
CPSC 768

CPSC 768:
Scalable and Private Graph Algorithms

Quanquan C. Liu
quanquan.liu@yale.edu

Lecture 25: Learning-Augmented Algorithms

CPSC 768

Announcements

• Final project report and presentation: April 24th (last day of
class)

• Final project presentation is a 30 min presentation
• Last day of Open Problem Sessions: April 26th (last week of

classes)
• Will be turned into a reading group/continue with OPS, stay

tuned!

CPSC 768

What are learning-augmented
algorithms?
• Classical Algorithms (intro to algorithms courses)

• Worst-case guarantees
• Limited adaptivity to input (special classes, closely

related inputs)

CPSC 768

What are learning-augmented
algorithms?
• Classical Algorithms (intro to algorithms courses)

• Worst-case guarantees
• Limited adaptivity to input (special classes, closely

related inputs)
• Machine Learning Based Approaches

• Stronger performance due to adaptivity (learning)
inputs

• No worst-case guarantees

CPSC 768

What are learning-augmented
algorithms?
• Classical Algorithms (intro to algorithms courses)

• Worst-case guarantees
• Limited adaptivity to input (special classes, closely

related inputs)
• Machine Learning Based Approaches

• Stronger performance due to adaptivity (learning)
inputs

• No worst-case guarantees
• Learning-Augmented Algorithms

• Adaptive
• Often has worst-case guarantees

CPSC 768

What are learning-augmented
algorithms?
• Use machine learning advice to inform algorithmic

procedure

CPSC 768

What are learning-augmented
algorithms?
• Use machine learning advice to inform algorithmic

procedure
• What part of the input can we reasonably learn?

CPSC 768

What are learning-augmented
algorithms?
• Use machine learning advice to inform algorithmic

procedure
• What part of the input can we reasonably learn?
• How do we use the learned advice to obtain better

theoretically proven bounds?

CPSC 768

What are learning-augmented
algorithms?
• Use machine learning advice to inform algorithmic

procedure
• What part of the input can we reasonably learn?
• How do we use the learned advice to obtain better

theoretically proven bounds?
• Example:

CPSC 768

What are learning-augmented
algorithms?
• Use machine learning advice to inform algorithmic

procedure
• What part of the input can we reasonably learn?
• How do we use the learned advice to obtain better

theoretically proven bounds?
• Example:

• Frequency estimation in a stream

CPSC 768

What are learning-augmented
algorithms?
• Use machine learning advice to inform algorithmic

procedure
• What part of the input can we reasonably learn?
• How do we use the learned advice to obtain better

theoretically proven bounds?
• Example:

• Frequency estimation in a stream—learn infrequent
elements

CPSC 768

What are learning-augmented
algorithms?
• Use machine learning advice to inform algorithmic

procedure
• What part of the input can we reasonably learn?
• How do we use the learned advice to obtain better

theoretically proven bounds?
• Example:

• Frequency estimation in a stream
• Learn infrequent elements

CPSC 768

What Guarantees Do We Want?

• Consistency
• If the predictions are high quality, then algorithms performs

much better than worst-case algorithm

CPSC 768

What Guarantees Do We Want?

• Consistency
• If the predictions are high quality, then algorithm performs

much better than worst-case algorithm
• Competitiveness

• If the predictions are low quality, then algorithm does not
perform any worse than worst-case algorithm

CPSC 768

What Guarantees Do We Want?

• Consistency
• If the predictions are high quality, then algorithm performs

much better than worst-case algorithm
• Competitiveness

• If the predictions are low quality, then algorithm does not
perform any worse than worst-case algorithm

• Robustness
• Performance of algorithm degrades gracefully as function

of prediction error

CPSC 768

What Guarantees Do We Want?

• Consistency
• If the predictions are high quality, then algorithm performs

much better than worst-case algorithm
• Competitiveness

• If the predictions are low quality, then algorithm does not
perform any worse than worst-case algorithm

• Robustness
• Performance of algorithm degrades gracefully as function

of prediction error

Often cannot
satisfy all three!

