CPSC 768: Scalable and Private Graph Algorithms

Lecture 20: Dynamic Graph Algorithms

Quanquan C. Liu quanquan.liu@yale.edu

CPSC 768

Announcements

- Final project report and presentation: April 24th (last day of class)
 - Final project presentation is a 30 min presentation

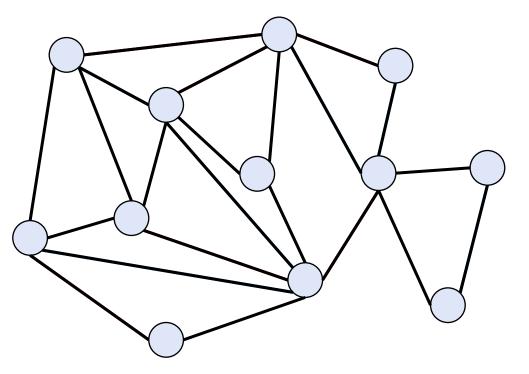
Dynamic Graph Algorithms

 Updates to the graph occur where edges are added and deleted from the graph

CPSC 768

Edge insertions/deletions arrive sequentially

Maintain graph property after each update



Minimize Update Time

- Want: minimize the update time between updates
 - Amortized or worst-case (often a gap)

Sublinear Runtime: strive for poly(log n)

Minimize Update Time

- Want: minimize the update time between updates
 - Amortized or worst-case (often a gap)
- Sometimes need to do preprocessing
 - Small polynomial in the input graph

Sublinear Runtime: strive for poly(log n)

Minimize Update Time

- Want: minimize the update time between updates
 - Amortized or worst-case (often a gap)
- Sometimes need to do preprocessing
 - Small polynomial in the input graph
- Sometimes have queries (e.g. connectivity queries)

Sublinear Runtime: strive for poly(log n)

Many Recent Results in Dynamic Graph Algorithms

- Dynamic maximum matching (find a matching of maximum size):
 - Best known: (1.973 + ε)-approximation in poly(log n) update time [BKSW SODA `23]

Many Recent Results in Dynamic Graph Algorithms

- Dynamic maximum matching (find a matching of maximum size):
 - Best known: (1.973 + ε)-approximation in poly(log n) update time [BKSW SODA `23]
- Dynamic $(\Delta + 1)$ -coloring (find a valid coloring with $\Delta + 1$ colors):
 - **Best known:** O(1) update time [HP, BGKLS TALG `22]

Many Recent Results in Dynamic Graph Algorithms

- Dynamic maximum matching (find a matching of maximum size):
 - Best known: $(1.973 + \varepsilon)$ -approximation in poly $(\log n)$ update time [BKSW SODA `23]
- Dynamic $(\Delta + 1)$ -coloring (find a valid coloring with $\Delta + 1$ colors):
 - Best known: 0(1) update time [HP, BGKLS TALG `22]
- Approximate Densest Subgraph:
 - **Best known:** poly(log *n*) update time [SW STOC '20, CCHHQRS SODA '24]

Dynamic Algorithms + Other Models

- Dynamic meets distributed:
 - Dynamic updates in a distributed graph; very recent, nascent field
 - Count # of rounds/messages sent in the graph

Dynamic Algorithms + Other Models

- Dynamic meets distributed:
 - Dynamic updates in a distributed graph; very recent, nascent field
 - Count # of rounds/messages sent in the graph
 - Clique counting [BC ICALP '19, L IPL '23]
 - Maximal Independent Set [AOSS STOC '18, ALS ITCS '22]

Dynamic Algorithms + Other Models

- Dynamic meets distributed:
 - Dynamic updates in a distributed graph; very recent, nascent field
 - Count # of rounds/messages sent in the graph
 - Clique counting [BC ICALP '19, L IPL '23]
 - Maximal Independent Set [AOSS STOC '18, ALS ITCS '22]
- Learning-augmented Dynamic Algorithms [LS '23, BFNP '23, HSSY '23]

- Incremental/Decremental vs. Fully Dynamic
 - Incremental/decremental algorithms:
 - Only edge insertions/deletions, respectively

- Incremental/Decremental vs. Fully Dynamic
 - Incremental/decremental algorithms:
 - Only edge insertions/deletions, respectively
- Sometimes large gap in runtimes

