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Announcements

• Final project report and presentation: April 24th (last day of 
class)

• Final project presentation is a 30 min presentation
• Last day of Open Problem Sessions: April 26th (last week of 

classes)
• Will be turned into a reading group/continue with OPS, stay 

tuned!
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distance between any two nodes in a cluster is at most 𝛼 and 
the number of edges that go between clusters is at most 𝛽𝑚
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• Problem: Decompose the graph into clusters where the 

distance between any two nodes in a cluster is at most 𝛼 and 
the number of edges that go between clusters is at most 𝛽𝑚

• 𝜶,𝜷 - low diameter decomposition

s

t

𝜶At most 𝛽𝑚 edges 
between clusters



CPSC 768

Parallel Low Diameter Decomposition [MPX SPAA ‘13]

• Algorithm: 
• Grow balls around carefully selected vertices in the input 

graph
• How do we select the vertices?



CPSC 768

Parallel Low Diameter Decomposition [MPX SPAA ‘13]

• Algorithm: 
• Grow balls around carefully selected vertices in the input 

graph
• How do we select the vertices?

• From exponential distribution with parameter 𝛽



CPSC 768

Parallel Low Diameter Decomposition [MPX SPAA ‘13]

• Algorithm: 
• Grow balls around carefully selected vertices in the input 

graph
• How do we select the vertices?

• From exponential distribution with parameter 𝛽
• Start growing from vertices where start times are 

randomly shifted by exponential distribution



CPSC 768

Parallel Low Diameter Decomposition [MPX SPAA ‘13]

• Algorithm: 
• Grow balls around carefully selected vertices in the input 

graph
• How do we select the vertices?

• From exponential distribution with parameter 𝛽
• Start growing from vertices where start times are 

randomly shifted by exponential distribution
• Expand the radius using BFS



CPSC 768

Parallel Low Diameter Decomposition [MPX SPAA ‘13]

• Algorithm: 
• Grow balls around carefully selected vertices in the input 

graph
• How do we select the vertices?

• From exponential distribution with parameter 𝛽
• Start growing from vertices where start times are 

randomly shifted by exponential distribution
• Expand the radius using BFS
• Vertex assigned to first edge that hits it
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Parallel Low Diameter Decomposition [MPX SPAA ‘13]

• PDF of exponential distribution:
• 𝑝 𝑥 = 𝛽𝑒!"#

• CDF of exponential distribution:
• 𝑐 𝑥 = 1	 − 𝑒!"#

• Exponential Function is memoryless:
• 𝑃 𝑋 > 𝑎 + 𝑏	 𝑋 > 𝑎] = 𝑃[𝑋 > 𝑏]

• Each vertex 𝑣 picks time 𝛿$ from exponential distribution
• Use start time 𝑇$ = 𝛿%&' 	− 𝛿$ where 𝛿%&' = max

$	∈*
𝛿$

Backwards Exponential Distribution: very few 
to start, more towards the end
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• Example Run:
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compute 𝑇$ for 
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Parallel Low Diameter Decomposition [MPX SPAA ‘13]

• Example Run:

Find 𝛿%&' and 
compute 𝑇$ for 

every vertex
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Parallel Low Diameter Decomposition [MPX SPAA ‘13]

• Analysis of Low Diameter:
• Let 𝐶! = argmin

!∈#
𝑇$ + 𝑑 𝑢, 𝑣

• Maximum radius is 𝑶 𝐥𝐨𝐠 𝒏
𝜷

 with high probability
• What is the radius bounded by?

• All radius bounded by 𝜹𝐦𝐚𝐱
• Simplified: just need to bound 𝛿-./ using CDF of exponential 

distribution
• 𝑃 𝛿$ >

0	234	5
6

= 1 − 𝑃 𝛿$ ≤
0	234	5
6

= 1	 − 1 − 𝑒70	234	5 = 8
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Parallel Low Diameter Decomposition [MPX SPAA ‘13]

• Analysis of Low Diameter:
• Let 𝐶! = argmin

!∈#
𝑇$ + 𝑑 𝑢, 𝑣

• Maximum radius is 𝑶 𝐥𝐨𝐠 𝒏
𝜷

 with high probability
• What is the radius bounded by?

• All radius bounded by 𝜹𝐦𝐚𝐱
• Simplified: just need to bound 𝛿-./ using CDF of exponential 

distribution
• 𝑃 𝛿$ >

0	234	5
6

= 1 − 𝑃 𝛿$ ≤
0	234	5
6

= 1	 − 1 − 𝑒70	234	5 = 8
5!

Union bound over all vertices: 𝑃 𝛿#$%	 >
'	()*	+
, ≤ -

+!"#
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Parallel Low Diameter Decomposition [MPX SPAA ‘13]

• Analysis of Number of Edges between Clusters:
• 𝛽𝑚 edges cut in expectation
• Show that probability for any edge (𝑢, 𝑣), when fixing the 

midpoint 𝑤, the probability of the smallest and second 
smallest value of {𝑇$ + 𝑑 𝑣,𝑤 ∣ 𝑣 ∈ 𝑉} differs by at most 1 is 
upper bounded by 𝛽

• Why is this enough?
• Only time edge is between clusters

• Due to memoryless property, can use CDF 𝑐 𝑥 = 1	 − 𝑒!"#
• Fix time for one endpoint, probability other endpoint within 

one of that time is at most 1	 − 𝑒!"
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Parallel Low Diameter Decomposition [MPX SPAA ‘13]

• Analysis of Number of Edges between Clusters:
• Due to memoryless property, given CDF 𝑐 𝑥 = 1	 − 𝑒!"#

• Fix time for one endpoint, probability other endpoint within 
one of that time is at most 1	 − 𝑒!"