CPSC 768

Learned Binary Search

• Suppose we have a sorted list of integers

1 3 6 7 8 9 11 15 16 18 19 25 36 78 98 99

CPSC 768

Learned Binary Search

• Suppose we have a sorted list of integers
• Problem: where is 15?

1 3 6 7 8 9 11 15 16 18 19 25 36 78 98 99

CPSC 768

Learned Binary Search

• Suppose we have a sorted list of integers
• Problem: where is 15?
• Prediction: predicted index of 15

1 3 6 7 8 9 11 15 16 18 19 25 36 78 98 99

CPSC 768

Learned Binary Search

• Suppose we have a sorted list of integers
• Problem: where is 15?
• Prediction: predicted index of 15

1 3 6 7 8 9 11 15 16 18 19 25 36 78 98 99

CPSC 768

Learned Binary Search

• Suppose we have a sorted list of integers
• Problem: where is 15?
• Prediction: predicted index of 15; how can we use it?

1 3 6 7 8 9 11 15 16 18 19 25 36 78 98 99

CPSC 768

Learned Binary Search

• Suppose we have a sorted list of integers
• Problem: where is 15?
• Prediction: predicted index of 15; doubling search from

predicted index!

1 3 6 7 8 9 11 15 16 18 19 25 36 78 98 99

CPSC 768

Learned Binary Search

• Suppose we have a sorted list of integers
• Problem: where is 15?
• Prediction: predicted index of 15; doubling search from

predicted index!

1 3 6 7 8 9 11 15 16 18 19 25 36 78 98 99

First decide go
left or right

CPSC 768

Learned Binary Search

• Suppose we have a sorted list of integers
• Problem: where is 15?
• Prediction: predicted index of 15; doubling search from

predicted index!

1 3 6 7 8 9 11 15 16 18 19 25 36 78 98 99

Start doubling
search

CPSC 768

Learned Binary Search

• Suppose we have a sorted list of integers
• Problem: where is 15?
• Prediction: predicted index of 15; doubling search from

predicted index!

1 3 6 7 8 9 11 15 16 18 19 25 36 78 98 99

Start doubling
search

CPSC 768

Learned Binary Search

• Suppose we have a sorted list of integers
• Problem: where is 15?
• Prediction: predicted index of 15; doubling search from

predicted index!

1 3 6 7 8 9 11 15 16 18 19 25 36 78 98 99

Start doubling
search

CPSC 768

Learned Binary Search

• Suppose we have a sorted list of integers
• Problem: where is 15?
• Prediction: predicted index of 15; doubling search from

predicted index!

1 3 6 7 8 9 11 15 16 18 19 25 36 78 98 99

Start doubling
search

CPSC 768

Learned Binary Search

• Suppose we have a sorted list of integers
• Problem: where is 15?
• Prediction: predicted index of 15; doubling search from

predicted index!

1 3 6 7 8 9 11 15 16 18 19 25 36 78 98 99

Start doubling
search

CPSC 768

Learned Binary Search

• Suppose we have a sorted list of integers
• Problem: where is 15?
• Prediction: predicted index of 15; doubling search from

predicted index!

1 3 6 7 8 9 11 15 16 18 19 25 36 78 98 99

Start doubling
search

CPSC 768

Learned Binary Search

• Suppose we have a sorted list of integers
• Problem: where is 15?
• Prediction: predicted index of 15; doubling search from

predicted index!

1 3 6 7 8 9 11 15 16 18 19 25 36 78 98 99

Start doubling
search

What is the runtime?

CPSC 768

Learned Binary Search

• Suppose we have a sorted list of integers
• Problem: where is 15?
• Prediction: predicted index of 15; doubling search from

predicted index!

1 3 6 7 8 9 11 15 16 18 19 25 36 78 98 99

Start doubling
search

What is the runtime?
𝑶(log 𝑳𝟏 − 𝒆𝒓𝒓𝒐𝒓)

Why is the prediction
reasonable?

CPSC 768

Learned Binary Search

• Suppose we have a sorted list of integers
• Problem: where is 15?
• Prediction: predicted index of 15; doubling search from

predicted index!