- Incremental/Decremental vs. Fully Dynamic
 - Incremental/decremental algorithms:
 - Only edge insertions/deletions, respectively
- Sometimes large gap in runtimes
 - Polynomial or exponential gaps in runtimes

Best Fully Dynamic

Best Partially Dynamic

Planar Digraph APSP	$\widetilde{O}\left(n^{2/3} ight)$	[FR06, Kle05]	$\widetilde{O}(\sqrt{n})$	[DGWN22]
Triconnectivity	$O(n^{2/3})$	[GIS99]	$\widetilde{O}\left(1 ight)$	[HR20, PSS17]
k-Edge Connectivity	$n^{o(1)}$	[JS22]	$\widetilde{O}(1)$	$[CDK^+21]$
Dynamic DFS Tree	$\widetilde{O}\left(\sqrt{mn} ight)$	[BCCK19]	$\widetilde{O}\left(n ight)$	[BCCK19, CDW ⁺ 18]
Minimum Spanning Forest	$\widetilde{O}(1)$	[HDLT01]	$\widetilde{O}(1)$	[Epp94]
APSP	$igg(rac{256}{k^2}igg)^{4/k} ext{-Approx} \ \widetilde{O}\left(n^k ight) ext{ update} \ \widetilde{O}(n^{k/8}) ext{ query}$	[FGNS23]	$(2r-1)^k ext{-} ext{Approx}\ \widetilde{O}\left(m^{1/(k+1)}n^{k/r} ight)$	$[CGH^+20]$
AP Maxflow/Mincut	$O(\log(n)\log\log n) ext{-}\operatorname{Approx} \ \widetilde{O}\left(n^{2/3+o(1)} ight)$	$[CGH^+20]$	$O\left(\log^{8k}(n) ight)$ -Approx. $\widetilde{O}\left(n^{2/(k+1)} ight)$	[Gor19, GHS19]
MCF	$egin{array}{llllllllllllllllllllllllllllllllllll$	[CGH ⁺ 20]	$egin{aligned} O(\log^{8k}(n)) ext{-}\operatorname{Approx.} \ \widetilde{O}\left(n^{2/(k+1)} ight) ext{ update} \ \widetilde{O}(P^2) ext{ query} \end{aligned}$	[Gor19, GHS19]
Strongly Connected Components	$\Omega(m^{1-\varepsilon})$ query or update	[AW14]	$\widetilde{O}(m)$	[Rod13]
	$2^{O(\log^{5/6}(n))}$ -Approx $2^{O(\log^{5/6}(n))}$ update		$O\left(\log^{8k}(n) ight) ext{-}\mathrm{Approx}\ \widetilde{O}\left(n^{2/(k+1)} ight)$	
Uniform Sparsest Cut	$O(\log^{1/6}(n))$ query	[GRST21]	O(1) query	[Gor19, GHS19]
Submodular Max	$\widetilde{O}(k^2)$	$[\mathrm{DFL}^+23]$	$egin{aligned} 0.3178 ext{-} ext{Approx}\ \widetilde{O}\left(ext{poly}(k) ight) \end{aligned}$	$[FLN^+22]$

[**L**S '23]

- Worst-case runtimes:
 - Monte Carlo (whp solution is correct; runtime always small)

- Worst-case runtimes:
 - Monte Carlo (whp solution is correct; runtime always small)
 - Las Vegas: runtime is whp; solution is always correct

- Worst-case runtimes:
 - Monte Carlo (whp solution is correct; runtime always small)
 - Las Vegas: runtime is whp; solution is always correct
- Amortized runtimes:
 - Lazy updates strategy where updates are delayed and processed all at once

- Easy example of lazy updates:
 - $(2 + \varepsilon)$ -Approximate Maximum matching with large $\Theta(n)$ size

- Easy example of lazy updates:
 - $(2 + \varepsilon)$ -Approximate Maximum matching with large $\Theta(n)$ size
 - Each update adds at most one edge to maximum matching

- Easy example of lazy updates:
 - $(2 + \varepsilon)$ -Approximate Maximum matching with large $\Theta(n)$ size
 - Each update adds at most one edge to maximum matching
 - Can afford to wait for $\varepsilon \cdot n$ updates

