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Announcements

 Final project report and presentation: April 24t (last day of
class)

 Final project presentation is a 30 min presentation
 Last day of Open Problem Sessions: April 26t (last week of
classes)

* Will be turned into a reading group/continue with OPS, stay
tuned!
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What are learning-augmented
algorithms?

 Classical Algorithms (intro to algorithms courses)
* Worst-case guarantees

* Limited adaptivity to input (special classes, closely
related inputs)
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algorithms?

 Classical Algorithms (intro to algorithms courses)
* Worst-case guarantees
 Limited adaptivity to input (special classes, Closely
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* Machine Learning Based Approaches
» Stronger performance due to adaptivity (learning) |
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* No worst-case guarantees
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What are learning-augmented
algorithms?

 Classical Algorithms (intro to algorithms courses)
* Worst-case guarantees
 Limited adaptivity to input (special classes, Closely
related inputs)
* Machine Learning Based Approaches
» Stronger performance due to adaptivity (learning) |
iInputs
* No worst-case guarantees
* Learning-Augmented Algorithms
« Adaptive
» Often has worst-case guarantees
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What are learning-augmented
algorithms?

* Use machine learning advice to inform algorithmic
procedure
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procedure

* What part of the input can we reasonably learn?

* How do we use the learned advice to obtain better
theoretically proven bounds?
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What are learning-augmented
algorithms?

* Use machine learning advice to inform algorithmic
procedure

* What part of the input can we reasonably learn?

* How do we use the learned advice to obtain better
theoretically proven bounds?

 Example:
* Frequency estimation in a stream
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What are learning-augmented
algorithms?

* Use machine learning advice to inform algorithmic
procedure

* What part of the input can we reasonably learn?

* How do we use the learned advice to obtain better
theoretically proven bounds?

 Example:

* Frequency estimation in a stream—Iearn infrequent
elements
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What are learning-augmented
algorithms?

* Use machine learning advice to inform algorithmic
procedure

* What part of the input can we reasonably learn?

* How do we use the learned advice to obtain better
theoretically proven bounds?

 Example:
* Frequency estimation in a stream
 Learn infrequent elements
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What Guarantees Do We Want?

« Consistency

* |f the predictions are high quality, then algorithms performs
much better than worst-case algorithm
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What Guarantees Do We Want?

« Consistency
* If the predictions are high quality, then algorithm performs
much better than worst-case algorithm
 Competitiveness

* |[f the predictions are low quality, then algorithm does not
perform any worse than worst-case algorithm
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What Guarantees Do We Want?

« Consistency

* If the predictions are high quality, then algorithm performs
much better than worst-case algorithm

 Competitiveness

* |[f the predictions are low quality, then algorithm does not
perform any worse than worst-case algorithm

e Robustnhess

« Performance of algorithm degrades gracefully as function
of prediction error
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What Guarantees Do We Want?
Often cannot

. Consistency satisfy all three!

* If the predictions are high quality, then algorithm performs
much better than worst-case algorithm

 Competitiveness

* |[f the predictions are low quality, then algorithm does not
perform any worse than worst-case algorithm

e Robustnhess

« Performance of algorithm degrades gracefully as function
of prediction error
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Learned Binary Search

« Suppose we have a sorted list of integers
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Learned Binary Search

« Suppose we have a sorted list of integers

* Problem: where is 15?
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Learned Binary Search

« Suppose we have a sorted list of integers
* Problem: where is 157
* Prediction: predicted index of 15

13/ 6|78|9/11/15/16/18/19/25/36/78|98(99
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Learned Binary Search

« Suppose we have a sorted list of integers
* Problem: where is 157
* Prediction: predicted index of 15

13 6/78|9/11/15/16/18/19/25/36/78|98|99
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Learned Binary Search

« Suppose we have a sorted list of integers
* Problem: where is 157
* Prediction: predicted index of 15; how can we use it?

13 6/78|9/11/15/16/18/19/25/36/78|98|99

CPSC 768



Learned Binary Search

« Suppose we have a sorted list of integers

* Problem: where is 15?

* Prediction: predicted index of 15; doubling search from
predicted index!