1 3 6 7 8 9 11 15 16 18 19 25 36 78 98 99

Start doubling
search

What is the runtime?
𝑶(log 𝑳𝟏 − 𝒆𝒓𝒓𝒐𝒓)

Why is the prediction reasonable?

Many real-world instances give you a
prediction—e.g. library books

CPSC 768

Learned Binary Search

• Suppose we have a sorted list of integers
• Problem: where is 15?
• Prediction: predicted index of 15; doubling search from

predicted index!

1 3 6 7 8 9 11 15 16 18 19 25 36 78 98 99

Start doubling
search

What is the runtime?
𝑶(log 𝑳𝟏 − 𝒆𝒓𝒓𝒐𝒓)

Satisfies all three desired properties!

CPSC 768

Learned Bloom Filter

• A bloom filter is a data structure that provides approximate
membership queries

• Given: a set of elements 𝑆 = {𝑥!, … , 𝑥"}

CPSC 768

Learned Bloom Filter

• A bloom filter is a data structure that provides approximate
membership queries

• Given: a set of elements 𝑆 = {𝑥!, … , 𝑥"}
• Goal: given 𝑥, determine if 𝑥 is in 𝑆

CPSC 768

Learned Bloom Filter

• A bloom filter is a data structure that provides approximate
membership queries

• Given: a set of elements 𝑆 = {𝑥!, … , 𝑥"}
• Goal: given 𝑥, determine if 𝑥 is in 𝑆

• Bloom filter gives low space, randomized solution

CPSC 768

Learned Bloom Filter

• A bloom filter is a data structure that provides approximate
membership queries

• Given: a set of elements 𝑆 = {𝑥!, … , 𝑥"}
• Goal: given 𝑥, determine if 𝑥 is in 𝑆

• Bloom filter gives low space, randomized solution
• Many applications!

CPSC 768

Learned Bloom Filter

• Bloom filter contains:

CPSC 768

Learned Bloom Filter

• Bloom filter contains:
• Array of 𝑚 bits, which represents 𝑆

CPSC 768

Learned Bloom Filter

• Bloom filter contains:
• Array of 𝑚 bits, which represents 𝑆
• 𝑘 independent hash functions ℎ!, … , ℎ#, each hashing

elements in 𝑆 to {1, … ,𝑚}

CPSC 768

Learned Bloom Filter

• Bloom filter contains:
• Array of 𝑚 bits, which represents 𝑆
• 𝑘 independent hash functions ℎ!, … , ℎ#, each hashing

elements in 𝑆 to {1, … ,𝑚}
• Initialization: for each 𝑥 ∈ 𝑆 and 𝑖 ∈ {1, … , 𝑘}, set bit ℎ$ 𝑥 in

array to 1

CPSC 768

Learned Bloom Filter

• Bloom filter contains:
• Array of 𝑚 bits, which represents 𝑆
• 𝑘 independent hash functions ℎ!, … , ℎ#, each hashing

elements in 𝑆 to {1, … ,𝑚}
• Initialization: for each 𝑥 ∈ 𝑆 and 𝑖 ∈ {1, … , 𝑘}, set bit ℎ$ 𝑥 in

array to 1
• On query of 𝒙′:

• Report in 𝑺 if and only if 𝒉𝒊 𝒙& = 𝟏 for all 𝒊 ∈ 𝟏,… , 𝒌

CPSC 768

Learned Bloom Filter

• Initialization: for each 𝑥 ∈ 𝑆 and 𝑖 ∈ {1, … , 𝑘}, set bit ℎ$ 𝑥 in
array to 1

• On query of 𝒙′:
• Report in 𝑺 if and only if 𝒉𝒊 𝒙& = 𝟏 for all 𝒊 ∈ 𝟏,… , 𝒌

1 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0

CPSC 768

Learned Bloom Filter

• Initialization: for each 𝑥 ∈ 𝑆 and 𝑖 ∈ {1, … , 𝑘}, set bit ℎ$ 𝑥 in
array to 1

• On query of 𝒙′:
• Report in 𝑺 if and only if 𝒉𝒊 𝒙& = 𝟏 for all 𝒊 ∈ 𝟏,… , 𝒌

1 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0

𝑥 𝑦 𝑧ℎ!(𝑥)
ℎ"(𝑥)ℎ#(𝑦)