• 1	 − 𝑒!" < 𝛽 for 𝛽 > 0 using Taylor series
• Hence, for any edge marginal probability edge is in cut 

is 𝜷
• Expected number of edges in cut: 𝛽𝑚
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Algorithms Engineering: Theory-in-Practice

• What is algorithm engineering?
• Algorithm design
• Algorithm analysis
• Algorithm implementation
• Optimization
• Profiling
• Experimental evaluation

Theory PracticeBridge

Requires depth 
understanding of both

Uses slides from MIT 6.506 Algorithms Engineering 
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Algorithms Engineering: Theory-in-Practice

• How does one bridge theory and practice?
• Use empirical findings to inform theory
• Use theory to build confidence that algorithms will 

perform well in many different settings
• Heuristics do not guarantee this!

• Ability to predict performance (e.g. in real-time 
applications)

• Develop good theoretical models that model real 
architectures

Uses slides from MIT 6.506 Algorithms Engineering 
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Algorithms Engineering: Theory-in-Practice

• A history:
• Early days, standard practice to implement algorithms you 

design
• 1970s-1980s: Algorithm theory developed as a sub-discipline 

in CS used for “paper and pencil” work
• Late 1980s-1990s: Researchers began noticing gaps 

between theory and practice
• 1997: First Workshop on Algorithm Engineering by P. Italiano 

(now part of ESA)
• Now, many conferences on algorithms engineering ALENEX, 

SEA, ICML, NeurIPS, IJCAI etc.

Uses slides from MIT 6.506 Algorithms Engineering 
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What is Algorithm Engineering?

Uses slides from MIT 6.506 Algorithms 
Engineering 

Julian Shun
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Models of Computation

• Nowadays computers are much more complex
• Deep cache hierarchies
• Instruction level parallelism
• Multiple cores
• Multiple machines
• Disk if input doesn’t fit in main memory
• Asymmetric read-write costs in non-volatile memory

Uses slides from MIT 6.506 Algorithms Engineering 
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• Difference in asymptotic complexities:
• Algorithm 1: 𝑵	𝐥𝐨𝐠𝟐 𝑵  
• Algorithm 2: 𝟏𝟎𝟎𝟎	𝑵
• Which one is practically better?
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Algorithm Design and Analysis

• Difference in asymptotic complexities:
• Algorithm 1: 𝑵	𝐥𝐨𝐠𝟐 𝑵  
• Algorithm 2: 𝟏𝟎𝟎𝟎	𝑵

• First, algorithm, log𝟐 #	of	particles	in	the	universe < 𝟑𝟎𝟎
• Constant factors matter!
• Avoid unnecessary computations
• Simplicity improves practicality and leads to better 

performance

Uses slides from MIT 6.506 Algorithms Engineering 
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• Consider tradeoffs:
• Time vs. space tradeoffs
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Uses slides from MIT 6.506 Algorithms Engineering 



CPSC 768

Implementations

• Write clean, modular code
• Write correctness checkers
• Save previous versions of your code!

Uses slides from MIT 6.506 Algorithms Engineering 



CPSC 768

Implementations

• Write clean, modular code
• Easier to experiment with different methods, and save a lot 

of development time when adding new features
• Write correctness checkers

• Especially important in numerical and geometric applications 
because of floating-point arithmetic errors and non-
determinism, different results from different runs!

• Save previous versions of your code!
• Version control always! If you need to rollback changes!

Uses slides from MIT 6.506 Algorithms Engineering 
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Experimentation

• Reproducibility 
• Document environmental setup
• Fix random seeds if needed 

• Run multiple timings to determine with variance
• For parallel code, test on varying numbers of processors to 

study scalability
• Compare with best sequential code 
• For reproducibility, write deterministic parallel code if possible
• Useful benchmarking tools: Cilkscale, Cilksan

Uses slides from MIT 6.506 Algorithms Engineering 
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Libraries and Frameworks are Very 
Important!
• Consistency in experimental environment
• Easier development in the future—no wasted work in 

development
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Libraries and Frameworks are Very 
Important!
• Consistency in experimental environment
• Easier development in the future—no wasted work in 

development
• Service to the community to develop your own for your 

needs and potential other needs in the future

Uses slides from MIT 6.506 Algorithms Engineering 
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Libraries and Frameworks are Very 
Important!
• Example frameworks:

Uses slides from MIT 6.506 Algorithms Engineering 

Julian Shun
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Cache Hierarchies

Uses slides from MIT 6.506 Algorithms Engineering 
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Non-Uniform Memory Access (NUMA)

• Accessing remote memory is more expensive than accessing 
local memory of a socket

• Latency depends on the number of hops

Uses slides from MIT 6.506 Algorithms Engineering 
Julian Shun
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I/O Efficiency

• Need to read input from disk at least once
• Need to read many more times if input doesn’t fit in memory

Uses slides from MIT 6.506 Algorithms Engineering 

Julian Shun
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Very Large Graphs!

• Need graph compression if graph cannot fit on machine
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Very Large Graphs!

• Need graph compression if graph cannot fit on machine
• Compressed Sparse Row (CSR), Compressed Row Storage 

(CRS), Yale format

Uses slides from MIT 6.506 Algorithms Engineering 
Julian Shun
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Many Things in Theory and Practice

• Many things to learn in theory and practice
• Lots of knowledge in between
• Communication between the communities important 

• Will lead to practical impact!