1

3 6

7

8

9

11

15

16

18

19

25

36

78

98

99
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Learned Binary Search

« Suppose we have a sorted list of integers

* Problem: where is 15?

* Prediction: predicted index of 15; doubling search from
predicted index!

1

3 6

h

7

8

9

11

15

16

18

19

25

36

78

98

99

ﬂ

First decide go
left or right
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Learned Binary Search

« Suppose we have a sorted list of integers

* Problem: where is 15?

* Prediction: predicted index of 15; doubling search from
predicted index!

13 6/78|9/11/15/16/18/19/25/36/78|98|99

—
Start doubling
search
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Learned Binary Search

« Suppose we have a sorted list of integers

* Problem: where is 15?

* Prediction: predicted index of 15; doubling search from
predicted index!

13 6|/78|911/15/16/18/19/25/36/78|98|99

—
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search
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Learned Binary Search

« Suppose we have a sorted list of integers

* Problem: where is 15?

* Prediction: predicted index of 15; doubling search from
predicted index!

13 6|78|9/11/1516/18/19/25/36/78|98|99

—
Start doubling
search
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Learned Binary Search

« Suppose we have a sorted list of integers

* Problem: where is 15?

* Prediction: predicted index of 15; doubling search from
predicted index!

13 6|78|9/11/1516/18/19/25/36/78|98|99

ﬂ

Start doubling What is the runtime?
search
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Learned Binary Search Why is the prediction

reasonable?
« Suppose we have a sorted list of integers

* Problem: where is 15?

* Prediction: predicted index of 15; doubling search from
predicted index!

13 6|78|9/11/1516/18/19/25/36/78|98|99

—
Start doubling
search

What is the runtime?
O(log(L{ — error))

CPSC 768



Learned Binary : why is the prediction reasonable?

* Suppose we have a sor Many real-world instances give you a

* Problem: where is 15?
predlctlon -€.g. Ilbrary books
* Prediction: predicted l.iucna o 10, uvumiiny ovur s

predicted index!

13 6|78|9/11/1516/18/19/25/36/78|98|99

—
Start doubling
search

What is the runtime?
O(log(L{ — error))

CPSC 768



Learned Binary  satisfies all three desired properties!

« Suppose we have a sorted list of integers

* Problem: where is 15?

* Prediction: predicted index of 15; doubling search from
predicted index!

13 6|78|9/11/1516/18/19/25/36/78|98|99

—
Start doubling What is the runtime?

search O(log(Ly — error))
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Learned Bloom Filter

* A bloom filter is a data structure that provides approximate
membership queries

* Given: a set of elements S = {x4, ..., x,,}
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Learned Bloom Filter

* A bloom filter is a data structure that provides approximate
membership queries

* Given: a set of elements § = {x4, ..., x,;}
« Goal: given x, determine if x isin S
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Learned Bloom Filter

* A bloom filter is a data structure that provides approximate
membership queries

* Given: a set of elements § = {x4, ..., x,;}
« Goal: given x, determine if x isin S

 Bloom filter gives low space, randomized solution
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Learned Bloom Filter

* A bloom filter is a data structure that provides approximate
membership queries

* Given: a set of elements § = {x4, ..., x,;}
« Goal: given x, determine if x isin S

 Bloom filter gives low space, randomized solution
 Many applications!
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Learned Bloom Filter

 Bloom filter contains:
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Learned Bloom Filter

* Bloom filter contains:
 Array of m bits, which represents S
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Learned Bloom Filter

* Bloom filter contains:
 Array of m bits, which represents S

* k independent hash functions h4, ..., hy, each hashing
elements in S to {1, ..., m}
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Learned Bloom Filter

* Bloom filter contains:
 Array of m bits, which represents S
 k independent hash functions h,, ..., h;, each hashing
elementsin S to {1, ..., m}

* Initialization: foreach x e Sand i € {1, ..., k}, set bit h;(x) in
array to 1
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Learned Bloom Filter