CPSC 768

Learned Bloom Filter

• Guarantees:
• No false negatives: if return NO, not in 𝑆
• False positives: returns YES but not in 𝑆

1 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0

𝑥 𝑦 𝑧ℎ!(𝑥)
ℎ"(𝑥)ℎ#(𝑦)

CPSC 768

Learned Bloom Filter

• Guarantees:
• No false negatives: if return NO, not in 𝑆
• False positives: returns YES but not in 𝑆

• Probability: For query 𝑥 and for each 𝑖 ∈ [𝑘], 𝑃[
]

ℎ$ 𝑥 =
1 ≤ #"

'

CPSC 768

Learned Bloom Filter

• Guarantees:
• No false negatives: if return NO, not in 𝑆
• False positives: returns YES but not in 𝑆

• Probability: For query 𝑥 and for each 𝑖 ∈ [𝑘], 𝑃[
]

ℎ$ 𝑥 =
1 ≤ #"

'

• 𝑃 𝑎𝑙𝑙	1𝑠 ≤ #"
'

#

CPSC 768

Learned Bloom Filter

• Guarantees:
• No false negatives: if return NO, not in 𝑆
• False positives: returns YES but not in 𝑆

• Probability: For query 𝑥 and for each 𝑖 ∈ [𝑘], 𝑃[
]

ℎ$ 𝑥 =
1 ≤ #"

'

• 𝑃 𝑎𝑙𝑙	1𝑠 ≤ #"
'

#

• Suppose pick 𝑘 = log(𝑛 and 𝑚 = 3𝑛	log(𝑛, then
probability of failure is "	*+,!	"

-"	*+,!	"

*+,!	"
= !

-

*+,! "
< !

"
	

CPSC 768

Learned Bloom Filter

• ML Oracle:

CPSC 768

Learned Bloom Filter

• ML Oracle:
• Some trained function 𝑓 𝑥 provides useful information

CPSC 768

Learned Bloom Filter

• ML Oracle:
• Some trained function 𝑓 𝑥 provides useful information

• What function would be useful for us?

CPSC 768

Learned Bloom Filter

• ML Oracle:
• Some trained function 𝑓 𝑥 provides useful information

• What function would be useful for us?
• Function that tells us whether 𝑥 ∈ 𝑆!

CPSC 768

Learned Bloom Filter

• ML Oracle:
• Some trained function 𝑓 𝑥 provides useful information

• What function would be useful for us?
• Function that tells us whether 𝑥 ∈ 𝑆!

• Caveat:
• We can’t learn this exactly!

CPSC 768

Learned Bloom Filter

• ML Oracle:
• Some trained function 𝑓 𝑥 provides useful information

• What function would be useful for us?
• Function that tells us whether 𝑥 ∈ 𝑆!

• Caveat:
• We can’t learn this exactly!
• Will be non-zero false positive and negative rate

CPSC 768

Learned Bloom Filter

• [Kraska, Beutal, Chi, Dean, Polyzotis, SIGMOD ‘18]

CPSC 768

Learned Bloom Filter

• [Kraska, Beutal, Chi, Dean, Polyzotis, SIGMOD ‘18]

On each element
𝑥 ∈ 𝑆 Oracle 𝒇 𝒙

CPSC 768

Learned Bloom Filter

• [Kraska, Beutal, Chi, Dean, Polyzotis, SIGMOD ‘18]

On each element
𝑥 ∈ 𝑆 Oracle 𝒇 𝒙

Output YES

Bloom filter
on 𝑺$

𝑓 𝑥 = 1

𝑓 𝑥 = 0

CPSC 768

Learned Bloom Filter

• [Kraska, Beutal, Chi, Dean, Polyzotis, SIGMOD ‘18]

On each element
𝑥 ∈ 𝑆 Oracle 𝒇 𝒙

Output YES

Bloom filter
on 𝑺$

𝑓 𝑥 = 1

𝑓 𝑥 = 0

No false negatives!

