac{1}{\varepsilon^{2}} \cdot \log ^{2}(n)$

Extra factors of $\log (n)$ is for union bound over all vertices

A $(2+\varepsilon)$-Approximate Algorithm

- Algorithm:
- Take $|S|=\Theta\left(\sqrt{n} \cdot \log \left(\frac{1}{\delta}\right)\right.$.
$\left.\frac{1}{\varepsilon^{4}} \log ^{2} n\right)$ samples
- For $i \in\{0, \ldots, t-1\}$:
- $S_{i} \leftarrow S \cap B_{i}$
- If $\left|S_{i}\right| \geq \sqrt{\frac{\varepsilon}{n}} \cdot \frac{|S|}{c \cdot t}$, then set $\rho_{i} \leftarrow \frac{\left|S_{i}\right|}{|S|}$
- Else, $\rho_{i} \leftarrow 0$
- Return $\sum_{i=0}^{t-1} \rho_{i}(1+\beta)^{i-1}$
- Do we get enough samples?
- $\left|S_{i}\right| \geq \sqrt{\frac{\varepsilon}{n}} \cdot \frac{\sqrt{n}}{c \cdot t} \cdot \log \left(\frac{1}{\delta}\right) \cdot \frac{1}{\varepsilon^{4}} \cdot \log ^{2}(n)$
$\cdot \geq \log \left(\frac{1}{\delta}\right) \cdot \frac{1}{\varepsilon^{2}} \cdot \log ^{2}(n)$

Hence, we get

$$
(1+\varepsilon) \text {-approx. of } \frac{\left|B_{i}\right|}{n}
$$

A $(2+\varepsilon)$-Approximate Algorithm

- Algorithm:
- Take $|\boldsymbol{S}|=\boldsymbol{\Theta}\left(\sqrt{\boldsymbol{n}} \cdot \log \left(\frac{1}{\delta}\right)\right.$.
$\left.\frac{1}{\varepsilon^{4}} \log ^{2} n\right)$ samples
- For $i \in\{0, \ldots, t-1\}$:
- $S_{i} \leftarrow S \cap B_{i}$
- If $\left|S_{i}\right| \geq \sqrt{\frac{\varepsilon}{n}} \cdot \frac{|S|}{c \cdot t}$, then set $\rho_{i} \leftarrow \frac{\left|S_{i}\right|}{|S|}$
- Else, $\rho_{i} \leftarrow 0$
- Return $\sum_{i=0}^{t-1} \rho_{i}(1+\beta)^{i-1}$
- Show what our estimate gets:

A $(2+\varepsilon)$-Approximate Algorithm

- Algorithm:
- Take $|S|=\Theta\left(\sqrt{n} \cdot \log \left(\frac{1}{\delta}\right)\right.$.
$\left.\frac{1}{\varepsilon^{4}} \log ^{2} n\right)$ samples
- For $i \in\{0, \ldots, t-1\}$:
- $S_{i} \leftarrow S \cap B_{i}$
- If $\left|S_{i}\right| \geq \sqrt{\frac{\varepsilon}{n}} \cdot \frac{|S|}{c \cdot t}$, then set $\rho_{i} \leftarrow \frac{\left|S_{i}\right|}{|S|}$
- Else, $\rho_{i} \leftarrow 0$
- Return $\sum_{i=0}^{t-1} \rho_{i}(1+\beta)^{i-1}$
- Show what our estimate gets:
- First, $\sum_{i=0}^{t-1} \rho_{i}(1+\beta)^{i-1} \leq \bar{d}$
- Accurate ρ_{i}
- This is because degree in each bucket i lower bounded by $(1+\beta)^{i-1}$

A $(2+\varepsilon)$-Approximate Algorithm

- Algorithm:
- Take $|S|=\boldsymbol{\Theta}\left(\sqrt{\boldsymbol{n}} \cdot \log \left(\frac{1}{\delta}\right)\right.$.
$\left.\frac{1}{\varepsilon^{4}} \log ^{2} n\right)$ samples
- For $i \in\{0, \ldots, t-1\}$:
- $S_{i} \leftarrow S \cap B_{i}$
- If $\left|S_{i}\right| \geq \sqrt{\frac{\varepsilon}{n}} \cdot \frac{|S|}{c \cdot t}$, then set $\rho_{i} \leftarrow \frac{\left|S_{i}\right|}{|S|}$
- Else, $\rho_{i} \leftarrow 0$
- Return $\sum_{i=0}^{t-1} \rho_{i}(1+\beta)^{i-1}$
- Show what our estimate gets:
- First, $\sum_{i=0}^{t-1} \rho_{i}(1+\beta)^{i-1} \leq \bar{d}$
- Accurate ρ_{i}
- This is because degree in each bucket i lower bounded by $(1+\beta)^{i-1}$
- Approximate ρ_{i} is $(1+\varepsilon)$ estimate of $\frac{\left|B_{i}\right|}{n}$
$\sum_{i=0}^{t-1} \rho_{i}(1+\beta)^{i-1} \leq(1+\varepsilon) \cdot \bar{d}$

