
CPSC 768

CPSC 768:
Scalable and Private Graph Algorithms

Quanquan C. Liu
quanquan.liu@yale.edu

Lecture 24: Distributed Graph Algorithms

CPSC 768

Announcements

• Final project report and presentation: April 24th (last day of
class)

• Final project presentation is a 30 min presentation
• Last day of Open Problem Sessions: April 26th (last week of

classes)
• Will be turned into a reading group/continue with OPS, stay

tuned!

CPSC 768

Traditional Distributed Graph Algorithms

• The input graph is not only the input but also represents the
communication graph

CPSC 768

Traditional Distributed Graph Algorithms

• The input graph is not only the input but also represents the
communication graph

• Nodes can send messages along edges in synchronous
rounds

CPSC 768

Traditional Distributed Graph Algorithms

• The input graph is not only the input but also represents the
communication graph

• Nodes can send messages along edges in synchronous
rounds

CPSC 768

Distributed Algorithms and Networks
Split the Large Graph Among Many

Different Processors/Machines

Each Node is a Processor/Machine

CPSC 768

Distributed Algorithms and Networks
Split the Large Graph Among Many

Different Processors/Machines

Each Node is a Processor/Machine Edges are Communication Links

CPSC 768

Distributed Algorithms and Networks

Broadcast model: if a node wants to send a message, it must send all
the same message to all neighbors simultaneously in the round

CPSC 768

Distributed Algorithms and Networks

Broadcast model: if a node wants to send a message, it must send all
the same message to all neighbors simultaneously in the round

Nodes Send
Messages to
Other Nodes

Via Edges

CPSC 768

Distributed Algorithms and Networks

Point-to-point message passing:
Nodes Can Choose to Send to Some/All Neighbors

CPSC 768

Distributed Algorithms and Networks

Nodes Use Multiple Rounds of Communication to Send Messages

CPSC 768

Distributed Algorithms and Networks

Each Round Nodes Can Send to Same or Different Neighbors

CPSC 768

Distributed Algorithms and Networks

Message Complexity
Number of Messages

Sent in Total
CONGEST Model:

Messages have 𝑂 log 𝑛 size

CPSC 768

Distributed Algorithms and Networks

Message Complexity
Number of Messages

Sent in Total

Too many messages:
overwhelms bandwidth

CONGEST Model:
Messages have 𝑂 log 𝑛 size

CPSC 768

Distributed Algorithms and Networks

Message Complexity
Number of Messages

Sent in Total

Round Complexity
Multiple Rounds of

Communication

CONGEST Model:
Messages have 𝑂 log 𝑛 size

CPSC 768

Distributed Algorithms and Networks

Message Complexity
Number of Messages

Sent in Total

Round Complexity
Multiple Rounds of

Communication

Too many rounds:
takes too long and sends

too many messages

CPSC 768

Several Caveats

• Information propagation requires diameter number of rounds

Diameter longest
shortest path between

any two nodes

CPSC 768

Several Caveats

• Can only model purely decentralized networks

Diameter longest
shortest path between

any two nodes

CPSC 768

Message Size Constraint for CONGEST

• Can lead to very high round complexity

𝒂

𝒃

𝒄

𝒅

𝒇

𝒆

CPSC 768

Message Size Constraint for CONGEST

• Can lead to very high round complexity

𝒂

𝒃

𝒄

𝒅

𝒇

𝒆

Example: Triangle
Counting with no

restrictions on
message size

CPSC 768

Message Size Constraint for CONGEST

• Can lead to very high round complexity

𝒂

𝒃

𝒄

𝒅

𝒇

𝒆
𝒈

Example: Triangle
Counting with no

restrictions on
message size

[𝑎, 𝑐]

[𝑎, 𝑏, 𝑑, 𝑒, 𝑔]

[𝑏, 𝑓, 𝑐]

CPSC 768

Message Size Constraint for CONGEST

• Can lead to very high round complexity

𝒂

𝒃

𝒄

𝒅

𝒇

𝒆
𝒈

Send adjacency list
to neighbors

[𝑎, 𝑐]

[𝑎, 𝑏, 𝑑, 𝑒, 𝑔]

[𝑏, 𝑓, 𝑐] [𝑎, 𝑐][𝑎, 𝑐]

[𝑎, 𝑏, 𝑑, 𝑒, 𝑔][𝑎, 𝑏, 𝑑, 𝑒, 𝑔]

[𝑏, 𝑓, 𝑐][𝑏, 𝑓, 𝑐]

CPSC 768

Message Size Constraint for CONGEST

• Can lead to very high round complexity

𝒂

𝒃

𝒄

𝒅

𝒇

𝒆
𝒈

Find intersections
in received lists

[𝒂, 𝒄]

[𝒂, 𝒃, 𝑑, 𝑒, 𝑔]

[𝒃, 𝑓, 𝒄]

[𝑎, 𝒄]

[𝒂, 𝑐]

[𝑎, 𝒃, 𝑑, 𝑒, 𝑔]

[𝒂, 𝑏, 𝑑, 𝑒, 𝑔]

[𝒃, 𝑓, 𝑐]

[𝑏, 𝑓, 𝒄]

CPSC 768

Message Size Constraint for CONGEST

• Can lead to very high round complexity

𝒂

𝒃

𝒄

𝒅

𝒇

𝒆
𝒈

𝑶(𝟏) round
triangle counting

[𝒂, 𝒄]

[𝒂, 𝒃, 𝑑, 𝑒, 𝑔]

[𝒃, 𝑓, 𝒄]

[𝑎, 𝒄]

[𝒂, 𝑐]

[𝑎, 𝒃, 𝑑, 𝑒, 𝑔]

[𝒂, 𝑏, 𝑑, 𝑒, 𝑔]

[𝒃, 𝑓, 𝑐]

[𝑏, 𝑓, 𝒄]

CPSC 768

Message Size Constraint for CONGEST

• Can lead to very high round complexity
• Triangle counting in CONGEST:

CPSC 768

Message Size Constraint for CONGEST

• Can lead to very high round complexity
• Triangle counting in CONGEST:

• .𝑶 𝒏
𝟏
𝟐 rounds [Chang, Pettie, Zhang SODA ‘19]

• Large gap from LOCAL model (unrestricted message size)

CPSC 768

Example Algorithm: Coloring Trees

• Classic 𝑂 log∗ 𝑛 of Cole and Vishkin ‘86

CPSC 768

Example Algorithm: Coloring Trees

• Classic 𝑂 log∗ 𝑛 of Cole and Vishkin ’86
• Number of logarithms (base 2) to get down to 2

CPSC 768

Example Algorithm: Coloring Trees

• Classic 𝑂 log∗ 𝑛 of Cole and Vishkin ’86
• Number of logarithms (base 2) to get down to 2
• ∀𝑥 ≤ 2:	log∗ 𝑥 ≔ 1;	 ∀𝑥 > 2:	log∗ 𝑥 ≔ 1 +	 log∗ log 𝑥

CPSC 768

Example Algorithm: Coloring Trees

• Classic 𝑂 log∗ 𝑛 of Cole and Vishkin ’86
• Number of logarithms (base 2) to get down to 2
• ∀𝑥 ≤ 2:	log∗ 𝑥 ≔ 1;	 ∀𝑥 > 2:	log∗ 𝑥 ≔ 1 +	 log∗ log 𝑥

• Idea: Each node has label of 𝐥𝐨𝐠 𝒏 bits
• Each round compute label of exponentially smaller size

that is still valid coloring

CPSC 768

Example Algorithm: Coloring Trees

• Algorithm:
• Initially each node has ID of color 𝑐" of log	𝑛 bits
• Each node executes and repeats:

CPSC 768

Example Algorithm: Coloring Trees

• Algorithm:
• Initially each node has ID of color 𝑐" of log	𝑛 bits
• Each node executes and repeats:

• Send own color 𝑐" to children

CPSC 768

Example Algorithm: Coloring Trees

• Algorithm:
• Initially each node has ID of color 𝑐" of log	𝑛 bits
• Each node executes and repeats:

• Send own color 𝑐" to children
• Receive parent color 𝑐#

CPSC 768

Example Algorithm: Coloring Trees

• Algorithm:
• Initially each node has ID of color 𝑐" of log	𝑛 bits
• Each node executes and repeats:

• Send own color 𝑐" to children
• Receive parent color 𝑐#
• Write 𝑐" and 𝑐# in bits

CPSC 768

Example Algorithm: Coloring Trees

• Algorithm:
• Initially each node has ID of color 𝑐" of log	𝑛 bits
• Each node executes and repeats:

• Send own color 𝑐" to children
• Receive parent color 𝑐#
• Write 𝑐" and 𝑐# in bits
• Let 𝑖 be index of rightmost bit 𝑏 where 𝑐" and 𝑐# differ

CPSC 768

Example Algorithm: Coloring Trees

• Algorithm:
• Initially each node has ID of color 𝑐" of log	𝑛 bits
• Each node executes and repeats:

• Send own color 𝑐" to children
• Receive parent color 𝑐#
• Write 𝑐" and 𝑐# in bits
• Let 𝑖 be index of rightmost bit 𝑏 where 𝑐" and 𝑐# differ
• Node 𝒗’s new color is 𝟐𝒊 concatenated with b

CPSC 768

Example Algorithm: Coloring Trees

• Algorithm:
• Initially each node has ID of color 𝑐" of log	𝑛 bits
• Each node executes and repeats:

• Send own color 𝑐" to children
• Receive parent color 𝑐#
• Write 𝑐" and 𝑐# in bits
• Let 𝑖 be index of rightmost bit 𝑏 where 𝑐" and 𝑐# differ
• Node 𝒗’s new color is 𝟐𝒊 concatenated with b

• Stop when 𝑐" ∈ {0,… , 5} for all nodes

CPSC 768

Example Algorithm: Coloring Trees

• Example Run:

CPSC 768

Example Algorithm: Coloring Trees

• Example Run:

Grandparent
Parent
Child

0010101001
0010110001
0001110001

CPSC 768

Example Algorithm: Coloring Trees

• Example Run:

Grandparent
Parent
Child

0010101001
0010110001
0001110001

CPSC 768

Example Algorithm: Coloring Trees

• Example Run:

Grandparent
Parent
Child

0010101001
0010110001
0001110001

1101
1100

CPSC 768

Example Algorithm: Coloring Trees

• Example Run:

Grandparent
Parent
Child

0010101001
0010110001
0001110001

01101
01100
11001

CPSC 768

Example Algorithm: Coloring Trees

• Example Run:

Grandparent
Parent
Child

0010101001
0010110001
0001110001

01101
01100
11001

01
00
01

CPSC 768

Example Algorithm: Coloring Trees

• Why does it work?

CPSC 768

Example Algorithm: Coloring Trees

• Why does it work?
• Either parent/grandparent differ in a different index from

parent/child

CPSC 768

Example Algorithm: Coloring Trees

• Why does it work?
• Either parent/grandparent differ in a different index from

parent/child
• First part is different

CPSC 768

Example Algorithm: Coloring Trees

• Why does it work?
• Either parent/grandparent differ in a different index from

parent/child
• First part is different

• Or parent/grandparent and parent/child differ in same index

CPSC 768

Example Algorithm: Coloring Trees

• Why does it work?
• Either parent/grandparent differ in a different index from

parent/child
• First part is different

• Or parent/grandparent and parent/child differ in same index
• First part is same

CPSC 768

Example Algorithm: Coloring Trees

• Why does it work?
• Either parent/grandparent differ in a different index from

parent/child
• First part is different

• Or parent/grandparent and parent/child differ in same index
• First part is same
• Last bit differs—second part is different

Runtime: 𝑂(log∗(𝑛))