CPSC 768

Learned Bloom Filter

• [Kraska, Beutal, Chi, Dean, Polyzotis, SIGMOD ‘18]

On each element
𝑥 ∈ 𝑆 Oracle 𝒇 𝒙

Output YES

Bloom filter
on 𝑺$

𝑓 𝑥 = 1

𝑓 𝑥 = 0

No false negatives!

CPSC 768

Learned Bloom Filter

• [Kraska, Beutal, Chi, Dean, Polyzotis, SIGMOD ‘18]

On each element
𝑥 ∈ 𝑆 Oracle 𝒇 𝒙

Output YES

Bloom filter
on 𝑺$

𝑓 𝑥 = 1

𝑓 𝑥 = 0

No false negatives!

Caveat: false
positive rate

depends on the
oracle

CPSC 768

Sandwiched Learned Bloom Filter

• [Mitzenmacher, NeurIPS ‘18]

On each element
𝑥 ∈ 𝑆 Oracle 𝒇 𝒙

Output YES

Bloom filter
on 𝑺$

𝑓 𝑥 = 1

𝑓 𝑥 = 0

No false negatives!

Bloom
filter on 𝑺

YES

CPSC 768

Sandwiched Learned Bloom Filter

• [Mitzenmacher, NeurIPS ‘18]

On each element
𝑥 ∈ 𝑆 Oracle 𝒇 𝒙

Output YES

Bloom filter
on 𝑺$

𝑓 𝑥 = 1

𝑓 𝑥 = 0

False positive rate same or less than
Bloom filter!

Bloom
filter on 𝑺

YES

CPSC 768

Sandwiched Learned Bloom Filter

• [Mitzenmacher, NeurIPS ‘18]

On each element
𝑥 ∈ 𝑆 Oracle 𝒇 𝒙

Output YES

Bloom filter
on 𝑺$

𝑓 𝑥 = 1

𝑓 𝑥 = 0

False positive rate same or less than
Bloom filter!

Bloom
filter on 𝑺

YES

Better analysis and
performance in practice!

CPSC 768

Learning-Augmented Dynamic Graph
Algorithms
• Why do we need them?

CPSC 768

Types of Dynamic Algorithms

• Incremental/Decremental vs. Fully Dynamic
• Incremental/decremental algorithms:

• Only edge insertions/deletions, respectively
• Sometimes large gap in runtimes

• Polynomial or exponential gaps in runtimes

CPSC 768

Types of Dynamic Algorithms

[LS ’23]

Best Fully Dynamic Best Partially Dynamic

CPSC 768

Learning-Augmented Dynamic Graph
Algorithms
• Why do we need them?
• Can we use predictions to bridge the gap?

CPSC 768

Learning-Augmented Dynamic Graph
Algorithms
• Why do we need them?
• Can we use predictions to bridge the gap?

• Yes!

CPSC 768

Learning-Augmented Dynamic Graph
Algorithms
• Why do we need them?
• Can we use predictions to bridge the gap?

• Yes!
• Predictions on the edge updates [L-Srinivas ‘23]

CPSC 768

Learning-Augmented Dynamic Graph
Algorithms
• Why do we need them?
• Can we use predictions to bridge the gap?

• Yes!
• Predictions on the edge updates [L-Srinivas ‘23]

• For each edge update, give prediction on when update
occurs

CPSC 768

Learning-Augmented Dynamic Graph
Algorithms
• Why do we need them?
• Can we use predictions to bridge the gap?

