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Announcements

• Final project report and presentation: April 24th (last day of 
class)

• Final project presentation is a 30 min presentation
• Last day of Open Problem Sessions: April 26th (last week of 

classes)
• Will be turned into a reading group/continue with OPS, stay 

tuned!
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Distributed Algorithms and Networks
Split the Large Graph Among Many 

Different Processors/Machines

Each Node is a Processor/Machine Edges are Communication Links
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Distributed Algorithms and Networks

Broadcast model: if a node wants to send a message, it must send all 
the same message to all neighbors simultaneously in the round

Nodes Send 
Messages to 
Other Nodes 

Via Edges
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Distributed Algorithms and Networks

Point-to-point message passing: 
Nodes Can Choose to Send to Some/All Neighbors
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Distributed Algorithms and Networks

Nodes Use Multiple Rounds of Communication to Send Messages 
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Distributed Algorithms and Networks

Each Round Nodes Can Send to Same or Different Neighbors
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Message Complexity
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Distributed Algorithms and Networks

Message Complexity
Number of Messages 

Sent in Total

Round Complexity
Multiple Rounds of 

Communication

CONGEST Model:
Messages have 𝑂 log 𝑛  size
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Distributed Algorithms and Networks

Message Complexity
Number of Messages 

Sent in Total

Round Complexity
Multiple Rounds of 

Communication

Too many rounds: 
takes too long and sends 

too many messages
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Several Caveats

• Information propagation requires diameter number of rounds

Diameter longest 
shortest path between 

any two nodes
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Several Caveats

• Can only model purely decentralized networks

Diameter longest 
shortest path between 

any two nodes
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• Can lead to very high round complexity
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𝒇
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Example: Triangle 
Counting with no 

restrictions on 
message size
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Message Size Constraint for CONGEST

• Can lead to very high round complexity

𝒂

𝒃

𝒄

𝒅

𝒇

𝒆
𝒈

Example: Triangle 
Counting with no 

restrictions on 
message size

[𝑎, 𝑐]

[𝑎, 𝑏, 𝑑, 𝑒, 𝑔]

[𝑏, 𝑓, 𝑐]
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Message Size Constraint for CONGEST

• Can lead to very high round complexity

𝒂

𝒃

𝒄

𝒅

𝒇

𝒆
𝒈

Send adjacency list 
to neighbors

[𝑎, 𝑐]

[𝑎, 𝑏, 𝑑, 𝑒, 𝑔]

[𝑏, 𝑓, 𝑐] [𝑎, 𝑐][𝑎, 𝑐]

[𝑎, 𝑏, 𝑑, 𝑒, 𝑔][𝑎, 𝑏, 𝑑, 𝑒, 𝑔]

[𝑏, 𝑓, 𝑐][𝑏, 𝑓, 𝑐]
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Message Size Constraint for CONGEST

• Can lead to very high round complexity

𝒂

𝒃

𝒄

𝒅

𝒇

𝒆
𝒈

Find intersections 
in received lists

[𝒂, 𝒄]

[𝒂, 𝒃, 𝑑, 𝑒, 𝑔]

[𝒃, 𝑓, 𝒄]

[𝑎, 𝒄]

[𝒂, 𝑐]

[𝑎, 𝒃, 𝑑, 𝑒, 𝑔]

[𝒂, 𝑏, 𝑑, 𝑒, 𝑔]

[𝒃, 𝑓, 𝑐]

[𝑏, 𝑓, 𝒄]
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Message Size Constraint for CONGEST

• Can lead to very high round complexity

𝒂

𝒃

𝒄

𝒅

𝒇

𝒆
𝒈

𝑶(𝟏) round 
triangle counting

[𝒂, 𝒄]

[𝒂, 𝒃, 𝑑, 𝑒, 𝑔]

[𝒃, 𝑓, 𝒄]

[𝑎, 𝒄]

[𝒂, 𝑐]

[𝑎, 𝒃, 𝑑, 𝑒, 𝑔]

[𝒂, 𝑏, 𝑑, 𝑒, 𝑔]