CPSC 768

Another Distributed Model (More Modern)

• Used by Google and other companies
• Massively parallel computation (MPC Model)

CPSC 768

MPC Model Definition

• M machines
• Synchronous rounds

CPSC 768

MPC Model Definition

• M machines
• Synchronous rounds

CPSC 768

MPC Model Definition

• M machines
• Synchronous rounds

CPSC 768

MPC Model Definition

𝑆 𝑆 𝑆

• M machines
• Synchronous rounds

CPSC 768

MPC Model Definition

𝑆 𝑆 𝑆

• M machines
• Synchronous rounds

CPSC 768

MPC Model Definition

• M machines
• Synchronous rounds

𝑆 𝑆 𝑆

CPSC 768

MPC Model Definition

𝑆 𝑆 𝑆

• M machines
• Synchronous rounds Total Space: 𝑴 ⋅ 𝑺

CPSC 768

MPC Model Definition

𝑆 𝑆 𝑆

• M machines
• Synchronous rounds

Complexity measures:
• Total Space
• Space Per Machine
• Rounds of communication

Total Space: 𝑴 ⋅ 𝑺

CPSC 768

Comparison of Models
Measure Database

Theory
Algorithms

Load/Space per
Machine 𝐿 = 𝑁/𝑝

!
" 𝑆

Total Space 𝑝 ⋅ 𝐿 𝑇 = 7𝑂(𝑛 +𝑚)
Input 𝑁 𝑛,𝑚,𝑁

Rounds 𝑟 𝑟
Machines 𝑝 𝑀 = 𝑇/𝑆

𝒏	 ≔ number of vertices
𝒎≔	 number of edges

CPSC 768

Space per Machine in MPC

• Strongly sublinear memory:
• 𝑆 = 𝑛$ for some constant 𝛿 ∈ (0, 1)

CPSC 768

Space per Machine in MPC

• Strongly sublinear memory:
• 𝑆 = 𝑛$ for some constant 𝛿 ∈ (0, 1)

• Near-linear memory:
• 𝑆 = .Θ 𝑛 (ignoring poly(log 𝑛) factors)

CPSC 768

Space per Machine in MPC

• Strongly sublinear memory:
• 𝑆 = 𝑛$ for some constant 𝛿 ∈ (0, 1)

• Near-linear memory:
• 𝑆 = .Θ 𝑛 (ignoring poly(log 𝑛) factors)

• Strongly superlinear memory:
• 𝑆 = 𝑛%&$ for some constant 𝛿 > 0

CPSC 768

Space per Machine in MPC

• Strongly sublinear memory:
• 𝑆 = 𝑛$ for some constant 𝛿 ∈ (0, 1)

• Near-linear memory:
• 𝑆 = .Θ 𝑛 (ignoring poly(log 𝑛) factors)

• Strongly superlinear memory:
• 𝑆 = 𝑛%&$ for some constant 𝛿 > 0

Also want: 𝑶 log	log	𝒏 or
𝑶 𝟏 rounds

CPSC 768

Space per Machine in MPC

• Strongly sublinear memory:
• 𝑆 = 𝑛$ for some constant 𝛿 ∈ (0, 1)

• Near-linear memory:
• 𝑆 = .Θ 𝑛 (ignoring poly(log 𝑛) factors)

• Strongly superlinear memory:
• 𝑆 = 𝑛%&$ for some constant 𝛿 > 0

Also want: 𝑶 log	log	𝒏 or
𝑶 𝟏 rounds

Also want: .𝑶 𝒏 +𝒎
total space

CPSC 768

Space per Machine in MPC

• Strongly sublinear memory:
• 𝑆 = 𝑛$ for some constant 𝛿 ∈ (0, 1)

• Near-linear memory:
• 𝑆 = .Θ 𝑛 (ignoring poly(log 𝑛) factors)

• Strongly superlinear memory:
• 𝑆 = 𝑛%&$ for some constant 𝛿 > 0

Also want: 𝑶 log	log	𝒏 or
𝑶 𝟏 rounds

All are sublinear in number of edges m in graph

Also want: .𝑶 𝒏 +𝒎
total space

CPSC 768

Space per Machine in MPC

• Strongly sublinear memory:
• 𝑆 = 𝑛$ for some constant 𝛿 ∈ (0, 1)

• Near-linear memory:
• 𝑆 = .Θ 𝑛 (ignoring poly(log 𝑛) factors)

• Strongly superlinear memory:
• 𝑆 = 𝑛%&$ for some constant 𝛿 > 0

Also want: 𝑶 log	log	𝒏 or
𝑶 𝟏 rounds

All are sublinear in number of edges m in graph

Also want: .𝑶 𝒏 +𝒎
total space

Often 𝛿 = !
"

CPSC 768

Graph Algorithms in MPC Model
• Matching and MIS [BBDFHKU19, BHH19, GGKMR19,

CLMMOS18, NO21, FHO22, GGM22, ALT21, LKK23]
• Connectivity [ASSWZ18, BDELM19, DDKPSS19]
• Graph sparsification [GU19, CDP20]
• Vertex cover [Assadi17, GGKMR18, GJN20]
• MST and 2-edge connectivity [NO21, FHO22]
• Well-connected components [ASW18, ASW19]
• Coloring [BDHKS19, CFGUZ19]
• Subgraph counting [CC11, SV11, BELMR22]

CPSC 768

Useful MPC Primitives in !𝑂 𝑵 Space per
Machine and 𝑶 𝟏 Rounds
• Sum of N integers: given N integers, compute the sum

CPSC 768

Useful MPC Primitives in !𝑂 𝑵 Space per
Machine and 𝑶 𝟏 Rounds
• Sum of N integers: given N integers, compute the sum
• Counting distinct elements: given N integers over

some universe U give the count of the number of
distinct elements

CPSC 768

Useful MPC Primitives in !𝑂 𝑵 Space per
Machine and 𝑶 𝟏 Rounds
• Sum of N integers: given N integers, compute the sum
• Counting distinct elements: given N integers over

some universe U give the count of the number of
distinct elements

• Prefix sum: given N integers in order 𝐼!, 𝐼#, … , 𝐼$,
compute the prefix sums 𝜎!, 𝜎#, … , 𝜎$ where 𝜎% = ∑&'!% 𝐼&

