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These lecture notes have not undergone rigorous peer-review. Please email quanquan.liu@yale.edu if
you see any errors.

1 Introduction

These notes heavily rely on Chapters 1-4 and 6 from [BDS21]. This lecture will give you a crash course on
parallel algorithms. We begin with a brief history of parallel algorithm. Parallel algorithms has had a long
and rich history of development starting from the early 1970s. Many of these algorithms have gone on to
survive the test of time and are still fundamental primitives in many systems. Nowadays, parallel algorithms
outperform the best sequential algorithms on the same machine, even ones with a smaller number of cores
such as your laptop. Such concepts are evend incorporated in several intro to algorithms courses.

When considering algorithms that run well on modern machines, we must first consider models that
allow for us to come up with realistic algorithms.

2 Models of Computation

The traditional model used for sequential computation is the Random Access Model (RAM) where we have
one processor, some registers which can store words of size O(log n) bits and a main memory. The instruc-
tions in this model include instructions for moving data in between registers and between memory. The
model assumes that each instruction takes O(1) units of time. Hence, the cost of the model is the total
number of instructions from the start of the program till the end of the program. The one major drawback of
the RAM is that it does not take into account the memory hierarchy that exists in real-world systems.

To mitigate this problem, researchers have come up with a more realistic model known as the Parallel
RAM (PRAM). This model was used in prior works on parallel algorithms. In this model, there are p syn-
chronous processors accessing a shared memory. The costs are given in terms of the number of processors
and the number of timesteps. While this model is a model that models real-world architecture more closely,
it unfortunately does not allow for easily generating pseudocode or real code. Furthermore, the model as-
sumes a number of fixed processors which is not realistic in today’s modern architecture. In real-life, in
today’s systems, we often have many technologies in place for dynamic allocation.

The modern parallel model we often use is the work-depth or work-span model in which we have a
shared random access memory. Furthermore, there is dynamic “forking” of new processes. Work is defined
as the total number of instructions/computation performed, i.e. the sequential runtime on one processor.
Then, depth is the longest chain of sequential dependencies, i.e. the parallel time or scalability of the algo-
rithm.

We can further define these definitions in terms of a computational DAG representing any algorithm
where the work is the number of nodes in the DAG and the depth is the longest chain of sequential depen-
dencies in the DAG. A parallel algorithm is work-efficient if the work performed by the algorithm is the
same asymptotically as the best-known sequential algorithm for solving the problem.

The goal of parallel algorithms is for the depth/span to not dominate the cost of the algorithm. Namely,
we want poly(log n) depth/span. The parallelism of the algorithm is calculated as the work/span. If the
work of an algorithm is O(n log n) and the span of the algorithm is O(log2 n), then the parallelism of the
algorithm is O(n/ log n) which is considered high. When the work equals the depth, then the parallelism
is 1 which means that the algorithm is a single-processor algorithm. There are various different types of
forking, e.g. binary and arbitrary forking, which can make a difference in the span bounds.
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3 Example Primitive in the Work-Span Model

Here, we’ll discuss a primitive in the work-span model called scan (prefix-sum) which is a very important
primitive. Suppose that scan takes the following variables: A, the sequence of real valued numbers, f ,
an associative function, ⊥, the left element, and computes values ri where ri = ⊥ when i = 0 and ri =
f(ri−1, Ai) for 0 < i ≤ |A|. Here, ri is the sum of the prefix A[0, i] of A with respect to function f . The
returned value is an array [r0, . . . , r|A|−1] and the value r|A|.

