CPSC 768:

Scalable and Private Graph Algorithms

Lecture 24: Distributed Graph Algorithms

Quanquan C. Liu

quanquan.liu@yale.edu

Announcements

- Final project report and presentation: April 24 ${ }^{\text {th }}$ (last day of class)
- Final project presentation is a 30 min presentation
- Last day of Open Problem Sessions: April 26 ${ }^{\text {th }}$ (last week of classes)
- Will be turned into a reading group/continue with OPS, stay tuned!

Traditional Distributed Graph Algorithms

- The input graph is not only the input but also represents the communication graph

Traditional Distributed Graph Algorithms

- The input graph is not only the input but also represents the communication graph
- Nodes can send messages along edges in synchronous rounds

Traditional Distributed Graph Algorithms

- The input graph is not only the input but also represents the communication graph
- Nodes can send messages along edges in synchronous rounds

Distributed Algorithms and Networks

Split the Large Graph Among Many Different Processors/Machines

Each Node is a Processor/Machine

Distributed Algorithms and Networks

Split the Large Graph Among Many Different Processors/Machines

Distributed Algorithms and Networks

Broadcast model: if a node wants to send a message, it must send all the same message to all neighbors simultaneously in the round

Distributed Algorithms and Networks

Nodes Send Messages to Other Nodes Via Edges

Broadcast model: if a node wants to send a message, it must send all the same message to all neighbors simultaneously in the round

Distributed Algorithms and Networks

Point-to-point message passing:
Nodes Can Choose to Send to Some/All Neighbors

Distributed Algorithms and Networks

Nodes Use Multiple Rounds of Communication to Send Messages

Distributed Algorithms and Networks

Each Round Nodes Can Send to Same or Different Neighbors

Distributed Algorithms and Networks

Distributed Algorithms and Networks

Too many messages: overwhelms bandwidth

Message Complexity
Number of Messages
Sent in Total
Messages have $O(\log n)$ size

Distributed Algorithms and Networks

Distributed Algorithms and Networks

Round Complexity

Multiple Rounds of
Communication

Too many rounds:
takes too long and sends
too many messages

Message Complexity
Number of Messages
Sent in Total

Diameter longest

Several Caveats

 shortest path between any two nodes- Information propagation requires diameter number of rounds

Diameter longest

Several Caveats

 shortest path between any two nodes- Can only model purely decentralized networks

Message Size Constraint for CONGEST

- Can lead to very high round complexity

Message Size Constraint for CONGEST

- Can lead to very high round complexity

Example: Triangle Counting with no restrictions on message size

Message Size Constraint for CONGEST

- Can lead to very high round complexity

Example: Triangle
Counting with no restrictions on message size

Message Size Constraint for CONGEST

- Can lead to very high round complexity

Send adjacency list to neighbors

Message Size Constraint for CONGEST

- Can lead to very high round complexity

Message Size Constraint for CONGEST

- Can lead to very high round complexity
$O(1)$ round $\quad[b, f, c]$ triangle counting
$[\boldsymbol{b}, f, \boldsymbol{c}]$
(a)
$[\boldsymbol{a}, b, d, e, g]$

$$
\begin{aligned}
& {[\boldsymbol{a}, \boldsymbol{b}, d, e, g] \text { (e) }} \\
& {[\boldsymbol{b}, f, c][\boldsymbol{a}, c]}
\end{aligned}
$$

Message Size Constraint for CONGEST

- Can lead to very high round complexity
- Triangle counting in CONGEST:

Message Size Constraint for CONGEST

- Can lead to very high round complexity
- Triangle counting in CONGEST:
- $\widetilde{\boldsymbol{O}}\left(n^{\frac{1}{2}}\right)$ rounds [Chang, Pettie, Zhang SODA '19]
- Large gap from LOCAL model (unrestricted message size)

Example Algorithm: Coloring Trees

- Classic $O\left(\log ^{*}(n)\right)$ of Cole and Vishkin '86

Example Algorithm: Coloring Trees

- Classic $O\left(\log ^{*}(n)\right)$ of Cole and Vishkin '86
- Number of logarithms (base 2) to get down to 2

