CPSC 768: Scalable and Private Graph Algorithms

Lecture 24: Distributed Graph Algorithms

Quanquan C. Liu quanquan.liu@yale.edu

Announcements

- Final project report and presentation: April 24th (last day of class)
 - Final project presentation is a 30 min presentation
- Last day of Open Problem Sessions: April 26th (last week of classes)
 - Will be turned into a reading group/continue with OPS, stay tuned!

Traditional Distributed Graph Algorithms

 The input graph is not only the input but also represents the communication graph

Traditional Distributed Graph Algorithms

- The input graph is not only the input but also represents the communication graph
- Nodes can send messages along edges in synchronous rounds

Traditional Distributed Graph Algorithms

- The input graph is not only the input but also represents the communication graph
- Nodes can send messages along edges in synchronous rounds

CPSC 768

Each Node is a Processor/Machine

Edges are Communication Links

Broadcast model: if a node wants to send a message, it must send all the same message to all neighbors simultaneously in the round

Nodes Send Messages to Other Nodes Via Edges

Broadcast model: if a node wants to send a message, it must send all the same message to all neighbors simultaneously in the round

Point-to-point message passing: Nodes Can Choose to Send to Some/All Neighbors

Nodes Use Multiple Rounds of Communication to Send Messages

Each Round Nodes Can Send to Same or Different Neighbors

CPSC 768

Multiple Rounds of Communication

> Too many rounds: takes too long and sends too many messages

Message Complexity Number of Messages Sent in Total

Several Caveats

Diameter longest shortest path between any two nodes

• Information propagation requires **diameter** number of rounds

Several Caveats

Diameter longest shortest path between any two nodes

Can only model purely decentralized networks

Can lead to very high round complexity

Can lead to very high round complexity

Example: Triangle Counting with no restrictions on message size

Can lead to very high round complexity

Example: Triangle Counting with no restrictions on message size

Can lead to very high round complexity

Can lead to very high round complexity

Can lead to very high round complexity

- Can lead to very high round complexity
- Triangle counting in CONGEST:

- Can lead to very high round complexity
- Triangle counting in CONGEST:
 - $\tilde{o}(n^{\frac{1}{2}})$ rounds [Chang, Pettie, Zhang SODA '19]
 - Large gap from LOCAL model (unrestricted message size)

• Classic $O(\log^*(n))$ of Cole and Vishkin '86

- Classic $O(\log^*(n))$ of Cole and Vishkin '86
 - Number of logarithms (base 2) to get down to 2

- Classic $O(\log^*(n))$ of Cole and Vishkin '86
 - Number of logarithms (base 2) to get down to 2
 - $\forall x \leq 2$: $\log^*(x) \coloneqq 1$; $\forall x > 2$: $\log^*(x) \coloneqq 1 + \log^*(\log(x))$

- Classic $O(\log^*(n))$ of Cole and Vishkin '86
 - Number of logarithms (base 2) to get down to 2
 - $\forall x \leq 2$: $\log^*(x) \coloneqq 1$; $\forall x > 2$: $\log^*(x) \coloneqq 1 + \log^*(\log(x))$
- Idea: Each node has label of log(n) bits
 - Each round compute label of exponentially smaller size that is still valid coloring

- Algorithm:
 - Initially each node has ID of color c_v of $\log n$ bits
 - Each node executes and repeats:

- Algorithm:
 - Initially each node has ID of color c_v of $\log n$ bits
 - Each node executes and repeats:
 - Send own color c_v to children

- Algorithm:
 - Initially each node has ID of color c_v of $\log n$ bits
 - Each node executes and repeats:
 - Send own color c_v to children
 - Receive parent color c_p

- Algorithm:
 - Initially each node has ID of color c_v of $\log n$ bits
 - Each node executes and repeats:
 - Send own color c_v to children
 - Receive parent color c_p
 - Write c_v and c_p in bits

- Algorithm:
 - Initially each node has ID of color c_v of $\log n$ bits
 - Each node executes and repeats:
 - Send own color c_v to children
 - Receive parent color c_p
 - Write c_v and c_p in bits
 - Let *i* be index of rightmost bit *b* where c_v and c_p differ

- Algorithm:
 - Initially each node has ID of color c_v of $\log n$ bits
 - Each node executes and repeats:
 - Send own color c_v to children
 - Receive parent color c_p
 - Write c_v and c_p in bits
 - Let *i* be index of rightmost bit *b* where c_v and c_p differ
 - Node v's new color is 2i concatenated with b