- Easy example of lazy updates:
 - $(2 + \varepsilon)$ -Approximate Maximum matching with large $\Theta(n)$ size
 - Each update adds at most one edge to maximum matching
 - Can afford to wait for $\varepsilon \cdot n$ updates
 - Rerun maximal matching static algorithm after $\varepsilon \cdot n$ updates

- Easy example of lazy updates:
 - $(2 + \varepsilon)$ -Approximate Maximum matching with large $\Theta(n)$ size
 - Each update adds at most one edge to maximum matching
 - Can afford to wait for $\varepsilon \cdot n$ updates
 - Rerun maximal matching static algorithm after $\varepsilon \cdot n$ updates
 - Amortized update time: $O\left(\frac{m}{\epsilon n}\right) = o(n)$ when m = o(n)

- Adaptive vs. Oblivious vs. Offline-Dynamic Adversaries
 - Offline-Dynamic:
 - Sequence of updates occurs offline
 - Produce a valid solution after every update, minimize amortized update time

- Adaptive vs. Oblivious vs. Offline-Dynamic Adversaries
 - Offline-Dynamic:
 - Sequence of updates occurs offline
 - Produce a valid solution after every update, minimize amortized update time
 - Oblivious:
 - Sequence of updates determined before algorithm starts
 - Updates come one at a time online

- Adaptive vs. Oblivious vs. Offline-Dynamic Adversaries
 - Adaptive:
 - Can see algorithm output and determine next update based on output
 - Can see everything including internal randomness
 - Deterministic algorithms always robust against adaptive adversaries

- Adaptive vs. Oblivious vs. Offline-Dynamic Adversaries
 - Adaptive:
 - Can see algorithm output and determine next update based on output
 - Can see everything including internal randomness
 - Deterministic algorithms always robust against adaptive adversaries
- Large gap between oblivious and adaptive adversaries:
 - Example: dynamic connectivity, polynomial deterministic worst-case, polylog oblivious worst-case

Dynamic Connectivity

- Offline Dynamic [Eppstein '92]
 - Including offline dynamic minimum spanning tree
- Oblivious [Kapron-King-Mountjoy SODA '13]
- Deterministic [Frederickson's Algorithm '85]

Dynamic Connectivity

- Offline Dynamic [Eppstein '92]
 - Including offline dynamic minimum spanning tree
- Oblivious [Kapron-King-Mountjoy SODA '13]
- Deterministic [Frederickson's Algorithm '85] (classic, won't discuss today—similar theme to newer algorithms: <u>http://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15850-f20/www/notes/lec3.pdf</u>)

 Receive an offline sequence of edge insertion/deletion updates and queries

- Receive an offline sequence of edge insertion/deletion updates and queries
 - Insert or delete an edge

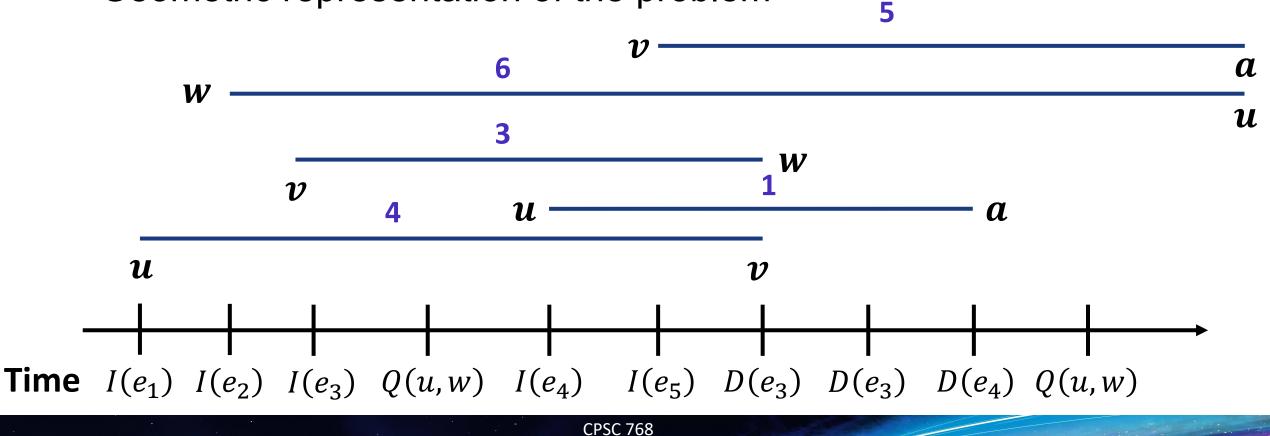
- Receive an offline sequence of edge insertion/deletion updates and queries
 - Insert or delete an edge
 - Query(s, t) queries whether s and t are connected