• Yes!
• Predictions on the edge updates [L-Srinivas ‘23]

• For each edge update, give prediction on when update
occurs

• Assume one edge insertion/deletion occurs on a day, give
prediction on the day of the edge insertion/deletion

CPSC 768

Offline-Dynamic Connectivity

• Geometric representation of the problem
• Divide-and-conquer: process each subproblem

Time 𝐼 𝑒! 𝐷 𝑒"𝐼 𝑒" 𝐷 𝑒"

𝒖 𝒗

𝒗
𝒘

𝐼 𝑒#𝑄 𝑢,𝑤

𝒗

𝐼 𝑒$ 𝐷 𝑒#

𝒂

𝒖

𝑄 𝑢,𝑤

5

3

1
4

𝒘 𝒖

𝐼 𝑒%

6

𝒂

CPSC 768

Random Partition Tree Data Structure

Time 𝐼 𝑒! 𝐷 𝑒"𝐼 𝑒" 𝐷 𝑒"𝐼 𝑒#𝑄 𝑢,𝑤 𝐼 𝑒$ 𝐷 𝑒# 𝑄 𝑢,𝑤𝐼 𝑒%

Pick a uniformly at random
divider for subproblems

CPSC 768

Random Partition Tree Data Structure

Time 𝐼 𝑒! 𝐷 𝑒"𝐼 𝑒" 𝐷 𝑒"𝐼 𝑒#𝑄 𝑢,𝑤 𝐼 𝑒$ 𝐷 𝑒# 𝑄 𝑢,𝑤𝐼 𝑒%

Pick a uniformly at random
divider for subproblems

CPSC 768

Random Partition Tree Data Structure

Time 𝐼 𝑒! 𝐷 𝑒"𝐼 𝑒" 𝐷 𝑒"𝐼 𝑒#𝑄 𝑢,𝑤 𝐼 𝑒$ 𝐷 𝑒# 𝑄 𝑢,𝑤𝐼 𝑒%

Run offline divide-and-conquer algorithm on subproblems

CPSC 768

Random Partition Tree Data Structure

Predicted
Time

𝐼 𝑒! 𝐷 𝑒"𝐼 𝑒" 𝐷 𝑒"𝐼 𝑒#𝑄 𝑢,𝑤 𝐼 𝑒$ 𝐷 𝑒# 𝑄 𝑢,𝑤𝐼 𝑒%

Run offline divide-and-conquer algorithm on subproblems

𝑰 𝒆𝟏 𝑫 𝒆𝟑𝑰 𝒆𝟑 𝑫 𝒆𝟑𝑰 𝒆𝟒𝑸 𝒖,𝒘 𝑰 𝒆𝟓 𝑫 𝒆𝟒 𝑸 𝒖,𝒘𝑰 𝒆𝟐
Actual

CPSC 768

Random Partition Tree Data Structure

Predicted
Time

𝐼 𝑒! 𝐷 𝑒"𝐼 𝑒" 𝐷 𝑒"𝑰 𝒆𝟒𝑄 𝑢,𝑤 𝑰 𝒆𝟓 𝐷 𝑒# 𝑄 𝑢,𝑤𝐼 𝑒%

Run offline divide-and-conquer algorithm on subproblems

𝑰 𝒆𝟏 𝑫 𝒆𝟑𝑰 𝒆𝟑 𝑫 𝒆𝟑𝑰 𝒆𝟒𝑸 𝒖,𝒘 𝑰 𝒆𝟓 𝑫 𝒆𝟒 𝑸 𝒖,𝒘𝑰 𝒆𝟐
Actual

CPSC 768

Random Partition Tree Data Structure

Predicted
Time

𝐼 𝑒! 𝐷 𝑒"𝐼 𝑒" 𝐷 𝑒"𝑰 𝒆𝟒𝑄 𝑢,𝑤 𝑰 𝒆𝟓 𝐷 𝑒# 𝑄 𝑢,𝑤𝐼 𝑒%

Recompute computation of largest subtree containing errors
and children

𝑰 𝒆𝟏 𝑫 𝒆𝟑𝑰 𝒆𝟑 𝑫 𝒆𝟑𝑰 𝒆𝟒𝑸 𝒖,𝒘 𝑰 𝒆𝟓 𝑫 𝒆𝟒 𝑸 𝒖,𝒘𝑰 𝒆𝟐
Actual

CPSC 768

Random Partition Tree Data Structure

Predicted
Time

𝐼 𝑒! 𝐷 𝑒"𝐼 𝑒" 𝐷 𝑒"𝑰 𝒆𝟒𝑄 𝑢,𝑤 𝑰 𝒆𝟓 𝐷 𝑒# 𝑄 𝑢,𝑤𝐼 𝑒%

Purpose of the random partition tree: in expectation size of
subproblem (largest subtree) equal to error

