
CPSC 768

CPSC 768:
Scalable and Private Graph Algorithms

Quanquan C. Liu
quanquan.liu@yale.edu

Lecture 23: Algorithms Engineering:
Theory-in-Practice

CPSC 768

Announcements

• Final project report and presentation: April 24th (last day of
class)

• Final project presentation is a 30 min presentation
• Last day of Open Problem Sessions: April 26th (last week of

classes)
• Will be turned into a reading group/continue with OPS, stay

tuned!

CPSC 768

Continued: Parallel Low Diameter
Decomposition
• Problem: Decompose the graph into clusters where the

distance between any two nodes in a cluster is at most 𝛼 and
the number of edges that go between clusters is at most 𝛽𝑚

CPSC 768

Continued: Parallel Low Diameter
Decomposition
• Problem: Decompose the graph into clusters where the

distance between any two nodes in a cluster is at most 𝛼 and
the number of edges that go between clusters is at most 𝛽𝑚

• 𝜶,𝜷 - low diameter decomposition

CPSC 768

Continued: Parallel Low Diameter
Decomposition
• Problem: Decompose the graph into clusters where the

distance between any two nodes in a cluster is at most 𝛼 and
the number of edges that go between clusters is at most 𝛽𝑚

• 𝜶,𝜷 - low diameter decomposition

s

t

𝜶At most 𝛽𝑚 edges
between clusters

CPSC 768

Parallel Low Diameter Decomposition [MPX SPAA ‘13]

• Algorithm:
• Grow balls around carefully selected vertices in the input

graph
• How do we select the vertices?

CPSC 768

Parallel Low Diameter Decomposition [MPX SPAA ‘13]

• Algorithm:
• Grow balls around carefully selected vertices in the input

graph
• How do we select the vertices?

• From exponential distribution with parameter 𝛽

CPSC 768

Parallel Low Diameter Decomposition [MPX SPAA ‘13]

• Algorithm:
• Grow balls around carefully selected vertices in the input

graph
• How do we select the vertices?

• From exponential distribution with parameter 𝛽
• Start growing from vertices where start times are

randomly shifted by exponential distribution

CPSC 768

Parallel Low Diameter Decomposition [MPX SPAA ‘13]

• Algorithm:
• Grow balls around carefully selected vertices in the input

graph
• How do we select the vertices?

• From exponential distribution with parameter 𝛽
• Start growing from vertices where start times are

randomly shifted by exponential distribution
• Expand the radius using BFS

CPSC 768

Parallel Low Diameter Decomposition [MPX SPAA ‘13]

• Algorithm:
• Grow balls around carefully selected vertices in the input

graph
• How do we select the vertices?

• From exponential distribution with parameter 𝛽
• Start growing from vertices where start times are

randomly shifted by exponential distribution
• Expand the radius using BFS
• Vertex assigned to first edge that hits it

CPSC 768

Parallel Low Diameter Decomposition [MPX SPAA ‘13]

• PDF of exponential distribution:
• 𝑝 𝑥 = 𝛽𝑒!"#

• CDF of exponential distribution:
• 𝑐 𝑥 = 1	 − 𝑒!"#

CPSC 768

Parallel Low Diameter Decomposition [MPX SPAA ‘13]

• PDF of exponential distribution:
• 𝑝 𝑥 = 𝛽𝑒!"#

• CDF of exponential distribution:
• 𝑐 𝑥 = 1	 − 𝑒!"#

• Exponential Function is memoryless:
• 𝑃 𝑋 > 𝑎 + 𝑏	 𝑋 > 𝑎] = 𝑃[𝑋 > 𝑏]

CPSC 768

Parallel Low Diameter Decomposition [MPX SPAA ‘13]

• PDF of exponential distribution:
• 𝑝 𝑥 = 𝛽𝑒!"#

• CDF of exponential distribution:
• 𝑐 𝑥 = 1	 − 𝑒!"#

• Exponential Function is memoryless:
• 𝑃 𝑋 > 𝑎 + 𝑏	 𝑋 > 𝑎] = 𝑃[𝑋 > 𝑏]

• Each vertex 𝑣 picks time 𝛿$ from exponential distribution

CPSC 768

Parallel Low Diameter Decomposition [MPX SPAA ‘13]