Example Algorithm: Coloring Trees

- Classic $O\left(\log ^{*}(n)\right)$ of Cole and Vishkin '86
- Number of logarithms (base 2) to get down to 2
- $\forall x \leq 2: \log ^{*}(x):=1 ; \forall x>2: \log ^{*}(x):=1+\log ^{*}(\log (x))$

Example Algorithm: Coloring Trees

- Classic $O\left(\log ^{*}(n)\right)$ of Cole and Vishkin '86
- Number of logarithms (base 2) to get down to 2
- $\forall x \leq 2: \log ^{*}(x):=1 ; \forall x>2: \log ^{*}(x):=1+\log ^{*}(\log (x))$
- Idea: Each node has label of $\log (n)$ bits
- Each round compute label of exponentially smaller size that is still valid coloring

Example Algorithm: Coloring Trees

- Algorithm:
- Initially each node has ID of color c_{v} of $\log n$ bits
- Each node executes and repeats:

Example Algorithm: Coloring Trees

- Algorithm:
- Initially each node has ID of color c_{v} of $\log n$ bits
- Each node executes and repeats:
- Send own color c_{v} to children

Example Algorithm: Coloring Trees

- Algorithm:
- Initially each node has ID of color c_{v} of $\log n$ bits
- Each node executes and repeats:
- Send own color c_{v} to children
- Receive parent color c_{p}

Example Algorithm: Coloring Trees

- Algorithm:
- Initially each node has ID of color c_{v} of $\log n$ bits
- Each node executes and repeats:
- Send own color c_{v} to children
- Receive parent color c_{p}
- Write c_{v} and c_{p} in bits

Example Algorithm: Coloring Trees

- Algorithm:
- Initially each node has ID of color c_{v} of $\log n$ bits
- Each node executes and repeats:
- Send own color c_{v} to children
- Receive parent color c_{p}
- Write c_{v} and c_{p} in bits
- Let i be index of rightmost bit b where c_{v} and c_{p} differ

Example Algorithm: Coloring Trees

- Algorithm:
- Initially each node has ID of color c_{v} of $\log n$ bits
- Each node executes and repeats:
- Send own color c_{v} to children
- Receive parent color c_{p}
-Write c_{v} and c_{p} in bits
- Let i be index of rightmost bit b where c_{v} and c_{p} differ
- Node v 's new color is $2 i$ concatenated with b

Example Algorithm: Coloring Trees

- Algorithm:
- Initially each node has ID of color c_{v} of $\log n$ bits
- Each node executes and repeats:
- Send own color c_{v} to children
- Receive parent color c_{p}
-Write c_{v} and c_{p} in bits
- Let i be index of rightmost bit b where c_{v} and c_{p} differ
- Node v 's new color is $2 i$ concatenated with b
- Stop when $c_{v} \in\{0, \ldots, 5\}$ for all nodes

Example Algorithm: Coloring Trees

- Example Run:

Example Algorithm: Coloring Trees

- Example Run:

Grandparent 0010101001
Parent
Child
0010110001
0001110001

Example Algorithm: Coloring Trees

- Example Run:

Grandparent 0010101001
Parent
Child
0010110001
0001110001

Example Algorithm: Coloring Trees

- Example Run:

Grandparent	00101010011101	
Parent	00101100011100	
Child	0001110001	

Example Algorithm: Coloring Trees

- Example Run:

Grandparent	0010101001	01101
Parent	0010110001	01100
Child	0001110001	11001

Example Algorithm: Coloring Trees

- Example Run:

Grandparent	0010101001	01101	01
Parent	0010110001	01100	00
Child	0001110001	11001	01

Example Algorithm: Coloring Trees

- Why does it work?

Example Algorithm: Coloring Trees

- Why does it work?
- Either parent/grandparent differ in a different index from parent/child

Example Algorithm: Coloring Trees

- Why does it work?
- Either parent/grandparent differ in a different index from parent/child
- First part is different

Example Algorithm: Coloring Trees

-Why does it work?

- Either parent/grandparent differ in a different index from parent/child
- First part is different
- Or parent/grandparent and parent/child differ in same index

Example Algorithm: Coloring Trees

-Why does it work?