𝑰 𝒆𝟏 𝑫 𝒆𝟑𝑰 𝒆𝟑 𝑫 𝒆𝟑𝑰 𝒆𝟒𝑸 𝒖,𝒘 𝑰 𝒆𝟓 𝑫 𝒆𝟒 𝑸 𝒖,𝒘𝑰 𝒆𝟐
Actual

CPSC 768

Random Partition Tree Data Structure

Predicted
Time

𝐼 𝑒! 𝐷 𝑒"𝐼 𝑒" 𝐷 𝑒"𝑰 𝒆𝟒𝑄 𝑢,𝑤 𝑰 𝒆𝟓 𝐷 𝑒# 𝑄 𝑢,𝑤𝐼 𝑒%

Purpose of the random partition tree: in expectation size of
subproblem (largest subtree) equal to 𝑳𝟏error

Bad event: very large subtree for small error

𝑰 𝒆𝟏 𝑫 𝒆𝟑𝑰 𝒆𝟑 𝑫 𝒆𝟑𝑰 𝒆𝟒𝑸 𝒖,𝒘 𝑰 𝒆𝟓 𝑫 𝒆𝟒 𝑸 𝒖,𝒘𝑰 𝒆𝟐
Actual

CPSC 768

Random Partition Tree Data Structure

Predicted
Time

𝐼 𝑒! 𝐷 𝑒"𝐼 𝑒" 𝐷 𝑒"𝑰 𝒆𝟒𝑄 𝑢,𝑤 𝑰 𝒆𝟓 𝐷 𝑒# 𝑄 𝑢,𝑤𝐼 𝑒%

Bad event: very large subtree for small error

𝑰 𝒆𝟏 𝑫 𝒆𝟑𝑰 𝒆𝟑 𝑫 𝒆𝟑𝑰 𝒆𝟒𝑸 𝒖,𝒘 𝑰 𝒆𝟓 𝑫 𝒆𝟒 𝑸 𝒖,𝒘𝑰 𝒆𝟐
Actual

Runtime same as partially dynamic with an
additional !𝑶 𝐥𝐨𝐠 𝑳𝟏 − 𝒆𝒓𝒓𝒐𝒓

[L-Srinivas ‘23]

CPSC 768

Conclusion

• Streaming, distributed, parallel and dynamic techniques
can be used in a variety of problems across models

CPSC 768

Conclusion

• Streaming, distributed, parallel and dynamic techniques
can be used in a variety of problems across models

• Modern algorithms must take into account stronger
adversaries

• Privacy-violating
• Decentralized adversaries

CPSC 768

Conclusion

• Streaming, distributed, parallel and dynamic techniques
can be used in a variety of problems across models

• Modern algorithms must take into account stronger
adversaries

• Privacy-violating
• Decentralized adversaries

• New tools to help us make algorithms practical!

CPSC 768

Conclusion

• Streaming, distributed, parallel and dynamic techniques
can be used in a variety of problems across models

• Modern algorithms must take into account stronger
adversaries

• Privacy-violating
• Decentralized adversaries

• New tools to help us make algorithms practical!
• Models that model modern architecture
• ML-based methods

CPSC 768

Conclusion

• Streaming, distributed, parallel and dynamic techniques
can be used in a variety of problems across models

• Modern algorithms must take into account stronger
adversaries

• Privacy-violating
• Decentralized adversaries

• New tools to help us make algorithms practical!
• Models that model modern architecture
• ML-based methods

• Graphs at the forefront of these developments!

CPSC 768

Conclusion

• Streaming, distributed, parallel and dynamic techniques
can be used in a variety of problems across models

• Modern algorithms must take into account stronger
adversaries

• Privacy-violating
• Decentralized adversaries

• New tools to help us make algorithms practical!
• Models that model modern architecture
• ML-based methods

• Graphs at the forefront of these developments!

Exciting new fields with lots of
potential for development and

broad impact