• PDF of exponential distribution:
• 𝑝 𝑥 = 𝛽𝑒!"#

• CDF of exponential distribution:
• 𝑐 𝑥 = 1	 − 𝑒!"#

• Exponential Function is memoryless:
• 𝑃 𝑋 > 𝑎 + 𝑏	 𝑋 > 𝑎] = 𝑃[𝑋 > 𝑏]

• Each vertex 𝑣 picks time 𝛿$ from exponential distribution
• Use start time 𝑇$ = 𝛿%&' 	− 𝛿$ where 𝛿%&' = max

$	∈*
𝛿$

Backwards Exponential Distribution: very few
to start, more towards the end

CPSC 768

Parallel Low Diameter Decomposition [MPX SPAA ‘13]

• Example Run:

First: everyone
picks value from

exponential
distribution

CPSC 768

Parallel Low Diameter Decomposition [MPX SPAA ‘13]

• Example Run:

First: everyone
picks value from

exponential
distribution

1.5
1.9

2.4

0.05
1.6

0.9
2.3

0.5 2.1
0.1

CPSC 768

Parallel Low Diameter Decomposition [MPX SPAA ‘13]

• Example Run:

Find 𝛿%&' and
compute 𝑇$ for

every vertex

1.6
0.9

2.3

0.5 2.1
1.5

1.9

2.4

0.1

0.05

CPSC 768

Parallel Low Diameter Decomposition [MPX SPAA ‘13]

• Example Run:

Find 𝛿%&' and
compute 𝑇$ for

every vertex

1.6
0.9

2.3

0.5 2.1
1.5

1.9

2.4

0.1

0.05

CPSC 768

Parallel Low Diameter Decomposition [MPX SPAA ‘13]

• Example Run:

Find 𝛿%&' and
compute 𝑇$ for

every vertex

2.35
0.8

1.5
0.1

1.9 0.3
0.9

0.5

0

2.3

CPSC 768

Parallel Low Diameter Decomposition [MPX SPAA ‘13]

• Example Run:

0.8
1.5

0.1

1.9 0.3
0.9

0.5

0

Every timestep,
grow radius by 1

2.3

2.35

CPSC 768

Parallel Low Diameter Decomposition [MPX SPAA ‘13]

• Example Run:

0.8
1.5

0.1

1.9 0.3
0.9

0.5

0

Every timestep,
grow radius by 1

2.3

2.35

CPSC 768

Parallel Low Diameter Decomposition [MPX SPAA ‘13]

• Analysis of Low Diameter:
• Let 𝐶+ = argmin

+∈*
𝑇$ + 𝑑 𝑢, 𝑣

• Maximum radius is 𝑶 𝐥𝐨𝐠 𝒏
𝜷

 with high probability

CPSC 768

Parallel Low Diameter Decomposition [MPX SPAA ‘13]

• Analysis of Low Diameter:
• Let 𝐶+ = argmin

+∈*
𝑇$ + 𝑑 𝑢, 𝑣

• Maximum radius is 𝑶 𝐥𝐨𝐠 𝒏
𝜷

 with high probability
• What is the radius bounded by?

CPSC 768

Parallel Low Diameter Decomposition [MPX SPAA ‘13]

• Analysis of Low Diameter:
• Let 𝐶+ = argmin

+∈*
𝑇$ + 𝑑 𝑢, 𝑣

• Maximum radius is 𝑶 𝐥𝐨𝐠 𝒏
𝜷

 with high probability
• What is the radius bounded by?

• All radius bounded by 𝜹𝐦𝐚𝐱

CPSC 768

Parallel Low Diameter Decomposition [MPX SPAA ‘13]

• Analysis of Low Diameter:
• Let 𝐶+ = argmin

+∈*
𝑇$ + 𝑑 𝑢, 𝑣

• Maximum radius is 𝑶 𝐥𝐨𝐠 𝒏
𝜷

 with high probability
• What is the radius bounded by?

• All radius bounded by 𝜹𝐦𝐚𝐱
• Simplified: just need to bound 𝛿%&' using CDF of exponential

distribution

CPSC 768

Parallel Low Diameter Decomposition [MPX SPAA ‘13]

• Analysis of Low Diameter:
• Let 𝐶! = argmin

!∈#
𝑇$ + 𝑑 𝑢, 𝑣

• Maximum radius is 𝑶 𝐥𝐨𝐠 𝒏
𝜷

 with high probability
• What is the radius bounded by?