[𝒃, 𝑓, 𝑐]

[𝑏, 𝑓, 𝒄]
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Message Size Constraint for CONGEST

• Can lead to very high round complexity
• Triangle counting in CONGEST:

• .𝑶 𝒏
𝟏
𝟐  rounds [Chang, Pettie, Zhang SODA ‘19]

• Large gap from LOCAL model (unrestricted message size)
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Example Algorithm: Coloring Trees

• Classic 𝑂 log∗ 𝑛  of Cole and Vishkin ’86
• Number of logarithms (base 2) to get down to 2
• ∀𝑥 ≤ 2:	log∗ 𝑥 ≔ 1;	 ∀𝑥 > 2:	log∗ 𝑥 ≔ 1 +	 log∗ log 𝑥

• Idea: Each node has label of 𝐥𝐨𝐠 𝒏  bits
• Each round compute label of exponentially smaller size 

that is still valid coloring
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• Each node executes and repeats:
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Example Algorithm: Coloring Trees

• Algorithm:
• Initially each node has ID of color 𝑐" of log	𝑛 bits
• Each node executes and repeats:

• Send own color 𝑐" to children
• Receive parent color 𝑐#
• Write 𝑐" and 𝑐# in bits
• Let 𝑖 be index of rightmost bit 𝑏 where 𝑐" and 𝑐# differ
• Node 𝒗’s new color is 𝟐𝒊 concatenated with b 

• Stop when 𝑐" ∈ {0,… , 5} for all nodes
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Example Algorithm: Coloring Trees

• Example Run: 

Grandparent 
Parent 
Child

0010101001
0010110001
0001110001

1101
1100
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Example Algorithm: Coloring Trees

• Example Run: 

Grandparent 
Parent 
Child

0010101001
0010110001
0001110001

01101
01100
11001
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Example Algorithm: Coloring Trees

• Example Run: 

Grandparent 
Parent 
Child

0010101001
0010110001
0001110001

01101
01100
11001

01
00
01
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Example Algorithm: Coloring Trees

• Why does it work?
• Either parent/grandparent differ in a different index from 

parent/child
• First part is different

• Or parent/grandparent and parent/child differ in same index 
• First part is same
• Last bit differs—second part is different

Runtime: 𝑂(log∗(𝑛)) 
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Another Distributed Model (More Modern)

• Used by Google and other companies
• Massively parallel computation (MPC Model)
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MPC Model Definition

𝑆 𝑆 𝑆

• M machines
• Synchronous rounds

Complexity measures:
• Total Space
• Space Per Machine
• Rounds of communication

Total Space: 𝑴 ⋅ 𝑺
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Comparison of Models
Measure Database 

Theory
Algorithms

Load/Space per 
Machine 𝐿 = 𝑁/𝑝

!
" 𝑆

Total Space 𝑝 ⋅ 𝐿 𝑇 = 7𝑂(𝑛 +𝑚)
Input 𝑁 𝑛,𝑚,𝑁

Rounds 𝑟 𝑟
# Machines 𝑝 𝑀 = 𝑇/𝑆

𝒏	 ≔ number of vertices 
𝒎≔	 number of edges
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Space per Machine in MPC

• Strongly sublinear memory: 
• 𝑆 = 𝑛$ for some constant 𝛿 ∈ (0, 1)

• Near-linear memory: 
• 𝑆 = .Θ 𝑛  (ignoring poly(log 𝑛 ) factors)

• Strongly superlinear memory: 
• 𝑆 = 𝑛%&$ for some constant 𝛿 > 0

Also want: 𝑶 log	log	𝒏  or 
𝑶 𝟏  rounds  

All are sublinear in number of edges m in graph

Also want: .𝑶 𝒏 +𝒎  
total space

Often 𝛿 = !
"
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Graph Algorithms in MPC Model
• Matching and MIS [BBDFHKU19, BHH19, GGKMR19, 

