
CPSC 768: SCALABLE AND PRIVATE GRAPH ALGORITHMS Lectures 3

These lecture notes have not undergone rigorous peer-review. Please email quanquan.liu@yale.edu if
you see any errors.

1 Introduction

Having divided into examples of uses of the median trick in streaming algorithms, now we’ll see various
applications of our techniques in the sublinear model in the next few lectures. We’ll start with the seminar
result of Chazelle, Rubinfeld, and Trevisan ‘05 [CRT05] for estimating the number of connected components
in a graph in sublinear time. Estimating the number of connected components in a graph is a fundamental
problem in graph theory and network analysis. In the sublinear model, we aim to estimate this quantity
without examining the entire graph, which is particularly useful when dealing with large-scale networks.

2 Sublinear Time Algorithms for Graphs

Sublinear algorithms are algorithms that run in time substantially less than the input size. They are partic-
ularly useful for large-scale problems where it’s computationally expensive or even impossible to examine
the entire input.

2.1 Query Model for Graph Problems

When designing sublinear time algorithms, specifying the exact data model, or rather the query model, is
very important as the algorithm cannot even read the entire input once. A query model then specifies what
type of queries can be made to the input. In the context of graph problems, we typically work with one
of the following models: adjacency list model, adjacency matrix model, or the general query model. See
the PowerPoint presentation included with this lecture for details about these models. In this lecture, we’ll
specifically focus on the adjacency list query model.

3 Estimating the Number of Connected Components

We first formally give the result we will prove in this lecture.

Theorem 1. In the adjacency list query model, given a graph G = (V,E), approximation parameter
ε ∈ (0, 1) (typically constant), and failure probability parameter δ ∈ (0, 1), output an approximation
of the number of connected components C̃ such that

Pr
(
|C̃ − C| ≤ εn

)
≥ 1− δ

where C is the actual number of connected components in the graph.

A Few Notes This is an additive approximation with respect to n, not a multiplicative approximation with
respect to C (when C is small). This is because event distinguishing between two connected components
(i.e. whether the entire graph is connected) better than a 2-approximation requires Ω(n2) time.

Quanquan C. Liu quanquan@mit.edu 1

mailto:quanquan.liu@yale.edu

CPSC 768: SCALABLE AND PRIVATE GRAPH ALGORITHMS Lectures 3

3.1 Algorithm

First, let nu denote the number of nodes in the connected component containing u.

Lemma 3.1. Observe the following:

• If A is a connected component, then ∑
u∈A

1

nu
=
|A|
|A|

= 1.

• Then, knowing 1,

∑
u∈V

1

nu
=

C∑
i=1

∑
u∈Di

1

nu
=

C∑
i=1

1 = C.

Using Lemma 3.1, we can first attempt the following algorithm: just calculate nu for all u ∈ V . How-
ever, this obviously takes too much time as BFS/DFS takes too much time when nu is large. (Recall we
want a o(n) sublinear algorithm). However, we make the following very important intuitive observation
using the above equations: a large nu does not contribute to the summation much. Hence, we can afford to
lower bound their size. Now, let’s do just that.

Strategy: We sample some vertices S (IID with replacement) and approximate the nu values of the ver-
tices we sampled. Let’s denote n̂u as the estimated value of the size of the component containing u. Then,
for each sampled sampled u ∈ S, we set

n̂u = min{nu,
2

ε
}.

We first show a few characteristics of why it is fine to set n̂u in this way. First, let Ĉ =
∑

u∈V
1
n̂u

.

Lemma 3.2. |Ĉ − C| ≤ εn
2 .

Proof. For each u ∈ V , 0 ≤ 1
n̂u
− 1

nu
≤ ε

2 . This inequality holds since either:

• nu > 1
ε , we set n̂u = 2

ε , and 1
n̂u
− 1

nu
≤ ε

2 −
1
n < ε

2 , or

• n̂u = nu.

Thus, 0 ≤
∑

u∈V
1
n̂u
− 1

nu
= Ĉ − C ≤

∑
u∈V

ε
2 = nε

2 .

This provides the estimate we want; however, we cannot afford to estimate all n̂u in sublinear time.
Hence, as mentioned earlier, we must do some sampling.

Runtime of Each Sample The runtime of each sample is O
(
1
ε

)
time per vertex using BFS since we

perform BFS until we either see 2
ε unique vertices or we have seen all of the vertices in the component. This

means that the maximum number of edges we traverse before we stop the BFS is 4
ε2

.
Before we introduce the sampling based algorithm below, we make one additional observation. Notice

that Ĉ
n is the average of the 1

n̂u
values over all nodes u ∈ V . However, estimating the average is enough to

get Ĉ since n is fixed and known.
Now, we give the algorithm in Algorithm 1.