• All radius bounded by 𝜹𝐦𝐚𝐱
• Simplified: just need to bound 𝛿-./ using CDF of exponential

distribution
• 𝑃 𝛿$ >

0	234	5
6

= 1 − 𝑃 𝛿$ ≤
0	234	5
6

= 1	 − 1 − 𝑒70	234	5 = 8
5!

CPSC 768

Parallel Low Diameter Decomposition [MPX SPAA ‘13]

• Analysis of Low Diameter:
• Let 𝐶! = argmin

!∈#
𝑇$ + 𝑑 𝑢, 𝑣

• Maximum radius is 𝑶 𝐥𝐨𝐠 𝒏
𝜷

 with high probability
• What is the radius bounded by?

• All radius bounded by 𝜹𝐦𝐚𝐱
• Simplified: just need to bound 𝛿-./ using CDF of exponential

distribution
• 𝑃 𝛿$ >

0	234	5
6

= 1 − 𝑃 𝛿$ ≤
0	234	5
6

= 1	 − 1 − 𝑒70	234	5 = 8
5!

Union bound over all vertices: 𝑃 𝛿#$%	 >
'	()*	+
, ≤ -

+!"#

CPSC 768

Parallel Low Diameter Decomposition [MPX SPAA ‘13]

• Analysis of Number of Edges between Clusters:

CPSC 768

Parallel Low Diameter Decomposition [MPX SPAA ‘13]

• Analysis of Number of Edges between Clusters:
• 𝛽𝑚 edges cut in expectation

CPSC 768

Parallel Low Diameter Decomposition [MPX SPAA ‘13]

• Analysis of Number of Edges between Clusters:
• 𝛽𝑚 edges cut in expectation
• Show that probability for any edge (𝑢, 𝑣), when fixing the

midpoint 𝑤, the probability of the smallest and second
smallest value of {𝑇$ + 𝑑 𝑣,𝑤 ∣ 𝑣 ∈ 𝑉} differs by at most 1 is
upper bounded by 𝛽

CPSC 768

Parallel Low Diameter Decomposition [MPX SPAA ‘13]

• Analysis of Number of Edges between Clusters:
• 𝛽𝑚 edges cut in expectation
• Show that probability for any edge (𝑢, 𝑣), when fixing the

midpoint 𝑤, the probability of the smallest and second
smallest value of {𝑇$ + 𝑑 𝑣,𝑤 ∣ 𝑣 ∈ 𝑉} differs by at most 1 is
upper bounded by 𝛽

• Why is this enough?

CPSC 768

Parallel Low Diameter Decomposition [MPX SPAA ‘13]

• Analysis of Number of Edges between Clusters:
• 𝛽𝑚 edges cut in expectation
• Show that probability for any edge (𝑢, 𝑣), when fixing the

midpoint 𝑤, the probability of the smallest and second
smallest value of {𝑇$ + 𝑑 𝑣,𝑤 ∣ 𝑣 ∈ 𝑉} differs by at most 1 is
upper bounded by 𝛽

• Why is this enough?
• Only time edge is between clusters

CPSC 768

Parallel Low Diameter Decomposition [MPX SPAA ‘13]

• Analysis of Number of Edges between Clusters:
• 𝛽𝑚 edges cut in expectation
• Show that probability for any edge (𝑢, 𝑣), when fixing the

midpoint 𝑤, the probability of the smallest and second
smallest value of {𝑇$ + 𝑑 𝑣,𝑤 ∣ 𝑣 ∈ 𝑉} differs by at most 1 is
upper bounded by 𝛽

• Why is this enough?
• Only time edge is between clusters

• Due to memoryless property, can use CDF 𝑐 𝑥 = 1	 − 𝑒!"#

CPSC 768

Parallel Low Diameter Decomposition [MPX SPAA ‘13]

• Analysis of Number of Edges between Clusters:
• 𝛽𝑚 edges cut in expectation
• Show that probability for any edge (𝑢, 𝑣), when fixing the

midpoint 𝑤, the probability of the smallest and second
smallest value of {𝑇$ + 𝑑 𝑣,𝑤 ∣ 𝑣 ∈ 𝑉} differs by at most 1 is
upper bounded by 𝛽

• Why is this enough?
• Only time edge is between clusters

• Due to memoryless property, can use CDF 𝑐 𝑥 = 1	 − 𝑒!"#
• Fix time for one endpoint, probability other endpoint within

one of that time is at most 1	 − 𝑒!"