- Either parent/grandparent differ in a different index from parent/child
- First part is different
- Or parent/grandparent and parent/child differ in same index
- First part is same

Example Algorithm: Coloring Trees

-Why does it work?

- Either parent/grandparent differ in a different index from parent/child
- First part is different
- Or parent/grandparent and parent/child differ in same index
- First part is same
- Last bit differs-second part is different

$$
\text { Runtime: } O\left(\log ^{*}(n)\right)
$$

Another Distributed Model (More Modern)

- Used by Google and other companies
- Massively parallel computation (MPC Model)

MPC Model Definition

- M machines
- Synchronous rounds

MPC Model Definition

- M machines
- Synchronous rounds

MPC Model Definition

- M machines
- Synchronous rounds

MPC Model Definition

- M machines
- Synchronous rounds

MPC Model Definition

- M machines
- Synchronous rounds

MPC Model Definition

- M machines
- Synchronous rounds

MPC Model Definition

- M machines
- Synchronous rounds

MPC Model Definition

- M machines
- Synchronous rounds

Complexity measures:

- Total Space
- Space Per Machine
- Rounds of communication

Total Space: $M \cdot S$

Comparison of Models

$n:=$ number of vertices $\boldsymbol{m}:=$ number of edges

Measure	Database Theory	Algorithms
Load/Space per Machine	$L=N / p^{\frac{1}{c}}$	S
Total Space	$p \cdot L$	$T=\tilde{O}(n+m)$
Input	N	n, m, N
Rounds	r	r
\# Machines	p	$M=T / S$

Space per Machine in MPC

- Strongly sublinear memory:
- $S=n^{\delta}$ for some constant $\delta \in(0,1)$

Space per Machine in MPC

- Strongly sublinear memory:
- $S=n^{\delta}$ for some constant $\delta \in(0,1)$
- Near-linear memory:
- $S=\widetilde{\Theta}(n)$ (ignoring poly $(\log (n))$ factors)

Space per Machine in MPC

- Strongly sublinear memory:
- $S=n^{\delta}$ for some constant $\delta \in(0,1)$
- Near-linear memory:
- $S=\widetilde{\Theta}(n)$ (ignoring poly $(\log (n))$ factors)
- Strongly superlinear memory:
- $S=n^{1+\delta}$ for some constant $\delta>0$

Space per Machine in MPC

- Strongly sublinear memory:
- $S=n^{\delta}$ for some constant $\delta \in(0,1)$

Also want: $\boldsymbol{O}(\log \log \boldsymbol{n})$ or $O(1)$ rounds

- Near-linear memory:
- $S=\widetilde{\Theta}(n)$ (ignoring poly $(\log (n))$ factors)
- Strongly superlinear memory:
- $S=n^{1+\delta}$ for some constant $\delta>0$

Space per Machine in MPC

- Strongly sublinear memory:
- $S=n^{\delta}$ for some constant $\delta \in(0,1)$

Also want: $\boldsymbol{O}(\log \log \boldsymbol{n})$ or $O(1)$ rounds

- Near-linear memory:
- $S=\widetilde{\Theta}(n)$ (ignoring poly $(\log (n))$ factors)
- Strongly superlinear memory:

Also want: $\widetilde{\boldsymbol{O}}(\boldsymbol{n}+\boldsymbol{m})$ total space

- $S=n^{1+\delta}$ for some constant $\delta>0$

Space per Machine in MPC

- Strongly sublinear memory:
- $S=n^{\delta}$ for some constant $\delta \in(0,1)$

Also want: $\boldsymbol{O}(\log \log \boldsymbol{n})$ or $O(1)$ rounds

- Near-linear memory:
- $S=\widetilde{\Theta}(n)$ (ignoring poly $(\log (n))$ factors)
- Strongly superlinear memory:

$$
\begin{aligned}
& \text { Also want: } \widetilde{\boldsymbol{O}}(\boldsymbol{n}+\boldsymbol{m}) \\
& \text { total space }
\end{aligned}
$$

- $S=n^{1+\delta}$ for some constant $\delta>0$

All are sublinear in number of edges m in graph

Space per Machine in MPC

- Strongly sublinear memory:
- $S=n^{\delta}$ for some constant $\delta \in(0,1)$