The parallel implementation of this primitive is a 2-pass scan-up and scan-down divide-and-conquer pro-
cedure. The scan up procedure scans up from the array and records the values of the left subtree. See Fig. 1.
The scan-up procedure performs divide-and-conquer where we start with the middle and partition the array
A into a left and right array. Then, the arrays are partitioned again and so on. Values are summed up the tree
created by the divide-and-conquer algorithm and each node sums the value received from its left and right
subtrees and sends its value to its parent. Then, the values obtained for the left subtrees are written into an
output array L in the left-to-right order of the created subproblems. See Fig. 1 for an example run of this
algorithm. The result of the scan-up is the sum of all numbers in A and the partial sums of the left subtrees.
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Figure 1: Example run of scan-up: A is our sequence. We perform divide-and-conquer and label the nodes
of the divide-and-conquer from left to right. Then, we send the value in A and each node up to their parents.
The parents sum the values they received and sent the summed value up. The values sent up from the left
subtrees are stored in an array L in the order from left to right of the divide-and-conquer nodes they sent the
values to.

Now, we need an additional procedure to compute all of the prefix sums. Essentially, our scan-up
procedure gave us the partial sums of the left subtrees and we need to add to it the sums of the right subtrees.
Using the scan-up array L, we start from the root of the tree and pass to it ⊥. Then, each node Ai in the
divide-and-conquer tree starting from the top and going to the bottom passes to its left child its value and
to its right child, the sum of its value plus L[i]. Intuitively, we pass the value to the left since we have the
values of the left subtrees and we pass the value plus L[i] to the right since we need to sum together the
values of the left and the right subtrees. See Fig. 2 for an example run-through of the algorithm.

There are many more important parallel primitives people use for writing parallel programs but for the
sake of time, we do not prove the rest of the primitives in this class.
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Figure 2: Example run of scan-down: L is the sequence produced by scan-up. First, ⊥ is passed to the root
node. Then, each divide-and-conquer node sends the value it received from its parent to its left child. For
example, ⊥ is sent all the way from the start down the left subtrees and to the first location of the output
sequence Out. Then, each node sends the value it received from its parent plus the value stored at the index
of the node in L to its right child. For example, A3 sends ⊥ plus L[3] = 6 (assuming L is 1-indexed) to its
right child. Then, A4 sends 6 + L[4] = 6 + 4 = 10 to its right child and so on. Out then contains all of the
prefix sums of A, except for the sum of all of the values of A.

4 Low-Diameter Decomposition

We now start our description of the low-diameter decomposition algorithm which is used as a subroutine for
many parallel graph algorithms including connectivity, spanners, hop-sets, and low stretch spanning trees.
The reason for this is because it is currently not known how to work-efficiently construct a BFS tree rooted
at a vertex in poly(log n) depth on general graphs.

A (β, d)-decomposition partitions the vertices V of the input graph G = (V,E) into clusters V1, . . . , Vk

such that the shortest path between two vertices in Vi, using only vertices in Vi, is at most d (strong diameter).
Furthermore, the number of edges between clusters is at most βm, i.e. the number of edges where u ∈ Vi,
v ∈ Vj and i ̸= j. We will discuss the sequential low-diameter decomposition algorithm today and the
parallel low diameter decomposition algorithm in the next class.

The sequential low diameter decomposition algorithm of Awerbuch [Awe85] and Linial-Saks [LS93] is
very simple and clever. The algorithm works as follows. We repeatedly pick an arbitrary uncovered vertex v
and sequentially grow a ball where the radius of the ball increases by 1 each step until the number of edges
incident to the boundary of the ball is at most a β-fraction of the number of edges inside the ball. Then, we
stop and cover all of the vertex inside the ball and pick another arbitrary vertex if there exists an uncovered
vertex.

The analysis is similarly straightforward. Every time a ball stops growing, it has at most an β-fraction
of the edges contained within it on its boundary. Thus, let X be the set of edges contained within any ball;
the number of edges on the boundary is at most β · X ≤ β · |E|. Now, to show the diameter, whenever a
ball does not stop growing, it grows the number of edges inside it by a (1 + ε)-factor. This means that the
radius grows at most log1+ε(m) times before all of the edges are inside the ball. Hence, the strong diameter
is O(log1+β(n)).

Thus, this algorithm produces a (O(log1+β(n)), β)-decomposition.
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