CPSC 768

Parallel Low Diameter Decomposition [MPX SPAA ‘13]

• Analysis of Number of Edges between Clusters:
• Due to memoryless property, given CDF 𝑐 𝑥 = 1	 − 𝑒!"#

• Fix time for one endpoint, probability other endpoint within
one of that time is at most 1	 − 𝑒!"

• 1	 − 𝑒!" < 𝛽 for 𝛽 > 0 using Taylor series
• Hence, for any edge marginal probability edge is in cut

is 𝜷
• Expected number of edges in cut: 𝛽𝑚

CPSC 768

Algorithms Engineering: Theory-in-Practice

• What is algorithm engineering?

Uses slides from MIT 6.506 Algorithms Engineering

CPSC 768

Algorithms Engineering: Theory-in-Practice

• What is algorithm engineering?
• Algorithm design

Uses slides from MIT 6.506 Algorithms Engineering

CPSC 768

Algorithms Engineering: Theory-in-Practice

• What is algorithm engineering?
• Algorithm design
• Algorithm analysis

Uses slides from MIT 6.506 Algorithms Engineering

CPSC 768

Algorithms Engineering: Theory-in-Practice

• What is algorithm engineering?
• Algorithm design
• Algorithm analysis
• Algorithm implementation

Uses slides from MIT 6.506 Algorithms Engineering

CPSC 768

Algorithms Engineering: Theory-in-Practice

• What is algorithm engineering?
• Algorithm design
• Algorithm analysis
• Algorithm implementation
• Optimization

Uses slides from MIT 6.506 Algorithms Engineering

CPSC 768

Algorithms Engineering: Theory-in-Practice

• What is algorithm engineering?
• Algorithm design
• Algorithm analysis
• Algorithm implementation
• Optimization
• Profiling

Uses slides from MIT 6.506 Algorithms Engineering

CPSC 768

Algorithms Engineering: Theory-in-Practice

• What is algorithm engineering?
• Algorithm design
• Algorithm analysis
• Algorithm implementation
• Optimization
• Profiling
• Experimental evaluation

Uses slides from MIT 6.506 Algorithms Engineering

CPSC 768

Algorithms Engineering: Theory-in-Practice

• What is algorithm engineering?
• Algorithm design
• Algorithm analysis
• Algorithm implementation
• Optimization
• Profiling
• Experimental evaluation

Theory PracticeBridge

Uses slides from MIT 6.506 Algorithms Engineering

CPSC 768

Algorithms Engineering: Theory-in-Practice

• What is algorithm engineering?
• Algorithm design
• Algorithm analysis
• Algorithm implementation
• Optimization
• Profiling
• Experimental evaluation

Theory PracticeBridge

Requires depth
understanding of both

Uses slides from MIT 6.506 Algorithms Engineering

CPSC 768

Algorithms Engineering: Theory-in-Practice

• How does one bridge theory and practice?

Uses slides from MIT 6.506 Algorithms Engineering

CPSC 768

Algorithms Engineering: Theory-in-Practice

• How does one bridge theory and practice?
• Use empirical findings to inform theory

Uses slides from MIT 6.506 Algorithms Engineering

CPSC 768

Algorithms Engineering: Theory-in-Practice

• How does one bridge theory and practice?
• Use empirical findings to inform theory
• Use theory to build confidence that algorithms will

perform well in many different settings
• Heuristics do not guarantee this!

Uses slides from MIT 6.506 Algorithms Engineering

CPSC 768

Algorithms Engineering: Theory-in-Practice

• How does one bridge theory and practice?
• Use empirical findings to inform theory
• Use theory to build confidence that algorithms will

perform well in many different settings
• Heuristics do not guarantee this!

• Ability to predict performance (e.g. in real-time
applications)

Uses slides from MIT 6.506 Algorithms Engineering

CPSC 768

Algorithms Engineering: Theory-in-Practice

• How does one bridge theory and practice?
• Use empirical findings to inform theory
• Use theory to build confidence that algorithms will

perform well in many different settings
• Heuristics do not guarantee this!