Also want: $\boldsymbol{O}(\log \log \boldsymbol{n})$ or

 $O(1)$ rounds- Near-linear memory:
- $S=\widetilde{\Theta}(n)$ (ignoring poly $(\log (n))$ factors) Also want: $\widetilde{O}(n+m)$

Graph Algorithms in MPC Model

- Matching and MIS [BBDFHKU19, BHH19, GGKMR19, CLMMOS18, NO21, FHO22, GGM22, ALT21, LKK23]
- Connectivity [ASSWZ18, BDELM19, DDKPSS19]
- Graph sparsification [GU19, CDP20]
- Vertex cover [Assadi17, GGKMR18, GJN20]
- MST and 2-edge connectivity [NO21, FHO22]
- Well-connected components [ASW18, ASW19]
- Coloring [BDHKS19, CFGUZ19]
- Subgraph counting [CC11, SV11, BELMR22]

Useful MPC Primitives in $\tilde{O}(\sqrt{N})$ Space per Machine and O (1) Rounds

- Sum of N integers: given N integers, compute the sum

Useful MPC Primitives in $\tilde{O}(\sqrt{N})$ Space per Machine and O (1) Rounds

- Sum of N integers: given N integers, compute the sum
- Counting distinct elements: given N integers over some universe U give the count of the number of distinct elements

Useful MPC Primitives in $\tilde{O}(\sqrt{N})$ Space per Machine and O (1) Rounds

- Sum of N integers: given N integers, compute the sum
- Counting distinct elements: given N integers over some universe U give the count of the number of distinct elements
- Prefix sum: given N integers in order $I_{1}, I_{2}, \ldots, I_{n}$, compute the prefix sums $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}$ where $\sigma_{i}=\sum_{j=1}^{i} I_{j}$

Useful MPC Primitives in $\tilde{O}(\sqrt{N})$ Space per Machine and O (1) Rounds

- Sum of N integers: given N integers, compute the sum
- Counting distinct elements: given N integers over some universe U give the count of the number of distinct elements
- Prefix sum: given N integers in order $I_{1}, I_{2}, \ldots, I_{n}$, compute the prefix sums $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}$ where $\sigma_{i}=\sum_{j=1}^{i} I_{j}$
- Sorting: given N integers, sort the integers

Round Compression

- Goal: Simulate multiple rounds of an iterative LOCAL algorithm with a single MPC round

LOCAL Model in Distributed Computing

- Synchronous distributed algorithm where each node is a processor/computer

LOCAL Model in Distributed Computing

- Synchronous distributed algorithm where each node is a processor/computer
- In one synchronous round of communication, each node, in order:

LOCAL Model in Distributed Computing

- Synchronous distributed algorithm where each node is a processor/computer
- In one synchronous round of communication, each node, in order:
- Performs local computation

LOCAL Model in Distributed Computing

- Synchronous distributed algorithm where each node is a processor/computer
- In one synchronous round of communication, each node, in order:
- Performs local computation
- Sends a point-to-point message to each of its neighbors

LOCAL Model in Distributed Computing

- Synchronous distributed algorithm where each node is a processor/computer
- In one synchronous round of communication, each node, in order:
- Performs local computation
- Sends a point-to-point message to each of its neighbors
- Receives a message from each of its neighbors

Round Compression

- Goal: Simulate multiple rounds of an iterative LOCAL algorithm with a single MPC round

Round Compression

- Goal: Simulate multiple rounds of an iterative LOCAL algorithm with a single MPC round
- Procedure: Pick appropriate subgraphs of sufficiently small size

Round Compression

- Goal: Simulate multiple rounds of an iterative LOCAL algorithm with a single MPC round
- Procedure: Pick appropriate subgraphs of sufficiently small size
- Send each subgraph to one machine

Round Compression

- Goal: Simulate multiple rounds of an iterative LOCAL algorithm with a single MPC round
- Procedure: Pick appropriate subgraphs of sufficiently small size
- Send each subgraph to one machine
- Simulate LOCAL algorithm \mathcal{A} on each machine