- Receive an offline sequence of edge insertion/deletion updates and queries
 - Insert or delete an edge
 - Query(s, t) queries whether s and t are connected
- We will use the offline dynamic minimum spanning tree algorithm of Eppstein '92

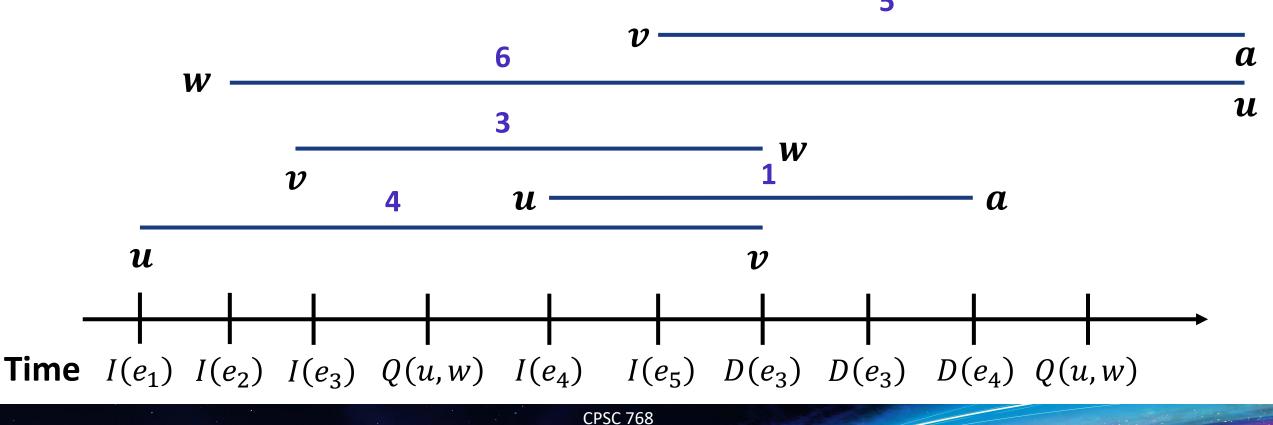
• We will use the offline dynamic minimum spanning tree algorithm of Eppstein '92

- We will use the offline dynamic minimum spanning tree algorithm of Eppstein '92
- Geometric representation of the problem

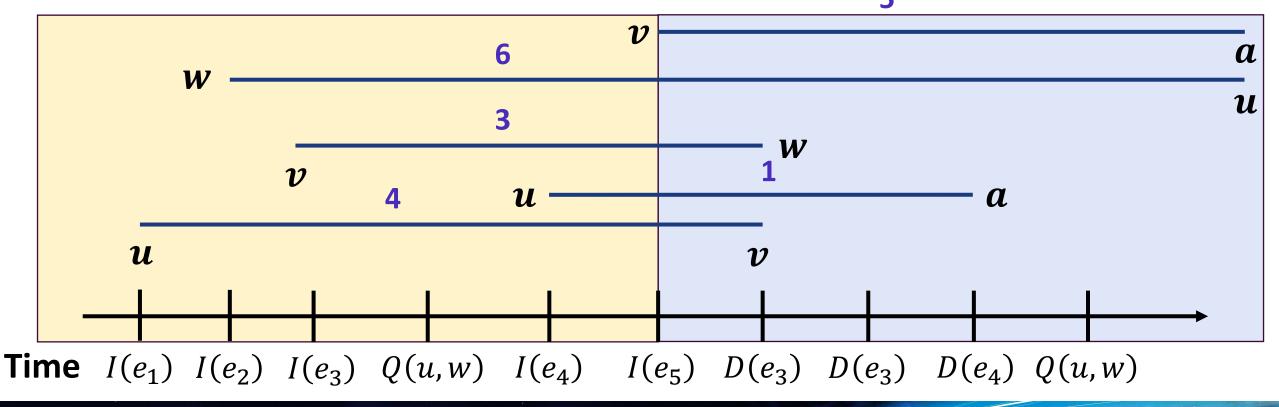
- We will use the offline dynamic minimum spanning tree algorithm of Eppstein '92
- Geometric representation of the problem