CPSC 768

Useful MPC Primitives in !𝑂 𝑵 Space per
Machine and 𝑶 𝟏 Rounds
• Sum of N integers: given N integers, compute the sum
• Counting distinct elements: given N integers over

some universe U give the count of the number of
distinct elements

• Prefix sum: given N integers in order 𝐼!, 𝐼#, … , 𝐼$,
compute the prefix sums 𝜎!, 𝜎#, … , 𝜎$ where 𝜎% = ∑&'!% 𝐼&

• Sorting: given N integers, sort the integers

CPSC 768

Round Compression

• Goal: Simulate multiple rounds of an
iterative LOCAL algorithm with a single
MPC round

• Procedure: Pick appropriate subgraphs
of sufficiently small size

• Send each subgraph to one machine

• Simulate LOCAL algorithm 𝒜	on each
machine

• Each machine sends results of simulation

CPSC 768

LOCAL Model in Distributed Computing

• Synchronous distributed algorithm where each node is a
processor/computer

CPSC 768

LOCAL Model in Distributed Computing

• Synchronous distributed algorithm where each node is a
processor/computer

• In one synchronous round of communication, each node, in
order:

CPSC 768

LOCAL Model in Distributed Computing

• Synchronous distributed algorithm where each node is a
processor/computer

• In one synchronous round of communication, each node, in
order:

• Performs local computation

CPSC 768

LOCAL Model in Distributed Computing

• Synchronous distributed algorithm where each node is a
processor/computer

• In one synchronous round of communication, each node, in
order:

• Performs local computation
• Sends a point-to-point message to each of its neighbors

CPSC 768

LOCAL Model in Distributed Computing

• Synchronous distributed algorithm where each node is a
processor/computer

• In one synchronous round of communication, each node, in
order:

• Performs local computation
• Sends a point-to-point message to each of its neighbors
• Receives a message from each of its neighbors

CPSC 768

Round Compression

• Goal: Simulate multiple rounds of an
iterative LOCAL algorithm with a single
MPC round

• Procedure: Pick appropriate subgraphs
of sufficiently small size

• Send each subgraph to one machine

• Simulate LOCAL algorithm 𝒜	on each
machine

• Each machine sends results of simulation

CPSC 768

Round Compression

• Goal: Simulate multiple rounds of an
iterative LOCAL algorithm with a single
MPC round

• Procedure: Pick appropriate subgraphs
of sufficiently small size

• Send each subgraph to one machine

• Simulate LOCAL algorithm 𝒜	on each
machine

• Each machine sends results of simulation

CPSC 768

Round Compression

• Goal: Simulate multiple rounds of an
iterative LOCAL algorithm with a single
MPC round

• Procedure: Pick appropriate subgraphs
of sufficiently small size

• Send each subgraph to one machine

• Simulate LOCAL algorithm 𝒜	on each
machine

• Each machine sends results of simulation

CPSC 768

Round Compression

𝒜
𝒜

𝒜• Goal: Simulate multiple rounds of an
iterative LOCAL algorithm with a single
MPC round

• Procedure: Pick appropriate subgraphs
of sufficiently small size

• Send each subgraph to one machine

• Simulate LOCAL algorithm 𝒜	on each
machine

• Each machine sends results of simulation

CPSC 768

Round Compression

• Goal: Simulate multiple rounds of an
iterative LOCAL algorithm with a single
MPC round

• Procedure: Pick appropriate subgraphs
of sufficiently small size

• Send each subgraph to one machine

• Simulate LOCAL algorithm 𝒜	on each
machine

• Each machine sends results of simulation

𝒜
𝒜

𝒜

CPSC 768

Minimum Vertex Cover

• Each edge in graph is covered by an endpoint
• Find the minimum number of endpoints that cover every

edge

CPSC 768

Simplified (2 + 𝜀)-Approximate Vertex Cover

(2 + 𝜀)-Approximate Vertex Cover
[Ghaffari, Gouleakis, Konrad, Mitrović, Rubinfeld PODC ’18]

Near-linear space per machine in 𝑶 𝐥𝐨𝐠	𝐥𝐨𝐠	𝒏 rounds

CPSC 768

Simplified (2 + 𝜀)-Approximate Vertex Cover

(2 + 𝜀)-Approximate Vertex Cover
[Ghaffari, Gouleakis, Konrad, Mitrović, Rubinfeld PODC ’18]

Near-linear space per machine in 𝑶 𝐥𝐨𝐠	𝐥𝐨𝐠	𝒏 rounds

Simplified version

CPSC 768

Simplified (2 + 𝜀)-Approximate Vertex Cover

• LOCAL Algorithm based on Primal-Dual Method:

Very Simplified Version of [Ghaffari, Gouleakis, Konrad, Mitrović, Rubinfeld PODC ’18]

Primal Dual

min$
!∈#

𝑥!

s.t. ∀𝑒 = 𝑢, 𝑣 ∈ 𝐸	 𝑥$ + 𝑥! ≥ 1

∀𝑣 ∈ 𝑉	 𝑥! ≥ 0

max$
%∈&

𝑦%

s.t. ∀𝑣 ∈ 𝑉	 ∑%:!∈% 𝑦% ≤ 1

∀𝑒 ∈ 𝐸	 𝑦% ≥ 0

CPSC 768

Simplified (2 + 𝜀)-Approximate Vertex Cover

• LOCAL Algorithm based on Primal-Dual Method:

Very Simplified Version of [Ghaffari, Gouleakis, Konrad, Mitrović, Rubinfeld PODC ’18]

Primal Dual

min$
!∈#

𝑥!