Round Compression

- Goal: Simulate multiple rounds of an iterative LOCAL algorithm with a single MPC round
- Procedure: Pick appropriate subgraphs of sufficiently small size
- Send each subgraph to one machine
- Simulate LOCAL algorithm \mathcal{A} on each machine
- Each machine sends results of simulation

Minimum Vertex Cover

- Each edge in graph is covered by an endpoint
- Find the minimum number of endpoints that cover every edge

Simplified $(2+\varepsilon)$-Approximate Vertex Cover

$(2+\varepsilon)$-Approximate Vertex Cover
[Ghaffari, Gouleakis, Konrad, Mitrović, Rubinfeld PODC '18]
Near-linear space per machine in $O(\log \log n)$ rounds

Simplified $(2+\varepsilon)$-Approximate Vertex Cover

$(2+\varepsilon)$-Approximate Vertex Cover
[Ghaffari, Gouleakis, Konrad, Mitrović, Rubinfeld PODC '18]
Near-linear space per machine in $O(\log \log n)$ rounds

Simplified version

Simplified $(2+\varepsilon)$-Approximate Vertex Cover

- LOCAL Algorithm based on Primal-Dual Method:

$$
\begin{gathered}
\underline{\text { Primal }} \\
\min \sum_{v \in V} x_{v} \\
\text { s.t. } \forall e=(u, v) \in E \quad x_{u}+x_{v} \geq 1 \\
\forall v \in V \quad x_{v} \geq 0
\end{gathered}
$$

Simplified $(2+\varepsilon)$-Approximate Vertex Cover

- LOCAL Algorithm based on Primal-Dual Method:

$$
\begin{aligned}
& x_{u}+x_{v} \geq 1 \\
& \min \sum_{v \in V} x_{v} \\
& \text { s.t. } \forall e=(u, v) \in E \quad x_{u}+x_{v} \geq 1 \\
& \forall v \in V \quad x_{v} \geq 0
\end{aligned}
$$

Simplified $(2+\varepsilon)$-Approximate Vertex Cover

- LOCAL Algorithm based on Primal-Dual Method:

$$
\begin{aligned}
& x_{u}+x_{v} \geq 1 \\
& \text { min } \sum_{v \in V} x_{v} \\
& \text { s.t. } \forall e=(u, v) \in E \quad x_{u}+x_{v} \geq 1 \\
& \forall v \in V \quad x_{v} \geq 0
\end{aligned}
$$

$$
y_{e_{1}}+y_{e_{2}}+y_{e_{3}} \leq 1
$$

$$
\begin{gathered}
\text { s.t. } \forall v \in V \quad \sum_{e: v \in e} y_{e} \leq 1 \\
\forall e \in E \quad y_{e} \geq 0
\end{gathered}
$$

Simplified $(2+\varepsilon)$-Approximate Vertex Cover

- LOCAL Algorithm based on Primal-Dual Method:

$$
\begin{array}{cc}
\begin{array}{c}
\text { All nodes } \\
\text { covered by at } \\
\text { least one } \\
\text { endpoint }
\end{array} & \text { Primal } \\
& \min \sum_{v \in V} x_{v} \\
& \text { s.t. } \forall e=(u, v) \in E \quad x_{u}+x_{v} \geq 1 \\
& \forall v \in V \quad x_{v} \geq 0
\end{array}
$$

$$
\begin{gathered}
\frac{\text { Dual }}{\max } \sum_{e \in E} y_{e} \\
\text { s.t. } \forall v \in V \quad \sum_{e: v \in e} y_{e} \leq 1 \\
\forall e \in E \quad y_{e} \geq 0
\end{gathered}
$$

Simplified $(2+\varepsilon)$-Approximate Vertex Cover

- LOCAL Algorithm based on Primal-Dual Method:

All nodes covered by at least one endpoint	$\underline{\text { Primal }}$
	$\min \sum_{v \in V} x_{v}$
	s.t. $\forall e=(u, v) \in E \quad x_{u}+x_{v} \geq 1$
	$\forall v \in V \quad x_{v} \geq 0$