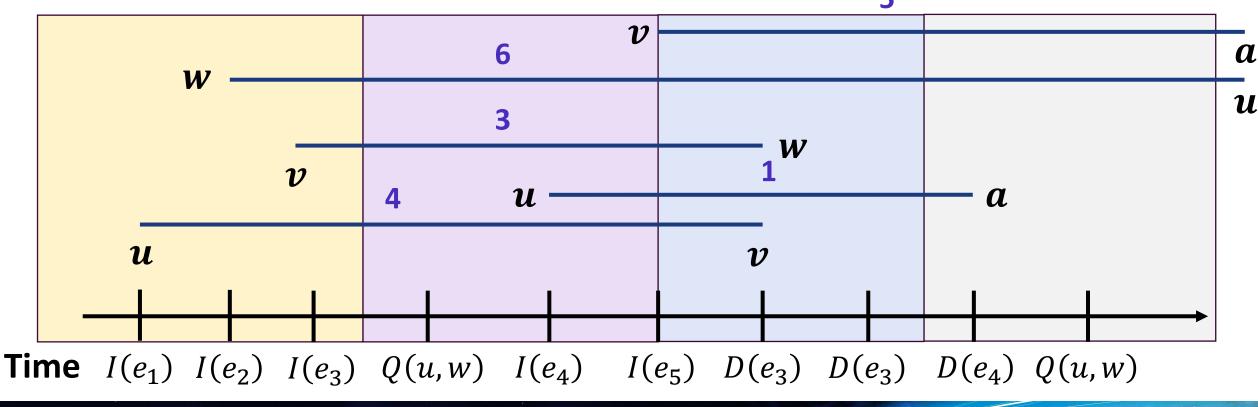
- Geometric representation of the problem
- Divide-and-conquer: process each subproblem



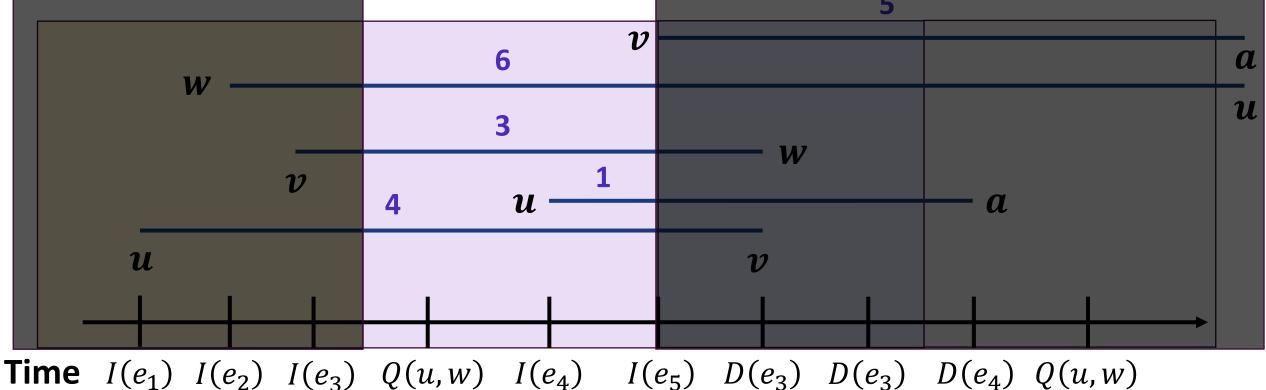
- Geometric representation of the problem
- Divide-and-conquer: process each subproblem



