CPSC 768: Scalable and Private Graph Algorithms

Lecture 23: Algorithms Engineering: Theory-in-Practice

> Quanquan C. Liu quanquan.liu@yale.edu

> > **CPSC 768**

Announcements

- Final project report and presentation: April 24th (last day of class)
 - Final project presentation is a 30 min presentation
- Last day of Open Problem Sessions: April 26th (last week of classes)
 - Will be turned into a reading group/continue with OPS, stay tuned!

Continued: Parallel Low Diameter Decomposition

• **Problem:** Decompose the graph into clusters where the distance between any two nodes in a cluster is at most α and the number of edges that go between clusters is at most βm

Continued: Parallel Low Diameter Decomposition

- **Problem:** Decompose the graph into clusters where the distance between any two nodes in a cluster is at most α and the number of edges that go between clusters is at most βm
 - (α , β)- low diameter decomposition

Continued: Parallel Low Diameter Decomposition

- **Problem:** Decompose the graph into clusters where the distance between any two nodes in a cluster is at most α and the number of edges that go between clusters is at most βm
 - (α , β)- low diameter decomposition

- Grow balls around carefully selected vertices in the input graph
- How do we select the vertices?

- Grow balls around carefully selected vertices in the input graph
- How do we select the vertices?
 - From **exponential distribution** with parameter β

- Grow balls around carefully selected vertices in the input graph
- How do we select the vertices?
 - From **exponential distribution** with parameter β
 - Start growing from vertices where start times are randomly shifted by exponential distribution

- Grow balls around carefully selected vertices in the input graph
- How do we select the vertices?
 - From **exponential distribution** with parameter β
 - Start growing from vertices where start times are randomly shifted by exponential distribution
 - Expand the radius using BFS

- Grow balls around carefully selected vertices in the input graph
- How do we select the vertices?
 - From **exponential distribution** with parameter β
 - Start growing from vertices where start times are randomly shifted by exponential distribution
 - Expand the radius using BFS
 - Vertex assigned to first edge that hits it

• PDF of exponential distribution:

•
$$p(x) = \beta e^{-\beta x}$$

• CDF of exponential distribution:

•
$$c(x) = 1 - e^{-\beta x}$$

• PDF of exponential distribution:

•
$$p(x) = \beta e^{-\beta x}$$

CDF of exponential distribution:

•
$$c(x) = 1 - e^{-\beta x}$$

• Exponential Function is memoryless:

•
$$P[X > a + b | X > a] = P[X > b]$$

• PDF of exponential distribution:

•
$$p(x) = \beta e^{-\beta x}$$

CDF of exponential distribution:

•
$$c(x) = 1 - e^{-\beta x}$$

• Exponential Function is memoryless:

•
$$P[X > a + b | X > a] = P[X > b]$$

• Each vertex v picks time δ_v from exponential distribution

• PDF of exponential distribution:

•
$$p(x) = \beta e^{-\beta x}$$

CDF of exponential distribution:

•
$$c(x) = 1 - e^{-\beta x}$$

• Exponential Function is memoryless:

•
$$P[X > a + b | X > a] = P[X > b]$$

• Each vertex v picks time δ_v from exponential distribution

• Use start time
$$T_v = \delta_{\max} - \delta_v$$
 where $\delta_{\max} = \max_{v \in V} (\delta_v)$

Backwards Exponential Distribution: very few to start, more towards the end

• Example Run:

CPSC 768

First: everyone picks value from exponential distribution

- Analysis of Low Diameter:
 - Let $C_u = \operatorname{argmin}_{u \in V} (T_v + d(u, v))$
 - Maximum radius is $O\left(\frac{\log(n)}{\beta}\right)$ with high probability

- Analysis of Low Diameter:
 - Let $C_u = \operatorname{argmin}_{u \in V} (T_v + d(u, v))$
 - Maximum radius is $O\left(\frac{\log(n)}{\beta}\right)$ with high probability
 - What is the radius bounded by?

- Analysis of Low Diameter:
 - Let $C_u = \operatorname{argmin}_{u \in V} (T_v + d(u, v))$
 - Maximum radius is $O\left(\frac{\log(n)}{\beta}\right)$ with high probability
 - What is the radius bounded by?
 - All radius bounded by $\delta_{
 m max}$

- Analysis of Low Diameter:
 - Let $C_u = \operatorname{argmin}_{u \in V} (T_v + d(u, v))$
 - Maximum radius is $O\left(\frac{\log(n)}{\beta}\right)$ with high probability
 - What is the radius bounded by?
 - All radius bounded by $\delta_{
 m max}$
 - Simplified: just need to bound δ_{max} using CDF of exponential distribution