s.t. ∀𝑒 = 𝑢, 𝑣 ∈ 𝐸	 𝑥$ + 𝑥! ≥ 1

∀𝑣 ∈ 𝑉	 𝑥! ≥ 0

max$
%∈&

𝑦%

s.t. ∀𝑣 ∈ 𝑉	 ∑%:!∈% 𝑦% ≤ 1

∀𝑒 ∈ 𝐸	 𝑦% ≥ 0

𝑢 𝑣
𝑥! + 𝑥" ≥ 1

CPSC 768

Simplified (2 + 𝜀)-Approximate Vertex Cover

• LOCAL Algorithm based on Primal-Dual Method:

Very Simplified Version of [Ghaffari, Gouleakis, Konrad, Mitrović, Rubinfeld PODC ’18]

Primal Dual

min$
!∈#

𝑥!

s.t. ∀𝑒 = 𝑢, 𝑣 ∈ 𝐸	 𝑥$ + 𝑥! ≥ 1

∀𝑣 ∈ 𝑉	 𝑥! ≥ 0

max$
%∈&

𝑦%

s.t. ∀𝑣 ∈ 𝑉	 ∑%:!∈% 𝑦% ≤ 1

∀𝑒 ∈ 𝐸	 𝑦% ≥ 0

𝑢 𝑣
𝑥! + 𝑥" ≥ 1

𝑢
𝑒(

𝑒)

𝑒*

𝑦%! + 𝑦%" + 𝑦%# ≤ 1

CPSC 768

Simplified (2 + 𝜀)-Approximate Vertex Cover

• LOCAL Algorithm based on Primal-Dual Method:

Very Simplified Version of [Ghaffari, Gouleakis, Konrad, Mitrović, Rubinfeld PODC ’18]

Primal Dual

min$
!∈#

𝑥!

s.t. ∀𝑒 = 𝑢, 𝑣 ∈ 𝐸	 𝑥$ + 𝑥! ≥ 1

∀𝑣 ∈ 𝑉	 𝑥! ≥ 0

max$
%∈&

𝑦%

s.t. ∀𝑣 ∈ 𝑉	 ∑%:!∈% 𝑦% ≤ 1

∀𝑒 ∈ 𝐸	 𝑦% ≥ 0

All nodes
covered by at

least one
endpoint

CPSC 768

Simplified (2 + 𝜀)-Approximate Vertex Cover

• LOCAL Algorithm based on Primal-Dual Method:

Very Simplified Version of [Ghaffari, Gouleakis, Konrad, Mitrović, Rubinfeld PODC ’18]

Primal Dual

min$
!∈#

𝑥!

s.t. ∀𝑒 = 𝑢, 𝑣 ∈ 𝐸	 𝑥$ + 𝑥! ≥ 1

∀𝑣 ∈ 𝑉	 𝑥! ≥ 0

max$
%∈&

𝑦%

s.t. ∀𝑣 ∈ 𝑉	 ∑%:!∈% 𝑦% ≤ 1

∀𝑒 ∈ 𝐸	 𝑦% ≥ 0

All nodes
covered by at

least one
endpoint

Fractional
matching of the

edges

CPSC 768

Simplified (2 + 𝜀)-Approximate Vertex Cover
• LOCAL Algorithm based on Primal-Dual

Method:
• Initially set 𝒚𝒆 =

𝟏
𝚫

• Repeat for iteration 𝒕 until all edges
frozen:

• Freeze vertex 𝒗 and all adjacent
edges if ∑𝒗∈𝒆𝒚𝒆 ≥ 𝟏 − 𝟐𝜺

• For each active (non-frozen)
edge, set 𝒚𝒆 ←

𝒚𝒆
𝟏>𝜺

• Set of frozen vertices is cover

Very Simplified Version of [Ghaffari, Gouleakis, Konrad, Mitrović, Rubinfeld PODC ’18]

Dual

max%
!∈#

𝑦!

s.t. ∀𝑣 ∈ 𝑉	 ∑!:%∈! 𝑦! ≤ 1

∀𝑒 ∈ 𝐸	 𝑦! ≥ 0

Primal

min%
%∈&

𝑥%

s.t. ∀𝑒 = 𝑢, 𝑣 ∈ 𝐸	 𝑥' + 𝑥% ≥ 1

∀𝑣 ∈ 𝑉	 𝑥% ≥ 0
𝑛	 ≔ number of

vertices
𝑚 ≔	 number of

edges
Δ ≔ max degree

CPSC 768

Simplified (2 + 𝜀)-Approximate Vertex Cover
• LOCAL Algorithm based on Primal-Dual

Method:
• Initially set 𝒚𝒆 =

𝟏
𝚫

• Repeat for iteration 𝒕 until all edges
frozen:

• Freeze vertex 𝒗 and all adjacent
edges if ∑𝒗∈𝒆𝒚𝒆 ≥ 𝟏 − 𝟐𝜺

• For each active (non-frozen)
edge, set 𝒚𝒆 ←

𝒚𝒆
𝟏>𝜺

• Set of frozen vertices is cover

Very Simplified Version of [Ghaffari, Gouleakis, Konrad, Mitrović, Rubinfeld PODC ’18]

Dual

max%
!∈#

𝑦!

s.t. ∀𝑣 ∈ 𝑉	 ∑!:%∈! 𝑦! ≤ 1

∀𝑒 ∈ 𝐸	 𝑦! ≥ 0

Primal

min%
%∈&

𝑥%

s.t. ∀𝑒 = 𝑢, 𝑣 ∈ 𝐸	 𝑥' + 𝑥% ≥ 1

∀𝑣 ∈ 𝑉	 𝑥% ≥ 0
𝑛	 ≔ number of

vertices
𝑚 ≔	 number of

edges
Δ ≔ max degree

CPSC 768

Simplified (2 + 𝜀)-Approximate Vertex Cover
• LOCAL Algorithm based on Primal-Dual