Dual

$\max \sum_{e \in E} y_{e} \quad$| Fractional |
| :---: |
| matching of the |
| edges |

s.t. $\forall v \in V \quad \sum_{e: v \in e} y_{e} \leq 1$
$\forall e \in E \quad y_{e} \geq 0$

Simplified $(2+\varepsilon)$-Approximate Vertex Cover

- LOCAL Algorithm based on Primal-Dual Method:
- Initially set $y_{e}=\frac{1}{\Delta}$

Primal

$\min \sum_{v \in V} x_{v}$

$$
\begin{gathered}
\text { s.t. } \forall e=(u, v) \in E \quad x_{u}+x_{v} \geq 1 \\
\forall v \in V \quad x_{v} \geq 0
\end{gathered}
$$

Dual
$\max \sum_{e \in E} y_{e}$
s.t. $\forall v \in V \quad \sum_{e: v \in e} y_{e} \leq 1$
$\forall e \in E \quad y_{e} \geq 0$
$n:=$ number of vertices
m := number of edges
$\Delta:=$ max degree

Simplified $(2+\varepsilon)$-Approximate Vertex Cover

- LOCAL Algorithm based on Primal-Dual Method:
- Initially set $y_{e}=\frac{1}{\Delta}$
- Repeat for iteration t until all edges frozen:

Simplified $(2+\varepsilon)$-Approximate Vertex Cover

- LOCAL Algorithm based on Primal-Dual Method:
- Initially set $y_{e}=\frac{1}{\Delta}$
- Repeat for iteration t until all edges frozen:
- Freeze vertex v and all adjacent edges if $\sum_{v \in e} y_{e} \geq 1-2 \varepsilon$

Primal

$\min \sum_{v \in V} x_{v}$
s.t. $\forall e=(u, v) \in E \quad x_{u}+x_{v} \geq 1$
$\forall v \in V \quad x_{v} \geq 0$
n := number of vertices
m := number of edges
$\Delta:=$ max degree
s.t. $\forall v \in V \quad \sum_{e: v \in e} y_{e} \leq 1$
$\forall e \in E \quad y_{e} \geq 0$

Simplified $(2+\varepsilon)$-Approximate Vertex Cover

- LOCAL Algorithm based on Primal-Dual Method:
- Initially set $y_{e}=\frac{1}{\Delta}$
- Repeat for iteration t until all edges frozen:
- Freeze vertex v and all adjacent edges if $\sum_{v \in e} y_{e} \geq 1-2 \varepsilon$
- For each active (non-frozen) edge, set $y_{e} \leftarrow \frac{y_{e}}{1-\varepsilon}$

Primal
$\min \sum_{v \in V} x_{v}$
s.t. $\forall e=(u, v) \in E \quad x_{u}+x_{v} \geq 1$
$\forall v \in V \quad x_{v} \geq 0$
$n:=$ number of vertices
$m:=$ number of edges
$\Delta:=$ max degree
s.t. $\forall v \in V \quad \sum_{e: v \in e} y_{e} \leq 1$
$\forall e \in E \quad y_{e} \geq 0$

Simplified $(2+\varepsilon)$-Approximate Vertex Cover

- LOCAL Algorithm based on Primal-Dual Method:
- Initially set $y_{e}=\frac{1}{\Delta}$
- Repeat for iteration t until all edges frozen:
- Freeze vertex v and all adjacent edges if $\sum_{v \in e} y_{e} \geq 1-2 \varepsilon$
- For each active (non-frozen) edge, set $y_{e} \leftarrow \frac{y_{e}}{1-\varepsilon}$
- Set of frozen vertices is cover

Primal
$\min \sum_{v \in V} x_{v}$
s.t. $\forall e=(u, v) \in E \quad x_{u}+x_{v} \geq 1$
$\forall v \in V \quad x_{v} \geq 0$
$n:=$ number of vertices
$m:=$ number of edges
$\Delta:=$ max degree
s.t. $\forall v \in V \quad \sum_{e: v \in e} y_{e} \leq 1$
$\forall e \in E \quad y_{e} \geq 0$