• Ability to predict performance (e.g. in real-time
applications)

• Develop good theoretical models that model real
architectures

Uses slides from MIT 6.506 Algorithms Engineering

CPSC 768

Algorithms Engineering: Theory-in-Practice

• A history:
• Early days, standard practice to implement algorithms you

design

Uses slides from MIT 6.506 Algorithms Engineering

CPSC 768

Algorithms Engineering: Theory-in-Practice

• A history:
• Early days, standard practice to implement algorithms you

design
• 1970s-1980s: Algorithm theory developed as a sub-discipline

in CS used for “paper and pencil” work

Uses slides from MIT 6.506 Algorithms Engineering

CPSC 768

Algorithms Engineering: Theory-in-Practice

• A history:
• Early days, standard practice to implement algorithms you

design
• 1970s-1980s: Algorithm theory developed as a sub-discipline

in CS used for “paper and pencil” work
• Late 1980s-1990s: Researchers began noticing gaps

between theory and practice

Uses slides from MIT 6.506 Algorithms Engineering

CPSC 768

Algorithms Engineering: Theory-in-Practice

• A history:
• Early days, standard practice to implement algorithms you

design
• 1970s-1980s: Algorithm theory developed as a sub-discipline

in CS used for “paper and pencil” work
• Late 1980s-1990s: Researchers began noticing gaps

between theory and practice
• 1997: First Workshop on Algorithm Engineering by P. Italiano

(now part of ESA)

Uses slides from MIT 6.506 Algorithms Engineering

CPSC 768

Algorithms Engineering: Theory-in-Practice

• A history:
• Early days, standard practice to implement algorithms you

design
• 1970s-1980s: Algorithm theory developed as a sub-discipline

in CS used for “paper and pencil” work
• Late 1980s-1990s: Researchers began noticing gaps

between theory and practice
• 1997: First Workshop on Algorithm Engineering by P. Italiano

(now part of ESA)
• Now, many conferences on algorithms engineering ALENEX,

SEA, ICML, NeurIPS, IJCAI etc.

Uses slides from MIT 6.506 Algorithms Engineering

CPSC 768

What is Algorithm Engineering?

Uses slides from MIT 6.506 Algorithms
Engineering

Julian Shun

CPSC 768

Models of Computation

• Random-Access Machine (RAM)
• Infinite Memory

Uses slides from MIT 6.506 Algorithms Engineering

CPSC 768

Models of Computation

• Random-Access Machine (RAM)
• Infinite Memory
• Arithmetic operations, logical operations, and memory

accesses take 𝑂 1 time

Uses slides from MIT 6.506 Algorithms Engineering

CPSC 768

Models of Computation

• Random-Access Machine (RAM)
• Infinite Memory
• Arithmetic operations, logical operations, and memory

accesses take 𝑂 1 time
• Most sequential algorithms are designed in this model (intro

to algorithms courses)

Uses slides from MIT 6.506 Algorithms Engineering

CPSC 768

Models of Computation

• Random-Access Machine (RAM)
• Infinite Memory
• Arithmetic operations, logical operations, and memory

accesses take 𝑂 1 time
• Most sequential algorithms are designed in this model (intro

to algorithms courses)
• Nowadays computers are much more complex

Uses slides from MIT 6.506 Algorithms Engineering

CPSC 768

Models of Computation

• Nowadays computers are much more complex
• Deep cache hierarchies

Uses slides from MIT 6.506 Algorithms Engineering

CPSC 768

Models of Computation

• Nowadays computers are much more complex
• Deep cache hierarchies
• Instruction level parallelism

Uses slides from MIT 6.506 Algorithms Engineering

CPSC 768

Models of Computation

• Nowadays computers are much more complex
• Deep cache hierarchies
• Instruction level parallelism
• Multiple cores

Uses slides from MIT 6.506 Algorithms Engineering

CPSC 768

Models of Computation

• Nowadays computers are much more complex
• Deep cache hierarchies
• Instruction level parallelism
• Multiple cores
• Multiple machines

Uses slides from MIT 6.506 Algorithms Engineering

CPSC 768

Models of Computation

• Nowadays computers are much more complex
• Deep cache hierarchies
• Instruction level parallelism
• Multiple cores
• Multiple machines
• Disk if input doesn’t fit in main memory