CLMMOS18, NO21, FHO22, GGM22, ALT21, LKK23]
• Connectivity [ASSWZ18, BDELM19, DDKPSS19]
• Graph sparsification [GU19, CDP20]
• Vertex cover [Assadi17, GGKMR18, GJN20]
• MST and 2-edge connectivity [NO21, FHO22]
• Well-connected components [ASW18, ASW19]
• Coloring [BDHKS19, CFGUZ19]
• Subgraph counting [CC11, SV11, BELMR22]
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Useful MPC Primitives in !𝑂 𝑵  Space per 
Machine and 𝑶 𝟏  Rounds
• Sum of N integers: given N integers, compute the sum
• Counting distinct elements: given N integers over 

some universe U give the count of the number of 
distinct elements

• Prefix sum: given N integers in order 𝐼!, 𝐼#, … , 𝐼$, 
compute the prefix sums 𝜎!, 𝜎#, … , 𝜎$ where 𝜎% = ∑&'!% 𝐼&

• Sorting: given N integers, sort the integers
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Round Compression

• Goal: Simulate multiple rounds of an 
iterative LOCAL algorithm with a single 
MPC round

• Procedure: Pick appropriate subgraphs 
of sufficiently small size

• Send each subgraph to one machine

• Simulate LOCAL algorithm 𝒜	on each 
machine

• Each machine sends results of simulation
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LOCAL Model in Distributed Computing

• Synchronous distributed algorithm where each node is a 
processor/computer

• In one synchronous round of communication, each node, in 
order:

• Performs local computation
• Sends a point-to-point message to each of its neighbors
• Receives a message from each of its neighbors
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Round Compression

• Goal: Simulate multiple rounds of an 
iterative LOCAL algorithm with a single 
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• Procedure: Pick appropriate subgraphs 
of sufficiently small size
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Round Compression

𝒜
𝒜

𝒜• Goal: Simulate multiple rounds of an 
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Round Compression

• Goal: Simulate multiple rounds of an 
iterative LOCAL algorithm with a single 
MPC round

• Procedure: Pick appropriate subgraphs 
of sufficiently small size

• Send each subgraph to one machine

• Simulate LOCAL algorithm 𝒜	on each 
machine

• Each machine sends results of simulation

𝒜
𝒜

𝒜
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Minimum Vertex Cover

• Each edge in graph is covered by an endpoint
• Find the minimum number of endpoints that cover every 

edge
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Simplified (2 + 𝜀)-Approximate Vertex Cover

(2 + 𝜀)-Approximate Vertex Cover
[Ghaffari, Gouleakis, Konrad, Mitrović, Rubinfeld PODC ’18]

Near-linear space per machine in 𝑶 𝐥𝐨𝐠	𝐥𝐨𝐠	𝒏  rounds
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Simplified (2 + 𝜀)-Approximate Vertex Cover

(2 + 𝜀)-Approximate Vertex Cover
[Ghaffari, Gouleakis, Konrad, Mitrović, Rubinfeld PODC ’18]

Near-linear space per machine in 𝑶 𝐥𝐨𝐠	𝐥𝐨𝐠	𝒏  rounds

Simplified version 
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Simplified (2 + 𝜀)-Approximate Vertex Cover

• LOCAL Algorithm based on Primal-Dual Method:

Very Simplified Version of [Ghaffari, Gouleakis, Konrad, Mitrović, Rubinfeld PODC ’18]

Primal Dual

min$
!∈#

𝑥!

s.t. ∀𝑒 = 𝑢, 𝑣 ∈ 𝐸	 𝑥$ + 𝑥! ≥ 1

∀𝑣 ∈ 𝑉	 𝑥! ≥ 0

max$
%∈&

𝑦%

s.t. ∀𝑣 ∈ 𝑉	 ∑%:!∈% 𝑦% ≤ 1

∀𝑒 ∈ 𝐸	 𝑦% ≥ 0
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Simplified (2 + 𝜀)-Approximate Vertex Cover

• LOCAL Algorithm based on Primal-Dual Method:

Very Simplified Version of [Ghaffari, Gouleakis, Konrad, Mitrović, Rubinfeld PODC ’18]

Primal Dual

min$
!∈#

𝑥!