Simplified $(2+\varepsilon)$-Approximate Vertex Cover

- LOCAL Algorithm based on Primal-Dual Method:
- Initially set $y_{e}=\frac{1}{\Delta}$
- Repeat for iteration t until all edges frozen:
- Freeze vertex v and all adjacent edges if $\sum_{v \in e} y_{e} \geq 1-2 \varepsilon$
- For each active (non-frozen) edge, set $y_{e} \leftarrow \frac{y_{e}}{1-\varepsilon}$
- Set of frozen vertices is cover

Primal
$\min \sum_{v \in V} x_{v}$
s.t. $\forall e=(u, v) \in E \quad x_{u}+x_{v} \geq 1$
$\forall v \in V \quad x_{v} \geq 0$
$O(\log n)$ rounds
$n:=$ number of vertices
m := number of edges
$\Delta:=$ max degree
s.t. $\forall v \in V \quad \sum_{e: v \in e} y_{e} \leq 1$
$\forall e \in E \quad y_{e} \geq 0$

Simplified $(2+\varepsilon)$-Approximate Vertex Cover

- Assume maximum degree $\Delta=O\left(n^{\frac{1}{9}}\right)$

Simplified $(2+\varepsilon)$-Approximate Vertex Cover

- Assume maximum degree $\Delta=O\left(n^{\frac{1}{9}}\right)$
- Partition the graph into subgraphs of radius 8

Simplified $(2+\varepsilon)$-Approximate Vertex Cover

- Assume maximum degree $\Delta=O\left(n^{\frac{1}{9}}\right)$
- Partition the graph into subgraphs of radius 8
- Give the entirety of each subgraph to a single machine

Simplified $(2+\varepsilon)$-Approximate Vertex Cover

- Assume maximum degree $\Delta=O\left(n^{\frac{1}{9}}\right)$
- Partition the graph into subgraphs of radius 8
- Give the entirety of each subgraph to a single machine
- Run the LOCAL algorithm on each machine for $\frac{\log _{\frac{1}{1-\varepsilon}}(\Delta)}{10}$ rounds

Simplified $(2+\varepsilon)$-Approximate Vertex Cover

- Assume maximum degree $\Delta=O\left(n^{\frac{1}{9}}\right)$
- Partition the graph into subgraphs of radius 8
- Give the entirety of each subgraph to a single machine
- Run the LOCAL algorithm on each machine for $\frac{\log _{\frac{1}{1-\varepsilon}}(\Delta)}{10}$ rounds
- Find new graph after removing frozen vertices and edges

Simplified $(2+\varepsilon)$-Approximate Vertex Cover

- Assume maximum degree $\Delta=O\left(n^{\frac{1}{9}}\right)$
- Partition the graph into subgraphs of radius 8
- Give the entirety of each subgraph to a single machine
- Run the LOCAL algorithm on each machine for $\frac{\log _{\frac{1}{1-\varepsilon}}(\Delta)}{10}$ rounds
- Find new graph after removing frozen vertices and edges
- Set new radius to 9 and repeat above until graph can fit into one machine

Simplified $(2+\varepsilon)$-Approximate Vertex Cover

- Assume maximum degree $\Delta=O\left(n^{\frac{1}{9}}\right)$
- Partition the granh intn cubaranhe af radius 8
- Give the entiret
- Run the LOCAI

Why does it work?

single machine hine for $\frac{\log _{\frac{1}{1-\varepsilon}}(\Delta)}{10}$ rounds

- Find new graph after removing frozen vertices and edges
- Set new radius to 9 and repeat above until graph can fit into one machine

Simplified $(2+\varepsilon)$-Approximate Vertex Cover

- Assume maximum degree $\Delta=O\left(n^{\frac{1}{9}}\right)$
- Partition the graph into subgraphs of radius 8

In sublinear
memory $O\left(n^{\frac{8}{9}}\right)$

- Give the entirety of each subgraph to a single machine
- Run the LOCAL algorithm on each machine for $\frac{\log _{\frac{1}{1-\varepsilon}}(\Delta)}{10}$ rounds
- Find new graph after removing frozen vertices and edges
- Set new radius to 9 and repeat above until graph can fit into one machine

Simplified $(2+\varepsilon)$-Approximate Vertex Cover

- Assume maximum degree $\Delta=O\left(n^{\frac{1}{9}}\right)$
- Partition the graph into subgraphs of radius 8