Uses slides from MIT 6.506 Algorithms Engineering

CPSC 768

Models of Computation

• Nowadays computers are much more complex
• Deep cache hierarchies
• Instruction level parallelism
• Multiple cores
• Multiple machines
• Disk if input doesn’t fit in main memory
• Asymmetric read-write costs in non-volatile memory

Uses slides from MIT 6.506 Algorithms Engineering

CPSC 768

Algorithm Design and Analysis

• Difference in asymptotic complexities:
• Algorithm 1: 𝑵	𝐥𝐨𝐠𝟐 𝑵
• Algorithm 2: 𝟏𝟎𝟎𝟎	𝑵
• Which one is practically better?

Uses slides from MIT 6.506 Algorithms Engineering

CPSC 768

Algorithm Design and Analysis

• Difference in asymptotic complexities:
• Algorithm 1: 𝑵	𝐥𝐨𝐠𝟐 𝑵
• Algorithm 2: 𝟏𝟎𝟎𝟎	𝑵

• First, algorithm, log𝟐 #	of	particles	in	the	universe < 𝟑𝟎𝟎

Uses slides from MIT 6.506 Algorithms Engineering

CPSC 768

Algorithm Design and Analysis

• Difference in asymptotic complexities:
• Algorithm 1: 𝑵	𝐥𝐨𝐠𝟐 𝑵
• Algorithm 2: 𝟏𝟎𝟎𝟎	𝑵

• First, algorithm, log𝟐 #	of	particles	in	the	universe < 𝟑𝟎𝟎
• Constant factors matter!

Uses slides from MIT 6.506 Algorithms Engineering

CPSC 768

Algorithm Design and Analysis

• Difference in asymptotic complexities:
• Algorithm 1: 𝑵	𝐥𝐨𝐠𝟐 𝑵
• Algorithm 2: 𝟏𝟎𝟎𝟎	𝑵

• First, algorithm, log𝟐 #	of	particles	in	the	universe < 𝟑𝟎𝟎
• Constant factors matter!
• Avoid unnecessary computations

Uses slides from MIT 6.506 Algorithms Engineering

CPSC 768

Algorithm Design and Analysis

• Difference in asymptotic complexities:
• Algorithm 1: 𝑵	𝐥𝐨𝐠𝟐 𝑵
• Algorithm 2: 𝟏𝟎𝟎𝟎	𝑵

• First, algorithm, log𝟐 #	of	particles	in	the	universe < 𝟑𝟎𝟎
• Constant factors matter!
• Avoid unnecessary computations
• Simplicity improves practicality and leads to better

performance

Uses slides from MIT 6.506 Algorithms Engineering

CPSC 768

Algorithm Design and Analysis

• Consider tradeoffs:
• Time vs. space tradeoffs
• Work vs. parallelism tradeoffs

Uses slides from MIT 6.506 Algorithms Engineering

CPSC 768

Implementations

• Write clean, modular code
• Write correctness checkers
• Save previous versions of your code!

Uses slides from MIT 6.506 Algorithms Engineering

CPSC 768

Implementations

• Write clean, modular code
• Easier to experiment with different methods, and save a lot

of development time when adding new features
• Write correctness checkers

• Especially important in numerical and geometric applications
because of floating-point arithmetic errors and non-
determinism, different results from different runs!

• Save previous versions of your code!
• Version control always! If you need to rollback changes!

Uses slides from MIT 6.506 Algorithms Engineering

CPSC 768

Experimentation

• Test code using timers and performance profilers
• Perf, gprof, valgrind

Uses slides from MIT 6.506 Algorithms Engineering

CPSC 768

Experimentation

• Test code using timers and performance profilers
• Perf, gprof, valgrind

• Use large variety of inputs (both real-world and synthetic)—
ensures implementation is robust for many different
environments

Uses slides from MIT 6.506 Algorithms Engineering

CPSC 768

Experimentation

• Test code using timers and performance profilers
• Perf, gprof, valgrind

• Use large variety of inputs (both real-world and synthetic)—
ensures implementation is robust for many different
environments