Method:
• Initially set 𝒚𝒆 =

𝟏
𝚫

• Repeat for iteration 𝒕 until all edges
frozen:

• Freeze vertex 𝒗 and all adjacent
edges if ∑𝒗∈𝒆𝒚𝒆 ≥ 𝟏 − 𝟐𝜺

• For each active (non-frozen)
edge, set 𝒚𝒆 ←

𝒚𝒆
𝟏>𝜺

• Set of frozen vertices is cover

Very Simplified Version of [Ghaffari, Gouleakis, Konrad, Mitrović, Rubinfeld PODC ’18]

Dual

max%
!∈#

𝑦!

s.t. ∀𝑣 ∈ 𝑉	 ∑!:%∈! 𝑦! ≤ 1

∀𝑒 ∈ 𝐸	 𝑦! ≥ 0

Primal

min%
%∈&

𝑥%

s.t. ∀𝑒 = 𝑢, 𝑣 ∈ 𝐸	 𝑥' + 𝑥% ≥ 1

∀𝑣 ∈ 𝑉	 𝑥% ≥ 0
𝑛	 ≔ number of

vertices
𝑚 ≔	 number of

edges
Δ ≔ max degree

CPSC 768

Simplified (2 + 𝜀)-Approximate Vertex Cover
• LOCAL Algorithm based on Primal-Dual

Method:
• Initially set 𝒚𝒆 =

𝟏
𝚫

• Repeat for iteration 𝒕 until all edges
frozen:

• Freeze vertex 𝒗 and all adjacent
edges if ∑𝒗∈𝒆𝒚𝒆 ≥ 𝟏 − 𝟐𝜺

• For each active (non-frozen)
edge, set 𝒚𝒆 ←

𝒚𝒆
𝟏>𝜺

• Set of frozen vertices is cover

Very Simplified Version of [Ghaffari, Gouleakis, Konrad, Mitrović, Rubinfeld PODC ’18]

Dual

max%
!∈#

𝑦!

s.t. ∀𝑣 ∈ 𝑉	 ∑!:%∈! 𝑦! ≤ 1

∀𝑒 ∈ 𝐸	 𝑦! ≥ 0

Primal

min%
%∈&

𝑥%

s.t. ∀𝑒 = 𝑢, 𝑣 ∈ 𝐸	 𝑥' + 𝑥% ≥ 1

∀𝑣 ∈ 𝑉	 𝑥% ≥ 0
𝑛	 ≔ number of

vertices
𝑚 ≔	 number of

edges
Δ ≔ max degree

CPSC 768

Simplified (2 + 𝜀)-Approximate Vertex Cover
• LOCAL Algorithm based on Primal-Dual

Method:
• Initially set 𝒚𝒆 =

𝟏
𝚫

• Repeat for iteration 𝒕 until all edges
frozen:

• Freeze vertex 𝒗 and all adjacent
edges if ∑𝒗∈𝒆𝒚𝒆 ≥ 𝟏 − 𝟐𝜺

• For each active (non-frozen)
edge, set 𝒚𝒆 ←

𝒚𝒆
𝟏>𝜺

• Set of frozen vertices is cover

Very Simplified Version of [Ghaffari, Gouleakis, Konrad, Mitrović, Rubinfeld PODC ’18]

Dual

max%
!∈#

𝑦!

s.t. ∀𝑣 ∈ 𝑉	 ∑!:%∈! 𝑦! ≤ 1

∀𝑒 ∈ 𝐸	 𝑦! ≥ 0

Primal

min%
%∈&

𝑥%

s.t. ∀𝑒 = 𝑢, 𝑣 ∈ 𝐸	 𝑥' + 𝑥% ≥ 1

∀𝑣 ∈ 𝑉	 𝑥% ≥ 0
𝑛	 ≔ number of

vertices
𝑚 ≔	 number of

edges
Δ ≔ max degree

CPSC 768

Simplified (2 + 𝜀)-Approximate Vertex Cover
• LOCAL Algorithm based on Primal-Dual

Method:
• Initially set 𝒚𝒆 =

𝟏
𝚫

• Repeat for iteration 𝒕 until all edges
frozen:

• Freeze vertex 𝒗 and all adjacent
edges if ∑𝒗∈𝒆𝒚𝒆 ≥ 𝟏 − 𝟐𝜺

• For each active (non-frozen)
edge, set 𝒚𝒆 ←

𝒚𝒆
𝟏>𝜺

• Set of frozen vertices is cover

Very Simplified Version of [Ghaffari, Gouleakis, Konrad, Mitrović, Rubinfeld PODC ’18]

Dual

max%
!∈#

𝑦!

s.t. ∀𝑣 ∈ 𝑉	 ∑!:%∈! 𝑦! ≤ 1

∀𝑒 ∈ 𝐸	 𝑦! ≥ 0

Primal

min%
%∈&

𝑥%

s.t. ∀𝑒 = 𝑢, 𝑣 ∈ 𝐸	 𝑥' + 𝑥% ≥ 1

∀𝑣 ∈ 𝑉	 𝑥% ≥ 0
𝑛	 ≔ number of

vertices
𝑚 ≔	 number of

edges
Δ ≔ max degree

𝑶(𝐥𝐨𝐠	𝒏)
rounds

CPSC 768

Simplified (2 + 𝜀)-Approximate Vertex Cover

• Assume maximum degree 𝚫 = 𝑶 𝒏
𝟏
𝟗

Very Simplified Version of [Ghaffari, Gouleakis, Konrad, Mitrović, Rubinfeld PODC ’18]

CPSC 768

Simplified (2 + 𝜀)-Approximate Vertex Cover

• Assume maximum degree 𝚫 = 𝑶 𝒏
𝟏
𝟗

• Partition the graph into subgraphs of radius 8

Very Simplified Version of [Ghaffari, Gouleakis, Konrad, Mitrović, Rubinfeld PODC ’18]