s.t. ∀𝑒 = 𝑢, 𝑣 ∈ 𝐸	 𝑥$ + 𝑥! ≥ 1

∀𝑣 ∈ 𝑉	 𝑥! ≥ 0

max$
%∈&

𝑦%

s.t. ∀𝑣 ∈ 𝑉	 ∑%:!∈% 𝑦% ≤ 1

∀𝑒 ∈ 𝐸	 𝑦% ≥ 0

𝑢 𝑣
𝑥! + 𝑥" ≥ 1
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Simplified (2 + 𝜀)-Approximate Vertex Cover

• LOCAL Algorithm based on Primal-Dual Method:

Very Simplified Version of [Ghaffari, Gouleakis, Konrad, Mitrović, Rubinfeld PODC ’18]

Primal Dual

min$
!∈#

𝑥!

s.t. ∀𝑒 = 𝑢, 𝑣 ∈ 𝐸	 𝑥$ + 𝑥! ≥ 1

∀𝑣 ∈ 𝑉	 𝑥! ≥ 0

max$
%∈&

𝑦%

s.t. ∀𝑣 ∈ 𝑉	 ∑%:!∈% 𝑦% ≤ 1

∀𝑒 ∈ 𝐸	 𝑦% ≥ 0

𝑢 𝑣
𝑥! + 𝑥" ≥ 1

𝑢
𝑒(

𝑒)

𝑒*

𝑦%! + 𝑦%" + 𝑦%# ≤ 1
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• LOCAL Algorithm based on Primal-Dual Method:

Very Simplified Version of [Ghaffari, Gouleakis, Konrad, Mitrović, Rubinfeld PODC ’18]

Primal Dual

min$
!∈#

𝑥!

s.t. ∀𝑒 = 𝑢, 𝑣 ∈ 𝐸	 𝑥$ + 𝑥! ≥ 1

∀𝑣 ∈ 𝑉	 𝑥! ≥ 0

max$
%∈&

𝑦%

s.t. ∀𝑣 ∈ 𝑉	 ∑%:!∈% 𝑦% ≤ 1

∀𝑒 ∈ 𝐸	 𝑦% ≥ 0

All nodes 
covered by at 

least one 
endpoint



CPSC 768

Simplified (2 + 𝜀)-Approximate Vertex Cover

• LOCAL Algorithm based on Primal-Dual Method:

Very Simplified Version of [Ghaffari, Gouleakis, Konrad, Mitrović, Rubinfeld PODC ’18]

Primal Dual

min$
!∈#

𝑥!

s.t. ∀𝑒 = 𝑢, 𝑣 ∈ 𝐸	 𝑥$ + 𝑥! ≥ 1

∀𝑣 ∈ 𝑉	 𝑥! ≥ 0

max$
%∈&

𝑦%

s.t. ∀𝑣 ∈ 𝑉	 ∑%:!∈% 𝑦% ≤ 1

∀𝑒 ∈ 𝐸	 𝑦% ≥ 0

All nodes 
covered by at 

least one 
endpoint

Fractional 
matching of the 

edges



CPSC 768

Simplified (2 + 𝜀)-Approximate Vertex Cover
• LOCAL Algorithm based on Primal-Dual 

Method:
• Initially set 𝒚𝒆 =

𝟏
𝚫 

• Repeat for iteration 𝒕 until all edges 
frozen:

• Freeze vertex 𝒗 and all adjacent 
edges if ∑𝒗∈𝒆𝒚𝒆 ≥ 𝟏 − 𝟐𝜺

• For each active (non-frozen) 
edge, set 𝒚𝒆 ←

𝒚𝒆
𝟏>𝜺

• Set of frozen vertices is cover

Very Simplified Version of [Ghaffari, Gouleakis, Konrad, Mitrović, Rubinfeld PODC ’18]

Dual

max%
!∈#

𝑦!