• Use different sizes

Uses slides from MIT 6.506 Algorithms Engineering

CPSC 768

Experimentation

• Test code using timers and performance profilers
• Perf, gprof, valgrind

• Use large variety of inputs (both real-world and synthetic)—
ensures implementation is robust for many different
environments

• Use different sizes
• Use worst-case inputs to identify correctness or performance

issues

Uses slides from MIT 6.506 Algorithms Engineering

CPSC 768

Experimentation

• Test code using timers and performance profilers
• Perf, gprof, valgrind

• Use large variety of inputs (both real-world and synthetic)—
ensures implementation is robust for many different
environments

• Use different sizes
• Use worst-case inputs to identify correctness or performance

issues
• Reproducibility

Uses slides from MIT 6.506 Algorithms Engineering

CPSC 768

Experimentation

• Reproducibility
• Document environmental setup

Uses slides from MIT 6.506 Algorithms Engineering

CPSC 768

Experimentation

• Reproducibility
• Document environmental setup
• Fix random seeds if needed

Uses slides from MIT 6.506 Algorithms Engineering

CPSC 768

Experimentation

• Reproducibility
• Document environmental setup
• Fix random seeds if needed

• Run multiple timings to determine with variance

Uses slides from MIT 6.506 Algorithms Engineering

CPSC 768

Experimentation

• Reproducibility
• Document environmental setup
• Fix random seeds if needed

• Run multiple timings to determine with variance
• For parallel code, test on varying numbers of processors to

study scalability

Uses slides from MIT 6.506 Algorithms Engineering

CPSC 768

Experimentation

• Reproducibility
• Document environmental setup
• Fix random seeds if needed

• Run multiple timings to determine with variance
• For parallel code, test on varying numbers of processors to

study scalability
• Compare with best sequential code

Uses slides from MIT 6.506 Algorithms Engineering

CPSC 768

Experimentation

• Reproducibility
• Document environmental setup
• Fix random seeds if needed

• Run multiple timings to determine with variance
• For parallel code, test on varying numbers of processors to

study scalability
• Compare with best sequential code
• For reproducibility, write deterministic parallel code if possible

Uses slides from MIT 6.506 Algorithms Engineering

CPSC 768

Experimentation

• Reproducibility
• Document environmental setup
• Fix random seeds if needed

• Run multiple timings to determine with variance
• For parallel code, test on varying numbers of processors to

study scalability
• Compare with best sequential code
• For reproducibility, write deterministic parallel code if possible
• Useful benchmarking tools: Cilkscale, Cilksan

Uses slides from MIT 6.506 Algorithms Engineering

CPSC 768

Libraries and Frameworks are Very
Important!
• Consistency in experimental environment
• Easier development in the future—no wasted work in

development

Uses slides from MIT 6.506 Algorithms Engineering

CPSC 768

Libraries and Frameworks are Very
Important!
• Consistency in experimental environment
• Easier development in the future—no wasted work in

development
• Service to the community to develop your own for your

needs and potential other needs in the future

Uses slides from MIT 6.506 Algorithms Engineering

CPSC 768

Libraries and Frameworks are Very
Important!
• Example frameworks:

Uses slides from MIT 6.506 Algorithms Engineering

Julian Shun

CPSC 768

Cache Hierarchies

Uses slides from MIT 6.506 Algorithms Engineering

Julian Shun

CPSC 768

Non-Uniform Memory Access (NUMA)

• Accessing remote memory is more expensive than accessing
local memory of a socket

• Latency depends on the number of hops

Uses slides from MIT 6.506 Algorithms Engineering
Julian Shun

CPSC 768

I/O Efficiency

• Need to read input from disk at least once
• Need to read many more times if input doesn’t fit in memory

Uses slides from MIT 6.506 Algorithms Engineering

Julian Shun

CPSC 768

Very Large Graphs!

• Need graph compression if graph cannot fit on machine

Uses slides from MIT 6.506 Algorithms Engineering

CPSC 768

Very Large Graphs!

• Need graph compression if graph cannot fit on machine
• Compressed Sparse Row (CSR), Compressed Row Storage

(CRS), Yale format

Uses slides from MIT 6.506 Algorithms Engineering
Julian Shun

CPSC 768

Many Things in Theory and Practice

• Many things to learn in theory and practice
• Lots of knowledge in between
• Communication between the communities important

• Will lead to practical impact!

