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Announcements

• Final project report and presentation: April 24th (last day of 
class)

• Final project presentation is a 30 min presentation
• Last day of Open Problem Sessions: April 26th (last week of 

classes)
• Will be turned into a reading group/continue with OPS, stay 

tuned!
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What are learning-augmented 
algorithms?
• Classical Algorithms (intro to algorithms courses)

• Worst-case guarantees
• Limited adaptivity to input (special classes, closely 

related inputs)
• Machine Learning Based Approaches

• Stronger performance due to adaptivity (learning) 
inputs

• No worst-case guarantees
• Learning-Augmented Algorithms

• Adaptive
• Often has worst-case guarantees
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What are learning-augmented 
algorithms?
• Use machine learning advice to inform algorithmic 

procedure
• What part of the input can we reasonably learn?
• How do we use the learned advice to obtain better 

theoretically proven bounds?
• Example: 

• Frequency estimation in a stream—learn infrequent 
elements
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What are learning-augmented 
algorithms?
• Use machine learning advice to inform algorithmic 

procedure
• What part of the input can we reasonably learn?
• How do we use the learned advice to obtain better 

theoretically proven bounds?
• Example: 

• Frequency estimation in a stream
• Learn infrequent elements
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What Guarantees Do We Want?

• Consistency
• If the predictions are high quality, then algorithm performs 

much better than worst-case algorithm
• Competitiveness

• If the predictions are low quality, then algorithm does not 
perform any worse than worst-case algorithm

• Robustness
• Performance of algorithm degrades gracefully as function 

of prediction error

Often cannot 
satisfy all three!
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Learned Binary Search

• Suppose we have a sorted list of integers
• Problem: where is 15?
• Prediction: predicted index of 15; how can we use it?

1 3 6 7 8 9 11 15 16 18 19 25 36 78 98 99
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• Suppose we have a sorted list of integers
• Problem: where is 15?
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1 3 6 7 8 9 11 15 16 18 19 25 36 78 98 99



CPSC 768

Learned Binary Search

• Suppose we have a sorted list of integers
• Problem: where is 15?
• Prediction: predicted index of 15; doubling search from 

predicted index!

1 3 6 7 8 9 11 15 16 18 19 25 36 78 98 99

First decide go 
left or right
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Learned Binary Search

• Suppose we have a sorted list of integers
• Problem: where is 15?
• Prediction: predicted index of 15; doubling search from 

predicted index!

1 3 6 7 8 9 11 15 16 18 19 25 36 78 98 99

Start doubling 
search

What is the runtime?
𝑶(log 𝑳𝟏 − 𝒆𝒓𝒓𝒐𝒓 )

Why is the prediction reasonable?

Many real-world instances give you a 
prediction—e.g. library books
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Learned Binary Search

• Suppose we have a sorted list of integers
• Problem: where is 15?
• Prediction: predicted index of 15; doubling search from 

predicted index!

1 3 6 7 8 9 11 15 16 18 19 25 36 78 98 99

Start doubling 
search

What is the runtime?
𝑶(log 𝑳𝟏 − 𝒆𝒓𝒓𝒐𝒓 )

Satisfies all three desired properties!
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Learned Bloom Filter

• A bloom filter is a data structure that provides approximate 
membership queries

• Given: a set of elements 𝑆 = {𝑥!, … , 𝑥"}
• Goal: given 𝑥, determine if 𝑥 is in 𝑆

• Bloom filter gives low space, randomized solution
• Many applications!
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Learned Bloom Filter

• Initialization: for each 𝑥 ∈ 𝑆 and 𝑖 ∈ {1, … , 𝑘}, set bit ℎ$ 𝑥  in 
array to 1

• On query of 𝒙′: 
• Report in 𝑺 if and only if 𝒉𝒊 𝒙& = 𝟏 for all 𝒊 ∈ 𝟏,… , 𝒌
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Learned Bloom Filter

• Initialization: for each 𝑥 ∈ 𝑆 and 𝑖 ∈ {1, … , 𝑘}, set bit ℎ$ 𝑥  in 
array to 1