s.t. ∀𝑣 ∈ 𝑉	 ∑!:%∈! 𝑦! ≤ 1

∀𝑒 ∈ 𝐸	 𝑦! ≥ 0

Primal

min%
%∈&

𝑥%

s.t. ∀𝑒 = 𝑢, 𝑣 ∈ 𝐸	 𝑥' + 𝑥% ≥ 1

∀𝑣 ∈ 𝑉	 𝑥% ≥ 0
𝑛	 ≔ number of 

vertices 
𝑚 ≔	 number of 

edges
Δ ≔ max degree



CPSC 768

Simplified (2 + 𝜀)-Approximate Vertex Cover
• LOCAL Algorithm based on Primal-Dual 

Method:
• Initially set 𝒚𝒆 =

𝟏
𝚫 

• Repeat for iteration 𝒕 until all edges 
frozen:

• Freeze vertex 𝒗 and all adjacent 
edges if ∑𝒗∈𝒆𝒚𝒆 ≥ 𝟏 − 𝟐𝜺

• For each active (non-frozen) 
edge, set 𝒚𝒆 ←

𝒚𝒆
𝟏>𝜺

• Set of frozen vertices is cover

Very Simplified Version of [Ghaffari, Gouleakis, Konrad, Mitrović, Rubinfeld PODC ’18]

Dual

max%
!∈#

𝑦!

s.t. ∀𝑣 ∈ 𝑉	 ∑!:%∈! 𝑦! ≤ 1

∀𝑒 ∈ 𝐸	 𝑦! ≥ 0

Primal

min%
%∈&

𝑥%

s.t. ∀𝑒 = 𝑢, 𝑣 ∈ 𝐸	 𝑥' + 𝑥% ≥ 1

∀𝑣 ∈ 𝑉	 𝑥% ≥ 0
𝑛	 ≔ number of 

vertices 
𝑚 ≔	 number of 

edges
Δ ≔ max degree



CPSC 768

Simplified (2 + 𝜀)-Approximate Vertex Cover
• LOCAL Algorithm based on Primal-Dual 

Method:
• Initially set 𝒚𝒆 =

𝟏
𝚫 

• Repeat for iteration 𝒕 until all edges 
frozen:

• Freeze vertex 𝒗 and all adjacent 
edges if ∑𝒗∈𝒆𝒚𝒆 ≥ 𝟏 − 𝟐𝜺

• For each active (non-frozen) 
edge, set 𝒚𝒆 ←

𝒚𝒆
𝟏>𝜺

• Set of frozen vertices is cover

Very Simplified Version of [Ghaffari, Gouleakis, Konrad, Mitrović, Rubinfeld PODC ’18]

Dual

max%
!∈#

𝑦!

s.t. ∀𝑣 ∈ 𝑉	 ∑!:%∈! 𝑦! ≤ 1

∀𝑒 ∈ 𝐸	 𝑦! ≥ 0

Primal

min%
%∈&

𝑥%

s.t. ∀𝑒 = 𝑢, 𝑣 ∈ 𝐸	 𝑥' + 𝑥% ≥ 1

∀𝑣 ∈ 𝑉	 𝑥% ≥ 0
𝑛	 ≔ number of 

vertices 
𝑚 ≔	 number of 

edges
Δ ≔ max degree



CPSC 768

Simplified (2 + 𝜀)-Approximate Vertex Cover
• LOCAL Algorithm based on Primal-Dual 

Method:
• Initially set 𝒚𝒆 =

𝟏
𝚫 

• Repeat for iteration 𝒕 until all edges 
frozen:

• Freeze vertex 𝒗 and all adjacent 
edges if ∑𝒗∈𝒆𝒚𝒆 ≥ 𝟏 − 𝟐𝜺

• For each active (non-frozen) 
edge, set 𝒚𝒆 ←

𝒚𝒆
𝟏>𝜺

• Set of frozen vertices is cover

Very Simplified Version of [Ghaffari, Gouleakis, Konrad, Mitrović, Rubinfeld PODC ’18]

Dual

max%
!∈#

𝑦!