« Bloom filter contains:
 Array of m bits, which represents S
* k independent hash functions h4, ..., hy, each hashing
elements in S to {1, ..., m}
* Initialization: foreach x e Sand i € {1, ..., k}, set bit h;(x) in
array to 1
* On query of x':
* ReportinSifandonlyif h;(x') =1foralli e {1, .., k}
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Learned Bloom Filter

* Initialization: foreach x e Sand i € {1, ..., k}, set bit h;(x) in
array to 1

* On query of x':
* ReportinSifandonlyif h;(x') =1foralli e {1,.., k}
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Learned Bloom Filter

* Initialization: foreach x e Sand i € {1, ..., k}, set bit h;(x) in
array to 1

* On query of x':
* ReportinSifandonlyif h;(x') =1foralli e {1, ..

%/ <ym\\</ \
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Learned Bloom Filter

* Guarantees:
* No false negatives: if return NO, notin S
* False positives: returns YES but notin S

h(x) ~ " A
" ]
110 0/ 0|1 0001 01 0/0]1
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Learned Bloom Filter

* Guarantees:
* No false negatives: if return NO, notin S
* False positives: returns YES but notin S
. Probl?bility: For query x and for each i € [k], P[h;(x) =
1] <=

m
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Learned Bloom Filter

* Guarantees:
* No false negatives: if return NO, notin S
* False positives: returns YES but notin S
. Probl?bility: For query x and for each i € [k], P[h;(x) =
- n

1] < —
) m

e Plall 15] < ("—")k
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Learned Bloom Filter

* Guarantees:
* No false negatives: if return NO, notin S
* False positives: returns YES but notin S
. Probl?bility: For query x and for each i € [k], P[h;(x) =
- n

1] < —
) m

e Plall 15] < ("—")k

m
» Suppose pick k =log, n and m = 3nlog, n, then

| |
probability of failure is (Z2822L) ™" = (1) " < 1

3nlogo, n 3 n
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Learned Bloom Filter

* ML Oracle:
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Learned Bloom Filter

* ML Oracle:
* Some trained function f(x) provides useful information
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Learned Bloom Filter

* ML Oracle:
* Some trained function f(x) provides useful information

* \What function would be useful for us?
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Learned Bloom Filter

* ML Oracle:
* Some trained function f(x) provides useful information

* \What function would be useful for us?
 Function that tells us whether x € S!
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Learned Bloom Filter

* ML Oracle:
* Some trained function f(x) provides useful information

* \What function would be useful for us?
 Function that tells us whether x € S!

« Caveat:
* We can't learn this exactly!
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Learned Bloom Filter

* ML Oracle:

* Some trained function f(x) provides useful information
* \What function would be useful for us?

* Function that tells us whether x € S!

« Caveat:
* We can't learn this exactly!
* Will be non-zero false positive and negative rate
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Learned Bloom Filter

* [Kraska, Beutal, Chi, Dean, Polyzotis, SIGMOD 18]
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Learned Bloom Filter

* [Kraska, Beutal, Chi, Dean, Polyzotis, SIGMOD 18]

On each element
g ——| Oracle f(x)
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Learned Bloom Filter

* [Kraska, Beutal, Chi, Dean, Polyzotis, SIGMOD 18]

On each element
X ES

ﬂ

flx) =1

Oracle f(x)

flx)=0
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Learned Bloom Filter

* [Kraska, Beutal, Chi, Dean, Polyzotis, SIGMOD 18]

On each element
X ES

ﬂ

flx) =1

Oracle f(x)

flx)=0

No false negatives!
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Learned Bloom Filter

* [Kraska, Beutal, Chi, Dean, Polyzotis, SIGMOD 18]

On each element
X ES

ﬂ

flx) =1

Oracle f(x)

flx)=0

No false negatives!
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Learned Bloom Filter

Caveat: false
positive rate
depends on the
oracle

> Oracle f(x)

flx) =1

flx)=0

No false negatives!
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Chi, Dean, Polyzotis, SIGMOD 18]}

Output YES

Bloom filter
onS




Sandwiched Learned Bloom Filter

 [Mitzenmacher, NeurlPS ‘18]

fx) =1 4 Output YES
On each element Bloom YES
X€ES filteron Oracle f(x) < Bloom filter

fx)=0[__onS"