- Analysis of Low Diameter:
 - Let $C_u = \operatorname{argmin}_{u \in V} (T_v + d(u, v))$
 - Maximum radius is $O\left(\frac{\log(n)}{\beta}\right)$ with high probability
 - What is the radius bounded by?
 - All radius bounded by δ_{\max}
 - Simplified: just need to bound δ_{max} using CDF of exponential distribution

•
$$P\left[\delta_{v} > \frac{c\log n}{\beta}\right] = 1 - P\left[\delta_{v} \le \frac{c\log n}{\beta}\right] = 1 - \left(1 - e^{-c\log n}\right) = \frac{1}{n^{c}}$$

- Analysis of Low Diameter:
 - Let $C_u = \operatorname{argmin}_{u \in V} (T_v + d(u, v))$
 - Maximum radius is $O\left(\frac{\log(n)}{\beta}\right)$ with high probability
 - What is the radius bounded by?
 - All radius bounded by δ_{\max}
 - Simplified: just need to bound δ_{max} using CDF of exponential distribution

•
$$P\left[\delta_{v} > \frac{c\log n}{\beta}\right] = 1 - P\left[\delta_{v} \le \frac{c\log n}{\beta}\right] = 1 - \left(1 - e^{-c\log n}\right) = \frac{1}{n^{c}}$$

Union bound over all vertices: $P\left[\delta_{\max} > \frac{c \log n}{\beta}\right] \le \frac{1}{n^{c-1}}$

CPSC 768

Analysis of Number of Edges between Clusters:

• βm edges cut **in expectation**

- βm edges cut in expectation
- Show that probability for any edge (u, v), when fixing the midpoint w, the probability of the smallest and second smallest value of $\{T_v + d(v, w) \mid v \in V\}$ differs by at most 1 is upper bounded by β

- βm edges cut in expectation
- Show that probability for any edge (u, v), when fixing the midpoint w, the probability of the smallest and second smallest value of $\{T_v + d(v, w) \mid v \in V\}$ differs by at most 1 is upper bounded by β
 - Why is this enough?

- βm edges cut in expectation
- Show that probability for any edge (u, v), when fixing the midpoint w, the probability of the smallest and second smallest value of $\{T_v + d(v, w) \mid v \in V\}$ differs by at most 1 is upper bounded by β
 - Why is this enough?
 - Only time edge is between clusters

- βm edges cut in expectation
- Show that probability for any edge (u, v), when fixing the midpoint w, the probability of the smallest and second smallest value of $\{T_v + d(v, w) \mid v \in V\}$ differs by at most 1 is upper bounded by β
 - Why is this enough?
 - Only time edge is between clusters
- Due to memoryless property, can use CDF $c(x) = 1 e^{-\beta x}$

- βm edges cut in expectation
- Show that probability for any edge (u, v), when fixing the midpoint w, the probability of the smallest and second smallest value of $\{T_v + d(v, w) \mid v \in V\}$ differs by at most 1 is upper bounded by β
 - Why is this enough?
 - Only time edge is between clusters
- Due to memoryless property, can use CDF $c(x) = 1 e^{-\beta x}$
 - Fix time for one endpoint, probability other endpoint within one of that time is at most $1 e^{-\beta}$

- Analysis of Number of Edges between Clusters:
 - Due to memoryless property, given CDF $c(x) = 1 e^{-\beta x}$
 - Fix time for one endpoint, probability other endpoint within one of that time is at most $1 e^{-\beta}$
 - $1 e^{-\beta} < \beta$ for $\beta > 0$ using Taylor series
 - Hence, for any edge marginal probability edge is in cut is $\pmb{\beta}$
 - Expected number of edges in cut: βm

Algorithms Engineering: Theory-in-Practice

• What is algorithm engineering?

Uses slides from MIT 6.506 Algorithms Engineering
- What is algorithm engineering?
 - Algorithm design

- What is algorithm engineering?
 - Algorithm design
 - Algorithm analysis

- What is algorithm engineering?
 - Algorithm design
 - Algorithm analysis
 - Algorithm implementation

- What is algorithm engineering?
 - Algorithm design
 - Algorithm analysis
 - Algorithm implementation
 - Optimization

- What is algorithm engineering?
 - Algorithm design
 - Algorithm analysis
 - Algorithm implementation
 - Optimization
 - Profiling

- What is algorithm engineering?
 - Algorithm design
 - Algorithm analysis
 - Algorithm implementation
 - Optimization
 - Profiling
 - Experimental evaluation

- What is algorithm engineering?
 - Algorithm design
 - Algorithm analysis
 - Algorithm implementation
 - Optimization
 - Profiling
 - Experimental evaluation

- What is algorithm engineering?
 - Algorithm design
 - Algorithm analysis
 - Algorithm implementation
 - Optimization
 - Profiling
 - Experimental evaluation

Requires depth understanding of both

• How does one bridge theory and practice?