A $(2+\varepsilon)$-Approximate Algorithm

- Algorithm:
- Take $|S|=\Theta\left(\sqrt{n} \cdot \log \left(\frac{1}{\delta}\right)\right.$. $\left.\frac{1}{\varepsilon^{4}} \log ^{2} n\right)$ samples
- For $i \in\{0, \ldots, t-1\}$:
- $S_{i} \leftarrow S \cap B_{i}$
- If $\left|S_{i}\right| \geq \sqrt{\frac{\varepsilon}{n}} \cdot \frac{|S|}{c \cdot t}$, then set $\rho_{i} \leftarrow \frac{\left|S_{i}\right|}{|S|}$
- Else, $\rho_{i} \leftarrow 0$
- Return $\sum_{i=0}^{t-1} \rho_{i}(1+\beta)^{i-1}$
- Show what our estimate gets:
- First, $\sum_{i=0}^{t-1} \rho_{i}(1+\beta)^{i-1} \geq(1-\beta) \cdot \bar{d}$
- Accurate ρ_{i}
- This is because degree in each bucket i lower bounded by $(1+\beta)^{i-1}$

A $(2+\varepsilon)$-Approximate Algorithm

- Algorithm:
- Take $|S|=\boldsymbol{\Theta}\left(\sqrt{\boldsymbol{n}} \cdot \log \left(\frac{1}{\delta}\right)\right.$. $\left.\frac{1}{\varepsilon^{4}} \log ^{2} n\right)$ samples
- For $i \in\{0, \ldots, t-1\}$:
- $S_{i} \leftarrow S \cap B_{i}$
- If $\left|S_{i}\right| \geq \sqrt{\frac{\varepsilon}{n}} \cdot \frac{|S|}{c \cdot t}$, then set $\rho_{i} \leftarrow \frac{\left|S_{i}\right|}{|S|}$
- Else, $\rho_{i} \leftarrow 0$
- Return $\sum_{i=0}^{t-1} \rho_{i}(1+\beta)^{i-1}$
- Show what our estimate gets:
- First, $\sum_{i=0}^{t-1} \rho_{i}(1+\beta)^{i-1} \geq(1-\beta) \cdot \bar{d}$
- Accurate ρ_{i}
- This is because degree in each bucket i lower bounded by $(1+\beta)^{i-1}$
- Approximate ρ_{i} is $(1+\varepsilon)$-estimate of $\frac{\left|B_{i}\right|}{n}$

$$
\sum_{i=0}^{t-1} \rho_{i}(1+\beta)^{i-1} \geq(1-\varepsilon)^{2} \cdot \bar{d}
$$

A $(2+\varepsilon)$-Approximate Algorithm

- How much do we lose from our ignored buckets?
- Big-big: both endpoints belong to big buckets
- Counted from both sides

A $(2+\varepsilon)$-Approximate Algorithm

- How much do we lose from our ignored buckets?
- Big-big: both endpoints belong to big buckets
- Counted from both sides
- Big-small: one endpoints in big bucket one in small
- Count from one side
- 2-approx

A $(2+\varepsilon)$-Approximate Algorithm

- How much do we lose from our ignored buckets?
- Big-big: both endpoints belong to big buckets
- Counted from both sides
- Big-small: one endpoints in big bucket one in small
- Count from one side
- 2-approx
- How much do we lose from our ignored buckets?
- Small-small: both endpoints in small buckets

A $(2+\varepsilon)$-Approximate Algorithm

- How much do we lose from our ignored buckets?
- Big-big: both endpoints belong to big buckets
- Counted from both sides
- Big-small: one endpoints in big bucket one in small
- Count from one side
- 2-approx
- How much do we lose from our ignored buckets?
- Small-small: both endpoints in small buckets
- $\left|B_{i}\right| \leq \frac{2(\sqrt{\varepsilon \cdot n})}{c t}$ whp

A $(2+\varepsilon)$-Approximate Algorithm

Fine given our assumption that $\bar{d} \geq 1$!

- How much do we lose from our ignored buckets?
- Big-big: both endpoints belong to big buckets
- Counted from both sides
- Big-small: one endpoints in big bucket one in small
- How much do we lose from our ignored buckets?
- Small-small: both endpoints in small buckets
- $\left|B_{i}\right| \leq \frac{2(\sqrt{\varepsilon \cdot n})}{c t}$ whp
- At most $t \cdot 2 \cdot \frac{\sqrt{\varepsilon \cdot n}}{c t}=\frac{2 \sqrt{\varepsilon n}}{c}$ nodes in small buckets
- Count from one side
- 2-approx

Food for Thought Till Next Time

- $(1+\varepsilon)$-approx. for average degree + useful graph property!

Orient all edges from low to high degree, what's the max out-degree that you see?

[^0]: Sampling and taking the average degree doesn't work in general