• On query of 𝒙′: 
• Report in 𝑺 if and only if 𝒉𝒊 𝒙& = 𝟏 for all 𝒊 ∈ 𝟏,… , 𝒌

1 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0

𝑥 𝑦 𝑧ℎ!(𝑥)
ℎ"(𝑥)ℎ#(𝑦)
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Learned Bloom Filter

• Guarantees:
• No false negatives: if return NO, not in 𝑆
• False positives: returns YES but not in 𝑆

1 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0

𝑥 𝑦 𝑧ℎ!(𝑥)
ℎ"(𝑥)ℎ#(𝑦)



CPSC 768

Learned Bloom Filter

• Guarantees:
• No false negatives: if return NO, not in 𝑆
• False positives: returns YES but not in 𝑆

• Probability: For query 𝑥 and for each 𝑖 ∈ [𝑘], 𝑃[
]

ℎ$ 𝑥 =
1 ≤ #"

'



CPSC 768

Learned Bloom Filter

• Guarantees:
• No false negatives: if return NO, not in 𝑆
• False positives: returns YES but not in 𝑆

• Probability: For query 𝑥 and for each 𝑖 ∈ [𝑘], 𝑃[
]

ℎ$ 𝑥 =
1 ≤ #"

'

• 𝑃 𝑎𝑙𝑙	1𝑠 ≤ #"
'

#



CPSC 768

Learned Bloom Filter

• Guarantees:
• No false negatives: if return NO, not in 𝑆
• False positives: returns YES but not in 𝑆

• Probability: For query 𝑥 and for each 𝑖 ∈ [𝑘], 𝑃[
]

ℎ$ 𝑥 =
1 ≤ #"

'

• 𝑃 𝑎𝑙𝑙	1𝑠 ≤ #"
'

#

• Suppose pick 𝑘 = log(	𝑛 and 𝑚 = 3𝑛	log(	𝑛, then 
probability of failure is "	*+,!	"

-"	*+,!	"

*+,!	"
= !

-

*+,! "
< !

"
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Learned Bloom Filter

• ML Oracle:
• Some trained function 𝑓 𝑥  provides useful information

• What function would be useful for us?
• Function that tells us whether 𝑥 ∈ 𝑆!

• Caveat: 
• We can’t learn this exactly!
• Will be non-zero false positive and negative rate
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Learned Bloom Filter

• [Kraska, Beutal, Chi, Dean, Polyzotis, SIGMOD ‘18]

On each element 
𝑥 ∈ 𝑆 Oracle 𝒇 𝒙

Output YES

Bloom filter 
on 𝑺$

𝑓 𝑥 = 1

𝑓 𝑥 = 0

No false negatives!

Caveat: false 
positive rate 

depends on the 
oracle
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Sandwiched Learned Bloom Filter

• [Mitzenmacher, NeurIPS ‘18]

On each element 
𝑥 ∈ 𝑆 Oracle 𝒇 𝒙

Output YES

Bloom filter 
on 𝑺$

𝑓 𝑥 = 1

𝑓 𝑥 = 0

No false negatives!

Bloom 
filter on 𝑺

YES
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On each element 
𝑥 ∈ 𝑆 Oracle 𝒇 𝒙

Output YES

Bloom filter 
on 𝑺$

𝑓 𝑥 = 1

𝑓 𝑥 = 0

False positive rate same or less than
Bloom filter!

Bloom 
filter on 𝑺
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Sandwiched Learned Bloom Filter

• [Mitzenmacher, NeurIPS ‘18]

On each element 
𝑥 ∈ 𝑆 Oracle 𝒇 𝒙

Output YES

Bloom filter 
on 𝑺$

𝑓 𝑥 = 1

𝑓 𝑥 = 0

False positive rate same or less than
Bloom filter!