How does one bridge theory and practice?
Use empirical findings to inform theory

- How does one bridge theory and practice?
 - Use empirical findings to inform theory
 - Use theory to build confidence that algorithms will perform well in many different settings
 - Heuristics do not guarantee this!

- How does one bridge theory and practice?
 - Use empirical findings to inform theory
 - Use theory to build confidence that algorithms will perform well in many different settings
 - Heuristics do not guarantee this!
 - Ability to **predict performance** (e.g. in real-time applications)

- How does one bridge theory and practice?
 - Use empirical findings to inform theory
 - Use theory to build confidence that algorithms will perform well in many different settings
 - Heuristics do not guarantee this!
 - Ability to **predict performance** (e.g. in real-time applications)
 - Develop good theoretical models that model real architectures

- A history:
 - Early days, standard practice to implement algorithms you design

- A history:
 - Early days, standard practice to implement algorithms you design
 - 1970s-1980s: Algorithm theory developed as a sub-discipline in CS used for "paper and pencil" work

- A history:
 - Early days, standard practice to implement algorithms you design
 - 1970s-1980s: Algorithm theory developed as a sub-discipline in CS used for "paper and pencil" work
 - Late 1980s-1990s: Researchers began noticing gaps between theory and practice

- A history:
 - Early days, standard practice to implement algorithms you design
 - 1970s-1980s: Algorithm theory developed as a sub-discipline in CS used for "paper and pencil" work
 - Late 1980s-1990s: Researchers began noticing gaps
 between theory and practice
 - 1997: First Workshop on Algorithm Engineering by P. Italiano (now part of ESA)

- A history:
 - Early days, standard practice to implement algorithms you design
 - 1970s-1980s: Algorithm theory developed as a sub-discipline in CS used for "paper and pencil" work
 - Late 1980s-1990s: Researchers began noticing gaps
 between theory and practice
 - 1997: First Workshop on Algorithm Engineering by P. Italiano (now part of ESA)
 - Now, many conferences on algorithms engineering ALENEX, SEA, ICML, NeurIPS, IJCAI etc.

What is Algorithm Engineering?

Uses slides from MIT 6.506 Algorithms Engineering

Source: "Algorithm Engineering – An Attempt at a Definition", Peter Sanders

CPSC 768

- Random-Access Machine (RAM)
 - Infinite Memory

- Random-Access Machine (RAM)
 - Infinite Memory
 - Arithmetic operations, logical operations, and memory accesses take O(1) time

- Random-Access Machine (RAM)
 - Infinite Memory
 - Arithmetic operations, logical operations, and memory accesses take O(1) time
 - Most sequential algorithms are designed in this model (intro to algorithms courses)

- Random-Access Machine (RAM)
 - Infinite Memory
 - Arithmetic operations, logical operations, and memory accesses take O(1) time
 - Most sequential algorithms are designed in this model (intro to algorithms courses)
- Nowadays computers are much more complex

- Nowadays computers are much more complex
 - Deep cache hierarchies

- Nowadays computers are much more complex
 - Deep cache hierarchies
 - Instruction level parallelism

- Nowadays computers are much more complex
 - Deep cache hierarchies
 - Instruction level parallelism
 - Multiple cores

- Nowadays computers are much more complex
 - Deep cache hierarchies
 - Instruction level parallelism
 - Multiple cores
 - Multiple machines

Nowadays computers are much more complex

- Deep cache hierarchies
- Instruction level parallelism
- Multiple cores
- Multiple machines
- Disk if input doesn't fit in main memory

Nowadays computers are much more complex

- Deep cache hierarchies
- Instruction level parallelism
- Multiple cores
- Multiple machines
- Disk if input doesn't fit in main memory
- Asymmetric read-write costs in non-volatile memory

- Difference in asymptotic complexities:
 - Algorithm 1: $N \log_2(N)$
 - Algorithm 2: 1000 N
 - Which one is practically better?

- Difference in asymptotic complexities:
 - Algorithm 1: $N \log_2(N)$
 - Algorithm 2: 1000 N
 - First, algorithm, $\log_2(\# \text{ of particles in the universe}) < 300$

- Difference in asymptotic complexities:
 - Algorithm 1: $N \log_2(N)$
 - Algorithm 2: 1000 N
 - First, algorithm, $\log_2(\# \text{ of particles in the universe}) < 300$
 - Constant factors matter!