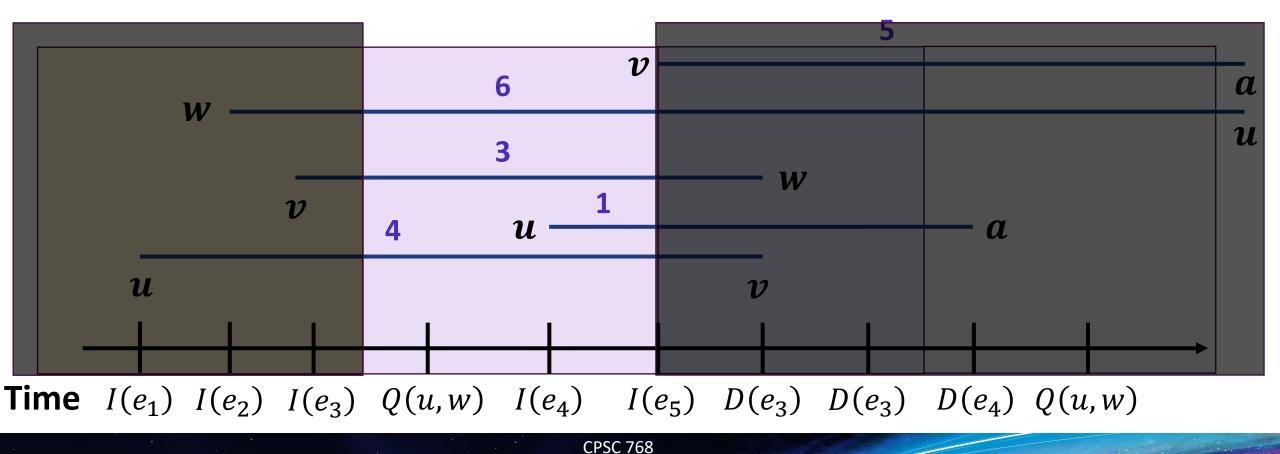
- Geometric representation of the problem
- Divide-and-conquer: process each subproblem



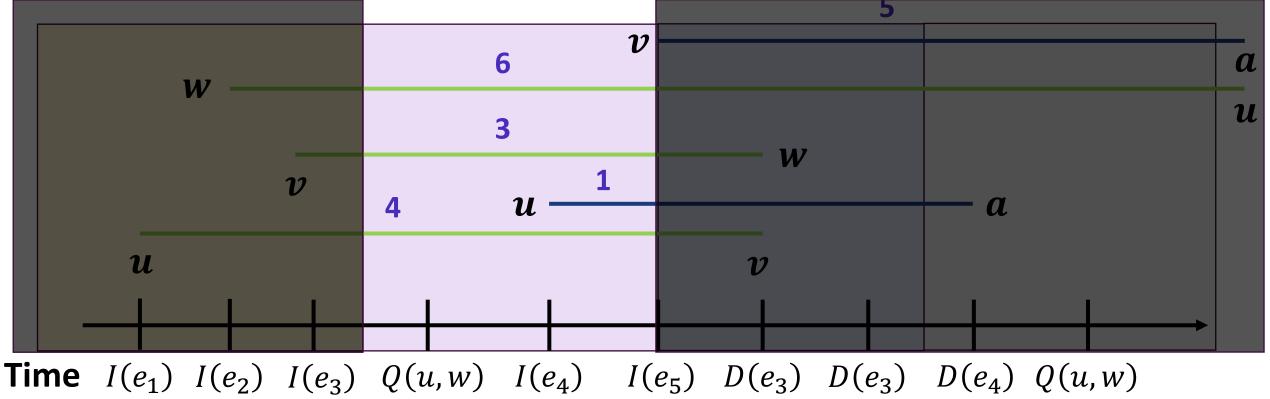
- Geometric representation of the problem
- Divide-and-conquer: process each subproblem



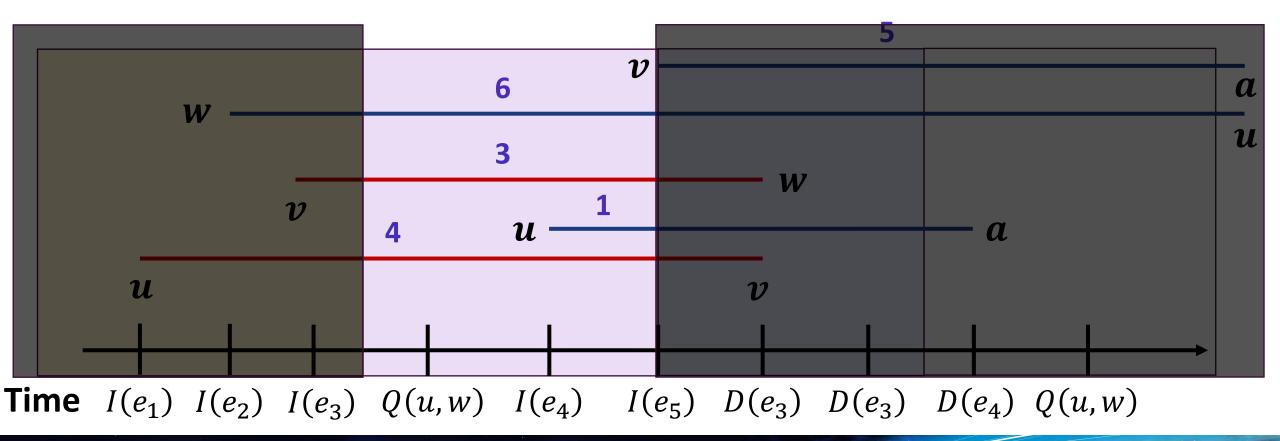
First, consider all permanent edges (edges that go across the subproblem)