CPSC 768

Simplified (2 + 𝜀)-Approximate Vertex Cover

• Assume maximum degree 𝚫 = 𝑶 𝒏
𝟏
𝟗

• Partition the graph into subgraphs of radius 8
• Give the entirety of each subgraph to a single machine

Very Simplified Version of [Ghaffari, Gouleakis, Konrad, Mitrović, Rubinfeld PODC ’18]

CPSC 768

Simplified (2 + 𝜀)-Approximate Vertex Cover

• Assume maximum degree 𝚫 = 𝑶 𝒏
𝟏
𝟗

• Partition the graph into subgraphs of radius 8
• Give the entirety of each subgraph to a single machine

• Run the LOCAL algorithm on each machine for
𝐥𝐨𝐠 𝟏

𝟏$𝜺
𝚫

𝟏𝟎

rounds

Very Simplified Version of [Ghaffari, Gouleakis, Konrad, Mitrović, Rubinfeld PODC ’18]

CPSC 768

Simplified (2 + 𝜀)-Approximate Vertex Cover

• Assume maximum degree 𝚫 = 𝑶 𝒏
𝟏
𝟗

• Partition the graph into subgraphs of radius 8
• Give the entirety of each subgraph to a single machine

• Run the LOCAL algorithm on each machine for
𝐥𝐨𝐠 𝟏

𝟏$𝜺
𝚫

𝟏𝟎

rounds
• Find new graph after removing frozen vertices and edges

Very Simplified Version of [Ghaffari, Gouleakis, Konrad, Mitrović, Rubinfeld PODC ’18]

CPSC 768

Simplified (2 + 𝜀)-Approximate Vertex Cover

• Assume maximum degree 𝚫 = 𝑶 𝒏
𝟏
𝟗

• Partition the graph into subgraphs of radius 8
• Give the entirety of each subgraph to a single machine

• Run the LOCAL algorithm on each machine for
𝐥𝐨𝐠 𝟏

𝟏$𝜺
𝚫

𝟏𝟎

rounds
• Find new graph after removing frozen vertices and edges
• Set new radius to 𝟗 and repeat above until graph can fit into

one machine

Very Simplified Version of [Ghaffari, Gouleakis, Konrad, Mitrović, Rubinfeld PODC ’18]

CPSC 768

Simplified (2 + 𝜀)-Approximate Vertex Cover

• Assume maximum degree 𝚫 = 𝑶 𝒏
𝟏
𝟗

• Partition the graph into subgraphs of radius 8
• Give the entirety of each subgraph to a single machine

• Run the LOCAL algorithm on each machine for
𝐥𝐨𝐠 𝟏

𝟏$𝜺
𝚫

𝟏𝟎

rounds
• Find new graph after removing frozen vertices and edges
• Set new radius to 𝟗 and repeat above until graph can fit into

one machine

Why does it work?

Very Simplified Version of [Ghaffari, Gouleakis, Konrad, Mitrović, Rubinfeld PODC ’18]

CPSC 768

Simplified (2 + 𝜀)-Approximate Vertex Cover

• Assume maximum degree 𝚫 = 𝑶 𝒏
𝟏
𝟗

• Partition the graph into subgraphs of radius 8
• Give the entirety of each subgraph to a single machine

• Run the LOCAL algorithm on each machine for
𝐥𝐨𝐠 𝟏

𝟏$𝜺
𝚫

𝟏𝟎

rounds
• Find new graph after removing frozen vertices and edges
• Set new radius to 𝟗 and repeat above until graph can fit into

one machine

In sublinear

memory 𝑶 𝒏
𝟖
𝟗

Very Simplified Version of [Ghaffari, Gouleakis, Konrad, Mitrović, Rubinfeld PODC ’18]

CPSC 768

Simplified (2 + 𝜀)-Approximate Vertex Cover

• Assume maximum degree 𝚫 = 𝑶 𝒏
𝟏
𝟗

• Partition the graph into subgraphs of radius 8
• Give the entirety of each subgraph to a single machine

• Run the LOCAL algorithm on each machine for
𝐥𝐨𝐠 𝟏

𝟏$𝜺
𝚫

𝟏𝟎

rounds
• Find new graph after removing frozen vertices and edges
• Set new radius to 𝟗 and repeat above until graph can fit into

one machine

In sublinear

memory 𝑶 𝒏
𝟖
𝟗

Very Simplified Version of [Ghaffari, Gouleakis, Konrad, Mitrović, Rubinfeld PODC ’18]

Minimum weight on an edge becomes 𝚫>𝟎.𝟗

CPSC 768

Simplified (2 + 𝜀)-Approximate Vertex Cover

• Assume maximum degree 𝚫 = 𝑶 𝒏
𝟏
𝟗

• Partition the graph into subgraphs of radius 8
• Give the entirety of each subgraph to a single machine

• Run the LOCAL algorithm on each machine for
𝐥𝐨𝐠 𝟏

𝟏$𝜺
𝚫

𝟏𝟎

rounds
• Find new graph after removing frozen vertices and edges
• Set new radius to 𝟗 and repeat above until graph can fit into

one machine

Very Simplified Version of [Ghaffari, Gouleakis, Konrad, Mitrović, Rubinfeld PODC ’18]

In sublinear

memory 𝑶 𝒏
𝟖
𝟗

Minimum weight on an edge becomes 𝚫>𝟎.𝟗

Weight on each edge:
𝟏
𝚫
⋅ 𝟏

𝟏*𝜺

,-. 𝟏
𝟏"𝜺

𝚫 /𝟏𝟎
= 𝟏

𝚫
⋅ 𝚫

𝟏
𝟏𝟎 = 𝚫*𝟎.𝟗

CPSC 768

Simplified (2 + 𝜀)-Approximate Vertex Cover

• Assume maximum degree 𝚫 = 𝑶 𝒏
𝟏
𝟗

• Partition the graph into subgraphs of radius 8
• Give the entirety of each subgraph to a single machine