Bloom 
filter on 𝑺

YES

Better analysis and 
performance in practice!
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Types of Dynamic Algorithms

• Incremental/Decremental vs. Fully Dynamic
• Incremental/decremental algorithms:

• Only edge insertions/deletions, respectively
• Sometimes large gap in runtimes

• Polynomial or exponential gaps in runtimes
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Types of Dynamic Algorithms

[LS ’23]

Best Fully Dynamic Best Partially Dynamic
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Learning-Augmented Dynamic Graph 
Algorithms
• Why do we need them?
• Can we use predictions to bridge the gap?

• Yes!
• Predictions on the edge updates [L-Srinivas ‘23]

• For each edge update, give prediction on when update 
occurs

• Assume one edge insertion/deletion occurs on a day, give 
prediction on the day of the edge insertion/deletion
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Offline-Dynamic Connectivity

• Geometric representation of the problem
• Divide-and-conquer: process each subproblem

Time 𝐼 𝑒! 𝐷 𝑒"𝐼 𝑒" 𝐷 𝑒"

𝒖 𝒗

𝒗
𝒘

𝐼 𝑒#𝑄 𝑢,𝑤

𝒗

𝐼 𝑒$ 𝐷 𝑒#

𝒂

𝒖

𝑄 𝑢,𝑤

5

3

1
4

𝒘 𝒖

𝐼 𝑒%

6

𝒂
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Pick a uniformly at random 
divider for subproblems 
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Random Partition Tree Data Structure

Predicted 
Time
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Run offline divide-and-conquer algorithm on subproblems
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Actual
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Random Partition Tree Data Structure

Predicted 
Time

𝐼 𝑒! 𝐷 𝑒"𝐼 𝑒" 𝐷 𝑒"𝑰 𝒆𝟒𝑄 𝑢,𝑤 𝑰 𝒆𝟓 𝐷 𝑒# 𝑄 𝑢,𝑤𝐼 𝑒%

Recompute computation of largest subtree containing errors 
and children
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Random Partition Tree Data Structure

Predicted 
Time
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Random Partition Tree Data Structure

Predicted 
Time

𝐼 𝑒! 𝐷 𝑒"𝐼 𝑒" 𝐷 𝑒"𝑰 𝒆𝟒𝑄 𝑢,𝑤 𝑰 𝒆𝟓 𝐷 𝑒# 𝑄 𝑢,𝑤𝐼 𝑒%

Purpose of the random partition tree: in expectation size of 
subproblem (largest subtree) equal to 𝑳𝟏error

Bad event: very large subtree for small error

𝑰 𝒆𝟏 𝑫 𝒆𝟑𝑰 𝒆𝟑 𝑫 𝒆𝟑𝑰 𝒆𝟒𝑸 𝒖,𝒘 𝑰 𝒆𝟓 𝑫 𝒆𝟒 𝑸 𝒖,𝒘𝑰 𝒆𝟐
Actual
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Random Partition Tree Data Structure

Predicted 
Time

𝐼 𝑒! 𝐷 𝑒"𝐼 𝑒" 𝐷 𝑒"𝑰 𝒆𝟒𝑄 𝑢,𝑤 𝑰 𝒆𝟓 𝐷 𝑒# 𝑄 𝑢,𝑤𝐼 𝑒%

Bad event: very large subtree for small error

𝑰 𝒆𝟏 𝑫 𝒆𝟑𝑰 𝒆𝟑 𝑫 𝒆𝟑𝑰 𝒆𝟒𝑸 𝒖,𝒘 𝑰 𝒆𝟓 𝑫 𝒆𝟒 𝑸 𝒖,𝒘𝑰 𝒆𝟐
Actual

Runtime  same as partially dynamic with an 
additional !𝑶 𝐥𝐨𝐠 𝑳𝟏 − 𝒆𝒓𝒓𝒐𝒓  

[L-Srinivas ‘23]
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• Streaming, distributed, parallel and dynamic techniques 
can be used in a variety of problems across models

• Modern algorithms must take into account stronger 
adversaries

• Privacy-violating
• Decentralized adversaries

• New tools to help us make algorithms practical!
• Models that model modern architecture
• ML-based methods

• Graphs at the forefront of these developments!

Exciting new fields with lots of 
potential for development and 

broad impact