- Algorithm:
 - Initially each node has ID of color c_v of $\log n$ bits
 - Each node executes and repeats:
 - Send own color c_v to children
 - Receive parent color c_p
 - Write c_v and c_p in bits
 - Let *i* be index of rightmost bit *b* where c_v and c_p differ
 - Node v's new color is 2i concatenated with b
 - Stop when $c_v \in \{0, ..., 5\}$ for all nodes

• Example Run:

 Grandparent
 0010101001

 Parent
 0010110001

 Child
 0001110001

• Example Run:

 Grandparent
 0010101001

 Parent
 0010110001

 Child
 0001110001

CPSC 768

Grandparent	0010101001	1101
Parent	0010110001	1100
Child	000 1 110001	

Grandparent	0010101001	01101
Parent	0010110001	01100
Child	000 1 110001	11001

Grandparent	0010101001	01101	01
	0010110001		
Child	0001110001	1100 1	01

• Why does it work?

- Why does it work?
 - Either parent/grandparent differ in a different index from parent/child

- Why does it work?
 - Either parent/grandparent differ in a different index from parent/child
 - First part is different

- Why does it work?
 - Either parent/grandparent differ in a different index from parent/child
 - First part is different
 - Or parent/grandparent and parent/child differ in same index

- Why does it work?
 - Either parent/grandparent differ in a different index from parent/child
 - First part is different
 - Or parent/grandparent and parent/child differ in same index
 - First part is same

- Why does it work?
 - Either parent/grandparent differ in a different index from parent/child
 - First part is different
 - Or parent/grandparent and parent/child differ in same index
 - First part is same
 - Last bit differs—second part is different

Runtime:
$$O(\log^*(n))$$

Another Distributed Model (More Modern)

- Used by Google and other companies
- Massively parallel computation (MPC Model)

- M machines
- Synchronous rounds

- *M* machines
- Synchronous rounds

- M machines
- Synchronous rounds

- M machines
- Synchronous rounds

Complexity measures:

- Total Space
- Space Per Machine
- Rounds of communication

Total Space: $M \cdot S$

CPSC 768

Comparison of Models

 $n \coloneqq$ number of vertices $m \coloneqq$ number of edges

Measure	Database Theory	Algorithms
Load/Space per Machine	$L = N/p^{\frac{1}{c}}$	S
Total Space	$p \cdot L$	$T = \tilde{O}(n+m)$
Input	N	n, m, N
Rounds	r	r
# Machines	p	M = T/S

CPSC 768

- Strongly sublinear memory:
 - $S = n^{\delta}$ for some constant $\delta \in (0, 1)$

- Strongly sublinear memory:
 - $S = n^{\delta}$ for some constant $\delta \in (0, 1)$
- Near-linear memory:
 - $S = \widetilde{\Theta}(n)$ (ignoring poly(log(n)) factors)

- Strongly sublinear memory:
 - $S = n^{\delta}$ for some constant $\delta \in (0, 1)$
- Near-linear memory:
 - $S = \widetilde{\Theta}(n)$ (ignoring poly(log(n)) factors)
- Strongly superlinear memory:
 - $S = n^{1+\delta}$ for some constant $\delta > 0$

- Strongly sublinear memory:
 - $S = n^{\delta}$ for some constant $\delta \in (0, 1)$
- Near-linear memory:
 - $S = \widetilde{\Theta}(n)$ (ignoring poly(log(n)) factors)
- Strongly superlinear memory:
 - $S = n^{1+\delta}$ for some constant $\delta > 0$

Also want: $O(\log \log n)$ or O(1) rounds

- Strongly sublinear memory:
 - $S = n^{\delta}$ for some constant $\delta \in (0, 1)$
- Near-linear memory:
 - $S = \widetilde{\Theta}(n)$ (ignoring poly(log(n)) factors)
- Strongly superlinear memory:
 - $S = n^{1+\delta}$ for some constant $\delta > 0$

Also want: $O(\log \log n)$ or O(1) rounds

Also want: $\widetilde{O}(n+m)$ total space

- Strongly sublinear memory:
 - $S = n^{\delta}$ for some constant $\delta \in (0, 1)$
- Near-linear memory:
 - $S = \widetilde{\Theta}(n)$ (ignoring poly(log(n)) factors)
- Strongly superlinear memory:
 - $S = n^{1+\delta}$ for some constant $\delta > 0$