- Difference in asymptotic complexities:
 - Algorithm 1: $N \log_2(N)$
 - Algorithm 2: 1000 N
 - First, algorithm, $\log_2(\# \text{ of particles in the universe}) < 300$
 - Constant factors matter!
 - Avoid unnecessary computations

- Difference in asymptotic complexities:
 - Algorithm 1: $N \log_2(N)$
 - Algorithm 2: 1000 N
 - First, algorithm, $\log_2(\# \text{ of particles in the universe}) < 300$
 - Constant factors matter!
 - Avoid unnecessary computations
 - Simplicity improves practicality and leads to better performance

Consider tradeoffs:

- Time vs. space tradeoffs
- Work vs. parallelism tradeoffs

Implementations

- Write clean, modular code
- Write correctness checkers
- Save previous versions of your code!
Implementations

Write clean, modular code

- Easier to experiment with different methods, and save a lot of development time when adding new features
- Write correctness checkers
 - Especially important in numerical and geometric applications because of floating-point arithmetic errors and nondeterminism, different results from different runs!
- Save previous versions of your code!
 - Version control always! If you need to rollback changes!

- Test code using timers and performance profilers
 - Perf, gprof, valgrind

- Test code using timers and performance profilers
 Perf, gprof, valgrind
- Use large variety of inputs (both real-world and synthetic) ensures implementation is robust for many different environments

- Test code using timers and performance profilers
 Perf, gprof, valgrind
- Use large variety of inputs (both real-world and synthetic) ensures implementation is robust for many different environments
 - Use different sizes

- Test code using timers and performance profilers
 - Perf, gprof, valgrind
- Use large variety of inputs (both real-world and synthetic) ensures implementation is robust for many different environments
 - Use different sizes
 - Use worst-case inputs to identify correctness or performance issues

- Test code using timers and performance profilers
 - Perf, gprof, valgrind
- Use large variety of inputs (both real-world and synthetic) ensures implementation is robust for many different environments
 - Use different sizes
 - Use worst-case inputs to identify correctness or performance issues
- Reproducibility

Reproducibility

Document environmental setup

Uses slides from MIT 6.506 Algorithms Engineering

- Document environmental setup
- Fix random seeds if needed

- Document environmental setup
- Fix random seeds if needed
- Run multiple timings to determine with variance

- Document environmental setup
- Fix random seeds if needed
- Run multiple timings to determine with variance
- For parallel code, test on varying numbers of processors to study scalability

- Document environmental setup
- Fix random seeds if needed
- Run multiple timings to determine with variance
- For parallel code, test on varying numbers of processors to study scalability
- Compare with best sequential code

- Document environmental setup
- Fix random seeds if needed
- Run multiple timings to determine with variance
- For parallel code, test on varying numbers of processors to study scalability
- Compare with best sequential code
- For reproducibility, write deterministic parallel code if possible

Reproducibility

- Document environmental setup
- Fix random seeds if needed
- Run multiple timings to determine with variance
- For parallel code, test on varying numbers of processors to study scalability
- Compare with best sequential code
- For reproducibility, write deterministic parallel code if possible
- Useful benchmarking tools: Cilkscale, Cilksan

Uses slides from MIT 6.506 Algorithms Engineering

Libraries and Frameworks are Very Important!

- Consistency in experimental environment
- Easier development in the future—no wasted work in development

Libraries and Frameworks are Very Important!

- Consistency in experimental environment
- Easier development in the future—no wasted work in development
- Service to the community to develop your own for your needs and potential other needs in the future

Libraries and Frameworks are Very Important!

• Example frameworks:

ParlayLib - A Toolkit for Programming Parallel Algorithms on Shared-Memory Multicore Machines

© Julian Shun

CPSC 768

Cache Hierarchies

Design cacheefficient and cacheoblivious algorithms to improve locality

Memory level	Approx latency
L1 Cache	1–2ns
L2 Cache	3–5ns
L3 cache	12-40ns
DRAM	60-100ns

Uses slides from MIT 6.506 Algorithms Engineering

CPSC 768

 (\bigcirc)

Julian Shun

Non-Uniform Memory Access (NUMA)

- Accessing remote memory is more expensive than accessing local memory of a socket
 - Latency depends on the number of hops

Uses slides from MIT 6.506 Algorithms Engineering

CPSC 768

I/O Efficiency

- Need to read input from disk at least once
- Need to read many more times if input doesn't fit in memory

Uses slides from MIT 6.506 Algorithms Engineering

CPSC 768

Very Large Graphs!

• Need graph compression if graph cannot fit on machine

Very Large Graphs!

- Need graph compression if graph cannot fit on machine
- Compressed Sparse Row (CSR), Compressed Row Storage (CRS), Yale format

Many Things in Theory and Practice

- Many things to learn in theory and practice
- Lots of knowledge in between
- Communication between the communities important
 - Will lead to practical impact!