In sublinear
memory $O\left(n^{\frac{8}{9}}\right)$

- Give the entirety of each subgraph to a single machine
- Run the LOCAL algorithm on each machine for $\frac{\log _{\frac{1}{1-\varepsilon}}(\Delta)}{10}$ rounds Minimum weight on an edge becomes $\Delta^{-0.9}$
- Find new graph after removing frozen vertices and edges
- Set new radius to 9 and repeat above until graph can fit into one machine

Simplified $(2+\varepsilon)$-Approximate Vertex Cover

Weight on each edge:

$$
\frac{1}{\Delta} \cdot\left(\frac{1}{1-\varepsilon}\right)^{\log _{\frac{1}{1-\varepsilon}}(\Delta) / 10}=\frac{1}{\Delta} \cdot \Delta^{\frac{1}{10}}=\Delta^{-0.9}
$$

- Find new graph after removing frozen vertices and edges
- Set new radius to 9 and repeat above until graph can fit into one machine

Simplified $(2+\varepsilon)$-Approximate Vertex Cover

Weight on each edge after i-iteration:

In sublinear memory $O\left(n^{\frac{8}{9}}\right)$

$$
\Delta^{-0.9^{i}}
$$

single machine

- Run the LOCAL algorithm on each machine for $\frac{1-\overline{1}}{10}$
rounds Minimum weight on an edge becomes $\boldsymbol{\Delta}^{\mathbf{0 . 9}}$
- Find new graph after removing frozen vertices and edges
- Set new radius to 9 and repeat above until graph can fit into one machine

Simplified $(2+\varepsilon)$-Approximate Vertex Cover

Maximum degree after i-iteration:

$$
1 /\left(\Delta^{-0.9^{i}}\right)=\Delta^{0.9^{i}}
$$

- Run the LOCAL algorithm on each machine for $\frac{-1-\varepsilon}{10}$
rounds Minimum weight on an edge becomes $\Delta^{\mathbf{0 . 9}}$
- Find new graph after removing frozen vertices and edges
- Set new radius to 9 and repeat above until graph can fit into one machine

Simplified $(2+\varepsilon)$-Approximate Vertex Cover

In sublinear
memory $O\left(n^{\frac{8}{9}}\right)$

- Run the LOCAL algorithm on each machine for $\frac{-1-\varepsilon}{10}$
rounds Minimum weight on an edge becomes $\Delta^{-0.9}$
- Find new graph after removing frozen vertices and edges
- Set new radius to 9 and repeat above until graph can fit into one machine

$$
\text { Maximum degree of active vertices is } \Delta^{0.9}
$$

Simplified $(2+\varepsilon)$-Approximate Vertex Cover

Round compression: $\boldsymbol{O}(\log n)$ LOCAL \rightarrow $\boldsymbol{O}(\log \log \boldsymbol{n})$ MPC

Removing assumption requires random partition of vertices + other techniques

- Find new grap
- Set new radiu one machine

$$
O\left(\log \log \left(\frac{m}{n}\right)\right) \text { rounds }
$$

es and edges
raph can fit into
[Ghaffari, Jin, Nilis SPAA '20]

Simplified $(2+\varepsilon)$-Approximate Vertex Cover

Removing assumption requires random partition of vertices + other techniques

Fine-grained lower bound for sublinear space and $o(\log \log \boldsymbol{n})$ rounds!
[Ghaffari, Kuhn, Uitto FOCS '19]

$$
O\left(\log \log \left(\frac{m}{n}\right)\right) \text { rounds }
$$

es and edges
raph can fit into
[Ghaffari, Jin, Nilis SPAA '20]

Simplified $(2+\varepsilon)$-Approximate Vertex Cover

Removing assumption requires random partition of vertices + other techniques

Fine-grained lower bound for sublinear space and $o(\log \log \boldsymbol{n})$ rounds! [Ghaffari, Kuhn, Uitto FOCS '19]

$$
O\left(\log \log \left(\frac{m}{n}\right)\right) \text { rounds }
$$

[Ghaffari, Jin, Nilis SPAA '20]