Also want: $O(\log \log n)$ or O(1) rounds

Also want: $\widetilde{O}(n+m)$ total space

All are **sublinear in number of edges** *m* in graph

Graph Algorithms in MPC Model

- Matching and MIS [BBDFHKU19, BHH19, GGKMR19, CLMMOS18, NO21, FHO22, GGM22, ALT21, LKK23]
- Connectivity [ASSWZ18, BDELM19, DDKPSS19]
- Graph sparsification [GU19, CDP20]
- Vertex cover [Assadi17, GGKMR18, GJN20]
- MST and 2-edge connectivity [NO21, FHO22]
- Well-connected components [ASW18, ASW19]
- Coloring [BDHKS19, CFGUZ19]
- Subgraph counting [CC11, SV11, BELMR22]

• Sum of N integers: given N integers, compute the sum

- <u>Sum of *N* integers</u>: given *N* integers, compute the sum
- Counting distinct elements: given N integers over some universe U give the count of the number of distinct elements

- <u>Sum of *N* integers</u>: given *N* integers, compute the sum
- Counting distinct elements: given N integers over some universe U give the count of the number of distinct elements
- **Prefix sum**: given *N* integers in order $I_1, I_2, ..., I_n$, compute the prefix sums $\sigma_1, \sigma_2, ..., \sigma_n$ where $\sigma_i = \sum_{j=1}^i I_j$

- <u>Sum of *N* integers</u>: given *N* integers, compute the sum
- Counting distinct elements: given N integers over some universe U give the count of the number of distinct elements
- **Prefix sum**: given *N* integers in order $I_1, I_2, ..., I_n$, compute the prefix sums $\sigma_1, \sigma_2, ..., \sigma_n$ where $\sigma_i = \sum_{j=1}^i I_j$
- <u>Sorting</u>: given *N* integers, sort the integers

Round Compression

 Goal: Simulate multiple rounds of an iterative LOCAL algorithm with a single MPC round

Synchronous distributed algorithm where each node is a processor/computer

- Synchronous distributed algorithm where each node is a processor/computer
- In one synchronous round of communication, each node, in order:

- Synchronous distributed algorithm where each node is a processor/computer
- In one synchronous round of communication, each node, in order:
 - Performs local computation

- Synchronous distributed algorithm where each node is a processor/computer
- In one synchronous round of communication, each node, in order:
 - Performs local computation
 - Sends a **point-to-point message** to each of its neighbors

- Synchronous distributed algorithm where each node is a processor/computer
- In one synchronous round of communication, each node, in order:
 - Performs local computation
 - Sends a **point-to-point message** to each of its neighbors
 - Receives a message from each of its neighbors

 Goal: Simulate multiple rounds of an iterative LOCAL algorithm with a single MPC round

- Goal: Simulate multiple rounds of an iterative LOCAL algorithm with a single MPC round
- <u>Procedure</u>: Pick appropriate subgraphs of sufficiently small size

- Goal: Simulate multiple rounds of an iterative LOCAL algorithm with a single MPC round
- <u>Procedure</u>: Pick appropriate subgraphs of sufficiently small size
- Send each subgraph to one machine

- Goal: Simulate multiple rounds of an iterative LOCAL algorithm with a single MPC round
- <u>Procedure</u>: Pick appropriate subgraphs of sufficiently small size
- Send each subgraph to one machine
- Simulate LOCAL algorithm ${\mathcal A}$ on each machine

- Goal: Simulate multiple rounds of an iterative LOCAL algorithm with a single MPC round
- <u>Procedure</u>: Pick appropriate subgraphs of sufficiently small size
- Send each subgraph to one machine
- Simulate LOCAL algorithm ${\mathcal A}$ on each machine
- Each machine sends results of simulation

Minimum Vertex Cover

- Each edge in graph is **covered** by an endpoint
- Find the minimum number of endpoints that cover every edge

 $(2 + \varepsilon)$ -Approximate Vertex Cover [Ghaffari, Gouleakis, Konrad, Mitrović, Rubinfeld PODC '18]

Near-linear space per machine in *O*(log log *n*) rounds

 $(2 + \varepsilon)$ -Approximate Vertex Cover [Ghaffari, Gouleakis, Konrad, Mitrović, Rubinfeld PODC '18]

Near-linear space per machine in $O(\log \log n)$ rounds

Simplified version

CPSC 768

• LOCAL Algorithm based on Primal-Dual Method:

CPSC 768

• LOCAL Algorithm based on Primal-Dual Method:

CPSC 768

CPSC 768

LOCAL Algorithm based on Primal-Dual Method:

Primal (v) $x_u + \frac{x_v}{x_v} \ge 1$ $\min \sum_{v \in V} x_v$ s.t. $\forall e = (u, v) \in E \quad x_u + x_v \ge 1$ $\forall v \in V \quad x_v \geq 0$

(u)

 $y_{e_1} + y_{e_2} + y_{e_3} \le 1$

• LOCAL Algorithm based on Primal-Dual Method:

CPSC 768

• LOCAL Algorithm based on Primal-Dual Method:

CPSC 768

- LOCAL Algorithm based on Primal-Dual Method:
 - Initially set $y_e = \frac{1}{\Delta}$

Very Simplified Version of [Ghaffari, Gouleakis, Konrad, Mitrović, Rubinfeld PODC '18]

CPSC 768

CPSC 768

- LOCAL Algorithm based on Primal-Dual Method:
 - Initially set $y_e = \frac{1}{\Delta}$
 - Repeat for **iteration** *t* until all edges frozen:

CPSC 768

- LOCAL Algorithm based on Primal-Dual Method:
 - Initially set $y_e = \frac{1}{\Delta}$
 - Repeat for **iteration** *t* until all edges frozen:
 - Freeze vertex v and all adjacent edges if $\sum_{v \in e} y_e \ge 1 2\varepsilon$

CPSC 768

- LOCAL Algorithm based on Primal-Dual Method:
 - Initially set $y_e = \frac{1}{\Delta}$
 - Repeat for **iteration** *t* until all edges frozen:
 - Freeze vertex v and all adjacent edges if $\sum_{v \in e} y_e \ge 1 2\varepsilon$
 - For each active (non-frozen) edge, set $y_e \leftarrow \frac{y_e}{1-\varepsilon}$

CPSC 768

- LOCAL Algorithm based on Primal-Dual Method:
 - Initially set $y_e = \frac{1}{\Delta}$
 - Repeat for **iteration** *t* until all edges frozen:
 - Freeze vertex v and all adjacent edges if $\sum_{v \in e} y_e \ge 1 2\varepsilon$
 - For each active (non-frozen) edge, set $y_e \leftarrow \frac{y_e}{1-\epsilon}$
 - Set of frozen vertices is cover

CPSC 768

- LOCAL Algorithm based on Primal-Dual Method:
 - Initially set $y_e = \frac{1}{\Delta}$
 - Repeat for **iteration** *t* until all edges frozen:
 - Freeze vertex v and all adjacent edges if $\sum_{v \in e} y_e \ge 1 2\varepsilon$
 - For each active (non-frozen) edge, set $y_e \leftarrow \frac{y_e}{1-\epsilon}$
 - Set of frozen vertices is cover

O(log n) rounds

 $n \coloneqq \text{number of}$ vertices $m \coloneqq \text{number of}$ edges $\Delta \coloneqq \text{max degree}$

CPSC 768

• Assume maximum degree $\Delta = O(n^{\frac{1}{9}})$

CPSC 768

- Assume maximum degree $\Delta = O(n^{\frac{1}{9}})$
 - Partition the graph into subgraphs of radius 8

- Assume maximum degree $\Delta = O(n^{\frac{1}{9}})$
 - Partition the graph into subgraphs of radius 8
 - Give the entirety of each subgraph to a single machine

- Assume maximum degree $\Delta = O(n^{\frac{1}{9}})$
 - Partition the graph into subgraphs of radius 8
 - Give the entirety of each subgraph to a single machine $\log_1(\Delta)$
 - Run the LOCAL algorithm on each machine for $\frac{1-\varepsilon}{1-\varepsilon}$ rounds

CPSC 768

- Assume maximum degree $\Delta = O(n^{\frac{1}{9}})$
 - Partition the graph into subgraphs of radius 8
 - Give the entirety of each subgraph to a single machine $\log_1 (\Delta)$
 - Run the LOCAL algorithm on each machine for $\frac{1-\epsilon}{10}$ rounds

CPSC 768

• Find new graph after removing frozen vertices and edges

- Assume maximum degree $\Delta = O(n^{\frac{1}{9}})$
 - Partition the graph into subgraphs of radius 8
 - Give the entirety of each subgraph to a single machine $\log_1(\Delta)$
 - Run the LOCAL algorithm on each machine for $\frac{\overline{1-\varepsilon}}{10}$ rounds

CPSC 768

- Find new graph after removing frozen vertices and edges
- Set new radius to 9 and repeat above until graph can fit into one machine

- Assume maximum degree $\Delta = O(n^{\frac{1}{9}})$
 - Partition the graph into subgraphs of radius 8
 - Give the entiret

Why does it work?