s.t. ∀𝑣 ∈ 𝑉	 ∑!:%∈! 𝑦! ≤ 1

∀𝑒 ∈ 𝐸	 𝑦! ≥ 0

Primal

min%
%∈&

𝑥%

s.t. ∀𝑒 = 𝑢, 𝑣 ∈ 𝐸	 𝑥' + 𝑥% ≥ 1

∀𝑣 ∈ 𝑉	 𝑥% ≥ 0
𝑛	 ≔ number of 

vertices 
𝑚 ≔	 number of 

edges
Δ ≔ max degree



CPSC 768

Simplified (2 + 𝜀)-Approximate Vertex Cover
• LOCAL Algorithm based on Primal-Dual 

Method:
• Initially set 𝒚𝒆 =

𝟏
𝚫 

• Repeat for iteration 𝒕 until all edges 
frozen:

• Freeze vertex 𝒗 and all adjacent 
edges if ∑𝒗∈𝒆𝒚𝒆 ≥ 𝟏 − 𝟐𝜺

• For each active (non-frozen) 
edge, set 𝒚𝒆 ←

𝒚𝒆
𝟏>𝜺

• Set of frozen vertices is cover

Very Simplified Version of [Ghaffari, Gouleakis, Konrad, Mitrović, Rubinfeld PODC ’18]

Dual

max%
!∈#

𝑦!

s.t. ∀𝑣 ∈ 𝑉	 ∑!:%∈! 𝑦! ≤ 1

∀𝑒 ∈ 𝐸	 𝑦! ≥ 0

Primal

min%
%∈&

𝑥%

s.t. ∀𝑒 = 𝑢, 𝑣 ∈ 𝐸	 𝑥' + 𝑥% ≥ 1

∀𝑣 ∈ 𝑉	 𝑥% ≥ 0
𝑛	 ≔ number of 

vertices 
𝑚 ≔	 number of 

edges
Δ ≔ max degree



CPSC 768

Simplified (2 + 𝜀)-Approximate Vertex Cover
• LOCAL Algorithm based on Primal-Dual 

Method:
• Initially set 𝒚𝒆 =

𝟏
𝚫 

• Repeat for iteration 𝒕 until all edges 
frozen:

• Freeze vertex 𝒗 and all adjacent 
edges if ∑𝒗∈𝒆𝒚𝒆 ≥ 𝟏 − 𝟐𝜺

• For each active (non-frozen) 
edge, set 𝒚𝒆 ←

𝒚𝒆
𝟏>𝜺

• Set of frozen vertices is cover

Very Simplified Version of [Ghaffari, Gouleakis, Konrad, Mitrović, Rubinfeld PODC ’18]

Dual

max%
!∈#

𝑦!

s.t. ∀𝑣 ∈ 𝑉	 ∑!:%∈! 𝑦! ≤ 1

∀𝑒 ∈ 𝐸	 𝑦! ≥ 0

Primal

min%
%∈&

𝑥%

s.t. ∀𝑒 = 𝑢, 𝑣 ∈ 𝐸	 𝑥' + 𝑥% ≥ 1

∀𝑣 ∈ 𝑉	 𝑥% ≥ 0
𝑛	 ≔ number of 

vertices 
𝑚 ≔	 number of 

edges
Δ ≔ max degree

𝑶(𝐥𝐨𝐠	𝒏) 
rounds



CPSC 768

Simplified (2 + 𝜀)-Approximate Vertex Cover

• Assume maximum degree 𝚫 = 𝑶 𝒏
𝟏
𝟗  

Very Simplified Version of [Ghaffari, Gouleakis, Konrad, Mitrović, Rubinfeld PODC ’18]



CPSC 768

Simplified (2 + 𝜀)-Approximate Vertex Cover

• Assume maximum degree 𝚫 = 𝑶 𝒏
𝟏
𝟗  

• Partition the graph into subgraphs of radius 8

Very Simplified Version of [Ghaffari, Gouleakis, Konrad, Mitrović, Rubinfeld PODC ’18]



CPSC 768

Simplified (2 + 𝜀)-Approximate Vertex Cover

• Assume maximum degree 𝚫 = 𝑶 𝒏
𝟏
𝟗  

• Partition the graph into subgraphs of radius 8
• Give the entirety of each subgraph to a single machine