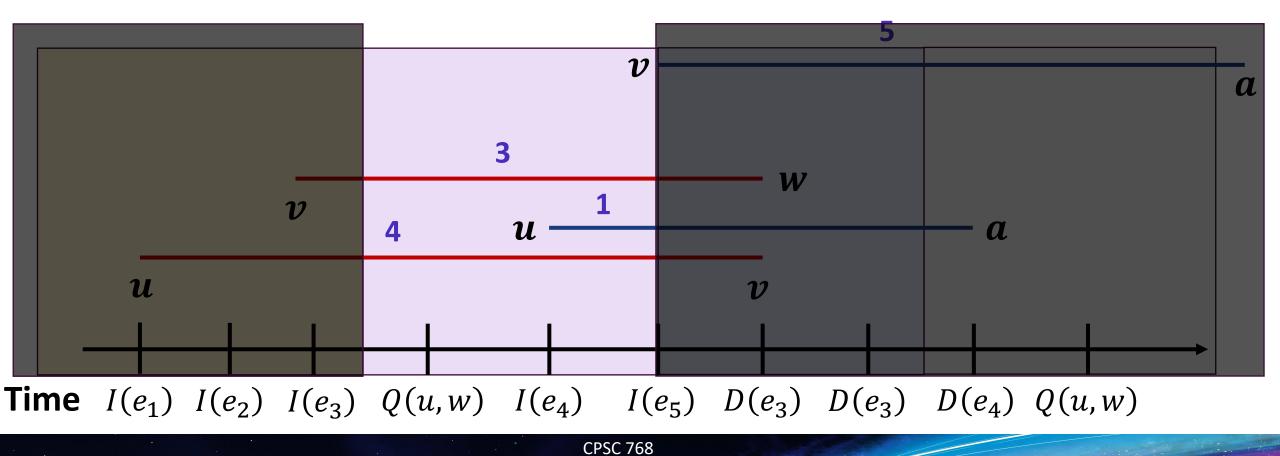
- First, consider all permanent edges (edges that go across the subproblem)
- Run any linear time MST algorithm on all considered edges



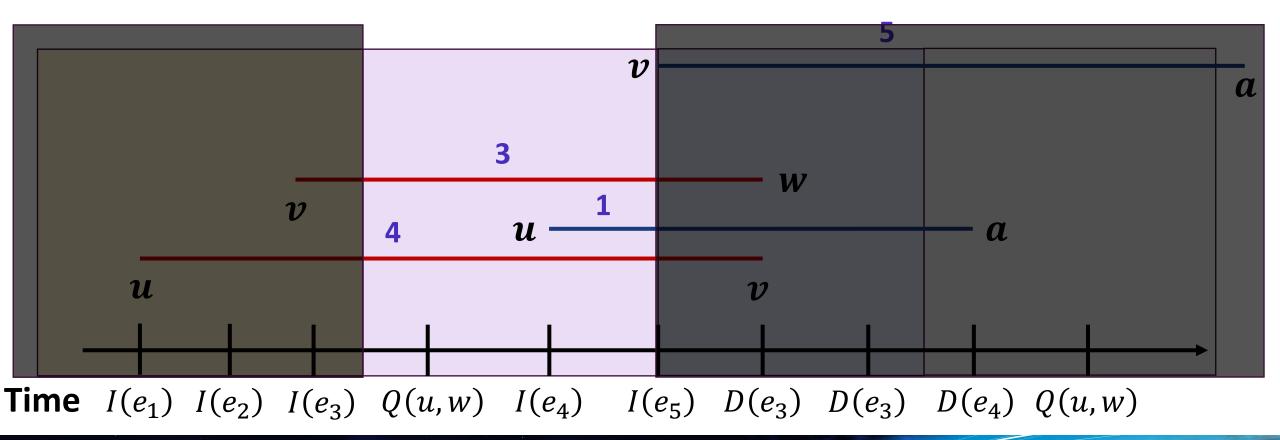
- Run any linear time MST algorithm on all considered edges
- Red edges are in the MST