No false negatives!
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Sandwiched Learned Bloom Filter

 [Mitzenmacher, NeurlPS ‘18]

fx) =1 4 Output YES
Bloom | YES
On each element ——| Oracle f(x) <

X €S filteron S Bloom filter
f(x) =0 onS~

False positive rate same or less than
Bloom filter!
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Sandwiched Learned Bloom Filter

Better analysis and

« [Mitzenmacher, NeurlPS ‘18] performance in practice!
fx) =1 4 Output YES
On each element Bloom | YES
XES filteron S Oracle f(x) Bloom filter
f(x) =0 onS™

False positive rate same or less than
Bloom filter!
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Learning-Augmented Dynamic Graph
Algorithms

* Why do we need them?
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Types of Dynamic Algorithms

* Incremental/Decremental vs. Fully Dynamic
 Incremental/decremental algorithms:
* Only edge insertions/deletions, respectively

« Sometimes large gap in runtimes
* Polynomial or exponential gaps in runtimes
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Best Partially Dynamic

Types of Dynamic Algorithms

Best Fully Dynamic
Planar Digraph APSP O (n?/3) [FRO6, Kle05] O(v/n) [DGWN22]
Triconnectivity O(n*/?) [GIS99] 0(1) [HR20, PSS17]
k-Edge Connectivity ne) [JS22] 0(1) [CDK*21]
Dynamic DFS Tree O (v/mn) [BCCK19) O (n) [BCCK19, CDW+18]
Minimum Spanning Forest 0(1) [HDLTO01] o(1) [Epp94]
(%)Mk—Approx
O (n*) update (2r — 1)k-Approx
APSP O(n*/8) query [FGNS23] 0] (ml/(k+1pk/r) [CGH™20]
8k
O(log(n) loglog n)-Approx 0 (log (n))—Approx.
AP Maxflow/Mincut 9] (n?/3+e() [CGH™T20] 9] (n?/(k+1)) [Gor19, GHS19]
(1+ ¢)-Approx O(log™ (n))-Approx.
O(1) update 9] (n* (k+1)) update
MCF O(n) query [CGH'20] O(P2) query [Gor19, GHS19]
Strongly Connected Components || €(m!~¢) query or update [AW14] O(m) [Rod13]
90(10g®/*(n))_A pprox o (logSk (n))-Approx
20(10g5/6(n)) update 5 (n2/(k+1))
) 1/6 V4
Uniform Sparsest Cut O(log/®(n)) query [GRST21] O(1) query [Gor19, GHS19] [LS 2 3]
1/4-Approx 0.3178-Approx
Submodular Max O(k?) [DFL*23] O (poly(k)) [FLN*22] —




Learning-Augmented Dynamic Graph
Algorithms

* Why do we need them?
« Can we use predictions to bridge the gap?
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* Yes!

CPSC 768



Learning-Augmented Dynamic Graph
Algorithms

* Why do we need them?
« Can we use predictions to bridge the gap?
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Learning-Augmented Dynamic Graph
Algorithms

* Why do we need them?

« Can we use predictions to bridge the gap?
* Yes!
* Predictions on the edge updates [L-Srinivas ‘23]

* For each edge update, give prediction on when update
occurs
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Learning-Augmented Dynamic Graph
Algorithms

* Why do we need them?

« Can we use predictions to bridge the gap?
* Yes!
* Predictions on the edge updates [L-Srinivas ‘23]

* For each edge update, give prediction on when update
occurs

* Assume one edge insertion/deletion occurs on a day, give
prediction on the day of the edge insertion/deletion
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Offline-Dynamic Connectivity

« Geometric representation of the problem
* Divide-and-conquer: process each subproblesm

%
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Time I(e)) I(e) I(es) Qu,w) I(eq) I(es) D(e3) D(es) D(ey) Qu,w)
: ‘ ' CPSC 768 . R




Random Partition Tree Data Structure

Pick a uniformly at random
divider for subproblems

Time I(e) I(ez) I(e3) Q(u,w) I(ey) I(es) D(e3) D(ez) D(es) Qu,w)
- ‘ | CPSC 768 == e