Quanquan C. Liu quanquan@mit.edu 2

mailto:quanquan.liu@yale.edu

CPSC 768: SCALABLE AND PRIVATE GRAPH ALGORITHMS Lectures 3

Data: A graph G = (V,E), a parameter ε > 0
Result: An estimate C̃ of the number of connected components of G
S ← 8

ε2
.

for i← 1 to S do
ui ← a random node from V
n̂ui ← the number of nodes visited by BFS from ui, limited to 2

ε .
end
C̃ ← n ·

(
1
S

∑S
i=1

1
n̂ui

)
.

return C̃.
Algorithm 1: Pseudocode for estimating the number of connected components

Runtime For each node, BFS takes O
(

1
ε2

)
time and we perform O

(
1
ε2

)
queries. Hence, we take O

(
1
ε4

)
time. When, ε is constant, this sampling scheme is completely independent of the input!

Now, we show the concentration bounds.

Lemma 3.3. E[C̃] = Ĉ.

Proof.

E
[
C̃
]
= E[

n

S

S∑
i=1

1

n̂ui

]

=
nε2

8
·

S∑
i=1

E
[

1

n̂ui

]
=

nε2

8
· 8
ε2
·
∑
u∈V

Pr(sample vertex u) · 1

n̂u

=
nε2

8
· 8
ε2
· 1
n
·
∑
u∈V

1

n̂u

= Ĉ

The last line follows by definition of Ĉ.

Now, we can use the following form of the Chernoff bound to show our concentration bounds. Note
that unlike previous lectures, we can directly use the additive Chernoff bound instead of going through
Chebyshev’s because our random variables have values in [0, 1].

Theorem 2 (Additive Chernoff Bound). Let Y1, Y2, . . . , Yk be k independent random variables with
values in [0, 1] and Y =

∑k
i=1 Yi. Then, for any b ≥ 1,

Pr(|Y − E[Y]| > b) ≤ 2 · e−2b2/k.

Lemma 3.4. Pr
(
|C̃ − Ĉ| ≤ εn

2

)
≥ 7

8 .

Proof. Let Yi = 1
n̂ui

, then Y =
∑S

i=1
1

n̂ui
. Hence, C̃ = n·Y

S . Since E[C̃] = Ĉ, then we know that

E[C̃] = Ĉ = n
S · E[Y] and solving for E[Y] gives E[Y] = S·Ĉ

n . Substituting this into the additive Chernoff
bound, we obtain,

Quanquan C. Liu quanquan@mit.edu 3

mailto:quanquan.liu@yale.edu

CPSC 768: SCALABLE AND PRIVATE GRAPH ALGORITHMS Lectures 3

|Y − E[Y]| = |S · C̃
n
− S · Ĉ

n
|

Pr[|C̃ − Ĉ| > εn

2
] = Pr[|Y − E[Y]| > εS

2
]

Pr[|Y − E[Y]| > εS

2
] ≤ 2e−2(εS/2)2/S = 2e−ε2S/2 = 2e−4 <

1

8
.

We can then amplify the probability of success to 1 − δ either by using the median trick discussed in
previous lectures or by taking O(log(1/δ)) additional samples and using the above analysis with the additive
Chernoff bound.

Content used in these notes include material from the following sources [Ass20], [Ras20], and [Rub07].

References

[Ass20] Sepehr Assadi. CS 514: Advanced Algorithms II – Sublinear Algorithms.
https://people.cs.rutgers.edu/ sa1497/courses/cs514-s20/lec2.pdf, 2020.

[CRT05] Bernard Chazelle, Ronitt Rubinfeld, and Luca Trevisan. Approximating the minimum spanning
tree weight in sublinear time. SIAM Journal on computing, 34(6):1370–1379, 2005.

[Ras20] Sofya Raskhodnikova. CS 591 Sublinear Algorithms. https://cs-people.bu.edu/sofya/sublinear-
course/lecture-notes/lecture3.pdf, 2020.

[Rub07] Ronitt Rubinfeld. 6.896 Sublinear Time Algorithms. https://people.csail.mit.edu/ronitt/COURSE/S07/l11.pdf,
2007.

Quanquan C. Liu quanquan@mit.edu 4

mailto:quanquan.liu@yale.edu

	Introduction
	Sublinear Time Algorithms for Graphs
	Query Model for Graph Problems

	Estimating the Number of Connected Components
	Algorithm