- Run the LOCA rounds
- hine for $\frac{\log_{1}(\Delta)}{1-\varepsilon}$
- Find new graph after removing frozen vertices and edges
- Set new radius to 9 and repeat above until graph can fit into one machine

CPSC 768

Very Simplified Version of [Ghaffari, Gouleakis, Konrad, Mitrović, Rubinfeld PODC '18]

single machine

- Assume maximum degree $\Delta = O(n^{\frac{1}{9}})$
 - Partition the graph into subgraphs of radius 8
 - Give the entirety of each subgraph to a single machine $\log_1 (\Delta)$
 - Run the LOCAL algorithm on each machine for $\frac{\overline{1-\varepsilon}}{10}$ rounds

CPSC 768

- Find new graph after removing frozen vertices and edges
- Set new radius to 9 and repeat above until graph can fit into one machine

Very Simplified Version of [Ghaffari, Gouleakis, Konrad, Mitrović, Rubinfeld PODC '18]

In sublinear

memory $O(n^{\frac{8}{9}})$

- Assume maximum degree $\Delta = O(n^{\frac{1}{9}})$
 - Partition the graph into subgraphs of radius 8
 - Give the entirety of each subgraph to a single machine $\log_1 (\Delta)$
 - Run the LOCAL algorithm on each machine for $\frac{\overline{1-\varepsilon}}{10}$ rounds Minimum weight on an edge becomes $\Delta^{-0.9}$

CPSC 768

- Find new graph after removing frozen vertices and edges
- Set **new radius to 9** and repeat above until graph can fit into one machine

Very Simplified Version of [Ghaffari, Gouleakis, Konrad, Mitrović, Rubinfeld PODC '18]

In sublinear

memory $O(n^{\frac{8}{9}})$

- Find new graph after removing frozen vertices and edges
- Set new radius to 9 and repeat above until graph can fit into one machine

CPSC 768

 Set new radius to 9 and repeat above until graph can fit into one machine

CPSC 768

Maximum degree after *i*-iteration:

$$1/(\Delta^{-0.9^{i}}) = \Delta^{0.9^{i}}$$

In sublinear memory $oldsymbol{o}ig(n^{rac{8}{9}}ig)$

 $\log_1(\Delta)$

• Run the LOCAL algorithm on each machine for $\frac{1-\varepsilon}{10}$ rounds Minimum weight on an edge becomes $\Delta^{-0.9}$

CPSC 768

- Find new graph after removing frozen vertices and edges
- Set new radius to 9 and repeat above until graph can fit into one machine

Very Simplified Version of [Ghaffari, Gouleakis, Konrad, Mitrović, Rubinfeld PODC '18]

ius 8

single machine

- Find new graph after removing frozen vertices and edges
- Set **new radius to 9** and repeat above until graph can fit into one machine Maximum degree of active vertices is $\Delta^{0.9}$

CPSC 768

Round compression: $O(\log n)$ LOCAL \rightarrow $O(\log \log n)$ MPC

Removing assumption requires random partition of vertices + other techniques

Tounds

Assume

Partif

Find new grapl
Set new radiu one machine

$$O\left(\log\log\left(\frac{m}{n}\right)\right)$$
 rounds

es and edges raph can fit into

[Ghaffari, Jin, Nilis SPAA '20]

CPSC 768

Round compression: $O(\log n)$ LOCAL \rightarrow $O(\log \log n)$ MPC

Removing assumption requires random partition of vertices + other techniques

Fine-grained lower bound for sublinear space and $o(\log \log n)$ rounds! [Ghaffari, Kuhn, Uitto FOCS '19]

Assume

Partif

$$O\left(\log\log\left(\frac{m}{n}\right)\right)$$
 rounds

es and edges raph can fit into

[Ghaffari, Jin, Nilis SPAA '20]

Very Simplified Version of [Ghaffari, Gouleakis, Konrad, Mitrović, Rubinfeld PODC '18]

CPSC 768

Round compression: $O(\log n)$ LOCAL \rightarrow $O(\log \log n)$ MPC

Removing assumption requires random partition of vertices + other techniques

Assume

Partif

$$O\left(\log\log\left(\frac{m}{n}\right)\right)$$
 rounds

es and edges raph can fit into

[Ghaffari, Jin, Nilis SPAA '20]

CPSC 768