Very Simplified Version of [Ghaffari, Gouleakis, Konrad, Mitrović, Rubinfeld PODC ’18]



CPSC 768

Simplified (2 + 𝜀)-Approximate Vertex Cover

• Assume maximum degree 𝚫 = 𝑶 𝒏
𝟏
𝟗  

• Partition the graph into subgraphs of radius 8
• Give the entirety of each subgraph to a single machine

• Run the LOCAL algorithm on each machine for 
𝐥𝐨𝐠 𝟏

𝟏$𝜺
𝚫

𝟏𝟎
 

rounds

Very Simplified Version of [Ghaffari, Gouleakis, Konrad, Mitrović, Rubinfeld PODC ’18]



CPSC 768

Simplified (2 + 𝜀)-Approximate Vertex Cover

• Assume maximum degree 𝚫 = 𝑶 𝒏
𝟏
𝟗  

• Partition the graph into subgraphs of radius 8
• Give the entirety of each subgraph to a single machine

• Run the LOCAL algorithm on each machine for 
𝐥𝐨𝐠 𝟏

𝟏$𝜺
𝚫

𝟏𝟎
 

rounds
• Find new graph after removing frozen vertices and edges

Very Simplified Version of [Ghaffari, Gouleakis, Konrad, Mitrović, Rubinfeld PODC ’18]



CPSC 768

Simplified (2 + 𝜀)-Approximate Vertex Cover

• Assume maximum degree 𝚫 = 𝑶 𝒏
𝟏
𝟗  

• Partition the graph into subgraphs of radius 8
• Give the entirety of each subgraph to a single machine

• Run the LOCAL algorithm on each machine for 
𝐥𝐨𝐠 𝟏

𝟏$𝜺
𝚫

𝟏𝟎
 

rounds
• Find new graph after removing frozen vertices and edges
• Set new radius to 𝟗 and repeat above until graph can fit into 

one machine 

Very Simplified Version of [Ghaffari, Gouleakis, Konrad, Mitrović, Rubinfeld PODC ’18]



CPSC 768

Simplified (2 + 𝜀)-Approximate Vertex Cover

• Assume maximum degree 𝚫 = 𝑶 𝒏
𝟏
𝟗  

• Partition the graph into subgraphs of radius 8
• Give the entirety of each subgraph to a single machine

• Run the LOCAL algorithm on each machine for 
𝐥𝐨𝐠 𝟏

𝟏$𝜺
𝚫

𝟏𝟎
 

rounds
• Find new graph after removing frozen vertices and edges
• Set new radius to 𝟗 and repeat above until graph can fit into 

one machine 
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Minimum weight on an edge becomes 𝚫>𝟎.𝟗 
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𝟖
𝟗

Minimum weight on an edge becomes 𝚫>𝟎.𝟗 

Weight on each edge: 
𝟏
𝚫
⋅ 𝟏

𝟏*𝜺

,-. 𝟏
𝟏"𝜺

𝚫 /𝟏𝟎
= 𝟏

𝚫
⋅ 𝚫

𝟏
𝟏𝟎 = 𝚫*𝟎.𝟗 
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𝚫*𝟎.𝟗𝒊  
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Maximum degree after 𝒊-iteration:

𝟏/(𝚫*𝟎.𝟗𝒊) = 𝚫𝟎.𝟗𝐢  
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Maximum degree of active vertices is 𝚫𝟎.𝟗

𝑶(log	log	𝒏) rounds
In sublinear 

memory 𝑶 𝒏
𝟖
𝟗

Minimum weight on an edge becomes 𝚫>𝟎.𝟗 
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Removing assumption requires random partition of 
vertices + other techniques  

𝑶 𝐥𝐨𝐠	𝐥𝐨𝐠 𝒎
𝒏  rounds

[Ghaffari, Jin, Nilis SPAA ’20]

Round compression: 𝑶 log	𝒏  LOCAL → 
𝑶 log	log	𝒏  MPC
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