• Run the LOCAL algorithm on each machine for
𝐥𝐨𝐠 𝟏

𝟏$𝜺
𝚫

𝟏𝟎

rounds
• Find new graph after removing frozen vertices and edges
• Set new radius to 𝟗 and repeat above until graph can fit into

one machine

Very Simplified Version of [Ghaffari, Gouleakis, Konrad, Mitrović, Rubinfeld PODC ’18]

In sublinear

memory 𝑶 𝒏
𝟖
𝟗

Minimum weight on an edge becomes 𝚫>𝟎.𝟗

Weight on each edge after 𝒊-iteration:

𝚫*𝟎.𝟗𝒊

CPSC 768

Simplified (2 + 𝜀)-Approximate Vertex Cover

• Assume maximum degree 𝚫 = 𝑶 𝒏
𝟏
𝟗

• Partition the graph into subgraphs of radius 8
• Give the entirety of each subgraph to a single machine

• Run the LOCAL algorithm on each machine for
𝐥𝐨𝐠 𝟏

𝟏$𝜺
𝚫

𝟏𝟎

rounds
• Find new graph after removing frozen vertices and edges
• Set new radius to 𝟗 and repeat above until graph can fit into

one machine

Very Simplified Version of [Ghaffari, Gouleakis, Konrad, Mitrović, Rubinfeld PODC ’18]

In sublinear

memory 𝑶 𝒏
𝟖
𝟗

Minimum weight on an edge becomes 𝚫>𝟎.𝟗

Maximum degree after 𝒊-iteration:

𝟏/(𝚫*𝟎.𝟗𝒊) = 𝚫𝟎.𝟗𝐢

CPSC 768

Simplified (2 + 𝜀)-Approximate Vertex Cover

• Assume maximum degree 𝚫 = 𝑶 𝒏
𝟏
𝟗

• Partition the graph into subgraphs of radius 8
• Give the entirety of each subgraph to a single machine

• Run the LOCAL algorithm on each machine for
𝐥𝐨𝐠 𝟏

𝟏$𝜺
𝚫

𝟏𝟎

rounds
• Find new graph after removing frozen vertices and edges
• Set new radius to 𝟗 and repeat above until graph can fit into

one machine

Very Simplified Version of [Ghaffari, Gouleakis, Konrad, Mitrović, Rubinfeld PODC ’18]

Maximum degree of active vertices is 𝚫𝟎.𝟗

𝑶(log	log	𝒏) rounds
In sublinear

memory 𝑶 𝒏
𝟖
𝟗

Minimum weight on an edge becomes 𝚫>𝟎.𝟗

CPSC 768

Simplified (2 + 𝜀)-Approximate Vertex Cover

• Assume maximum degree 𝚫 = 𝑶 𝒏
𝟏
𝟗

• Partition the graph into subgraphs of radius 8
• Give the entirety of each subgraph to a single machine

• Run the LOCAL algorithm on each machine for
𝐥𝐨𝐠 𝟏

𝟏$𝜺
𝚫

𝟏𝟎

rounds
• Find new graph after removing frozen vertices and edges
• Set new radius to 9 and repeat above until graph can fit into

one machine

Very Simplified Version of [Ghaffari, Gouleakis, Konrad, Mitrović, Rubinfeld PODC ’18]

Removing assumption requires random partition of
vertices + other techniques

𝑶 𝐥𝐨𝐠	𝐥𝐨𝐠 𝒎
𝒏 rounds

[Ghaffari, Jin, Nilis SPAA ’20]

Round compression: 𝑶 log	𝒏 LOCAL →
𝑶 log	log	𝒏 MPC

CPSC 768

Simplified (2 + 𝜀)-Approximate Vertex Cover

• Assume maximum degree 𝚫 = 𝑶 𝒏
𝟏
𝟗

• Partition the graph into subgraphs of radius 8
• Give the entirety of each subgraph to a single machine

• Run the LOCAL algorithm on each machine for
𝐥𝐨𝐠 𝟏

𝟏$𝜺
𝚫

𝟏𝟎

rounds
• Find new graph after removing frozen vertices and edges
• Set new radius to 9 and repeat above until graph can fit into

one machine

Very Simplified Version of [Ghaffari, Gouleakis, Konrad, Mitrović, Rubinfeld PODC ’18]

Removing assumption requires random partition of
vertices + other techniques

𝑶 𝐥𝐨𝐠	𝐥𝐨𝐠 𝒎
𝒏 rounds

[Ghaffari, Jin, Nilis SPAA ’20]

Round compression: 𝑶 log	𝒏 LOCAL →
𝑶 log	log	𝒏 MPC

Fine-grained lower bound
for sublinear space and
𝑜 log	log	𝒏 rounds!

[Ghaffari, Kuhn, Uitto FOCS
‘19]

CPSC 768

Simplified (2 + 𝜀)-Approximate Vertex Cover

• Assume maximum degree 𝚫 = 𝑶 𝒏
𝟏
𝟗

• Partition the graph into subgraphs of radius 8
• Give the entirety of each subgraph to a single machine

• Run the LOCAL algorithm on each machine for
𝐥𝐨𝐠 𝟏

𝟏$𝜺
𝚫

𝟏𝟎

rounds
• Find new graph after removing frozen vertices and edges
• Set new radius to 9 and repeat above until graph can fit into

one machine

Very Simplified Version of [Ghaffari, Gouleakis, Konrad, Mitrović, Rubinfeld PODC ’18]

Removing assumption requires random
partition of vertices + other techniques

𝑶 𝐥𝐨𝐠	𝐥𝐨𝐠 𝒎
𝒏 rounds

[Ghaffari, Jin, Nilis SPAA ’20]

Round compression: 𝑶 log	𝒏 LOCAL →
𝑶 log	log	𝒏 MPC

Fine-grained lower bound
for sublinear space and
𝑜 log	log	𝒏 rounds!

[Ghaffari, Kuhn, Uitto FOCS
‘19]