Random Partition Tree Data Structure

Pick a uniformly at random
divider for subproblems

Time I(e) I(ez) I(e3) Q(u,w) I(ey) I(es) D(e3) D(ez) D(es) Qu,w)
- ‘ | CPSC 768 == e




Random Partition Tree Data Structure

Run offline divide-and-conquer algorithm on subproblems

Time I(e;) I(e) I(e3) Q(ww) I(ey) I(es) D(e3) D(ez) D(ey) Qu,w)
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Random Partition Tree Data Structure

Run offline divide-and-conquer algorithm on subproblems

Predicted

Time | | | | | | | | |

I | | | | | | |
Actuall(el) I(e;) I(e3) Q(u,w) I(ey) I(es) D(e3) D(e3) D(es) Q(u,w)
1(31) 1(32) 1(63) Q(U,W) 1(35) 1(34) D(e3) D(eg) D(64) Q(u,w)
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Random Partition Tree Data Structure

Run offline divide-and-conquer algorithm on subproblems

Predicted

Time | | | | | | | | |

I | | | | | | |
Actua|1<el> I(e;) I(es) Q(uw) I(es) I(es) D(es) D(es) D(es) Qu,w)
1(31) 1(32) 1(63) Q(U,W) 1(35) 1(34) D(e3) D(eg) D(64) Q(u,w)
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Random Partition Tree Data Structure

Recompute computation of largest subtree containing errors

and children

Predicted
Time | | | |

I(e1) I(ez) I(e3) Q(u,w) I(ey) I(es) D(es) D(ez) D(es) Q(u,w)
I(eq) I(ez) I(e3) Q(u,w) I(es) I(eq) D(e3) D(e3) D(ey) Q(u,w)

Actual
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Random Partition Tree Data Structure

Purpose of the random partition tree: in expectation size of
subproblem (largest subtree) equal to error

Predicted

Time | | | | | | | | |

I | | | | | | |
neruaf @) [(€2) 1(e) QGuw) I(eq) Ies) Dles) Dles) Dles) Quw)
I(eq) I(ep) I(e3) Q(u,w) I(es) I(ey) D(e3) D(e3) D(es) Q(u,w)
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Random Partition Tree Data Structure

Purpose of the random partition tree: in expectation size of
subproblem (largest subtree) equal to Lqerror

Bad event: very large subtree for small error

Predicted

Time | | | | | | | | |

I | | | | | | |
neruaf @) [(€2) 1(e) QGuw) I(eq) Ies) Dles) Dles) Dles) Quw)
I(eq) I(ep) I(e3) Q(u,w) I(es) I(ey) D(e3) D(e3) D(es) Q(u,w)
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Random Partition Tree Data Structure

— Runtime same as partially dynamic with an —
— additional 5(log(L1 = error)) —
. [L-Srinivas ‘23] L

Predicte

Time ) | | | | | | | | | ,
T | | | | | | |

I(e;) 1(ez) I(e3) Q(u,w) I(eq) I(es) D(e3) D(e3) D(es) Q(u,w)
Actual

I(e;) I(ez) I(e3) Q(u,w) I(es) I(es) D(e3) D(ez) D(eq) Q(u,w)
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Conclusion

« Streaming, distributed, parallel and dynamic techniques
can be used in a variety of problems across models
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* Decentralized adversaries
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Conclusion

« Streaming, distributed, parallel and dynamic techniques
can be used in a variety of problems across models

* Modern algorithms must take into account stronger
adversaries
* Privacy-violating
* Decentralized adversaries
* New tools to help us make algorithms practical!
* Models that model modern architecture
 ML-based methods

* Graphs at the forefront of these developments!
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Exciting new fields with lots of

COHClUSiOn potential for development and

broad impact

« Streaming, distributed, parallel and dynamic techniques
can be used in a variety of problems across models

* Modern algorithms must take into account stronger
adversaries
* Privacy-violating
* Decentralized adversaries
* New tools to help us make algorithms practical!
* Models that model modern architecture
 ML-based methods

* Graphs at the forefront of these developments!
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