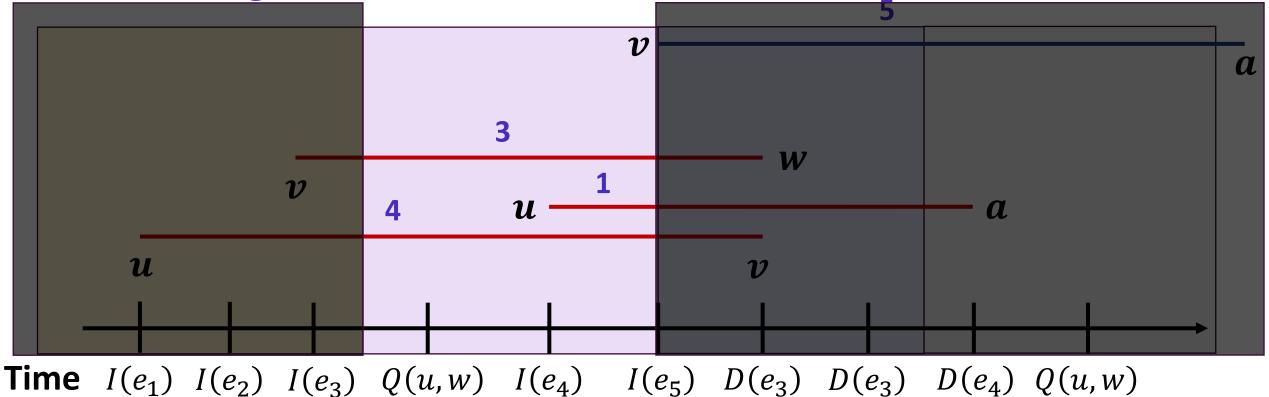
- Run any linear time MST algorithm on all considered edges
- Red edges are in the MST; Delete permanent edges not red



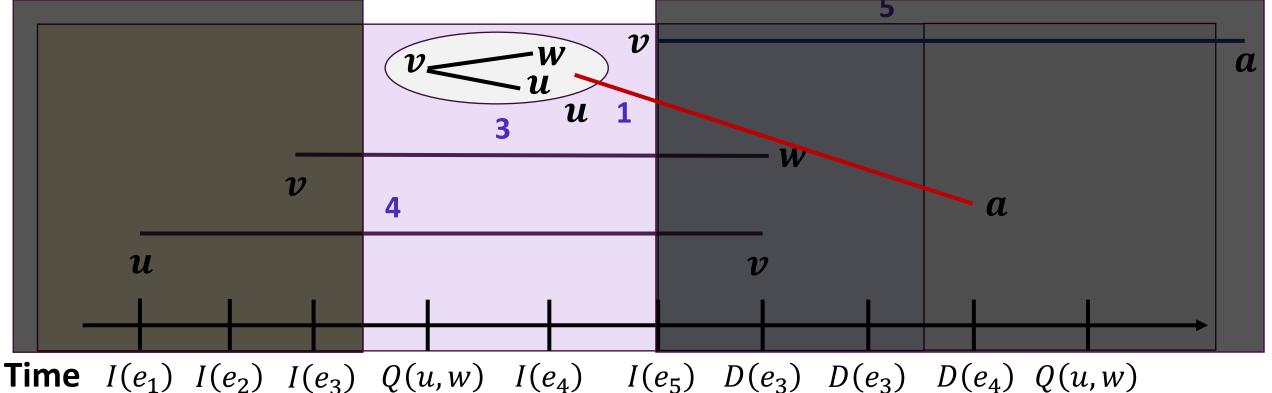
- Red edges are in the MST; Delete permanent edges not red
- Now consider all edges in subproblem



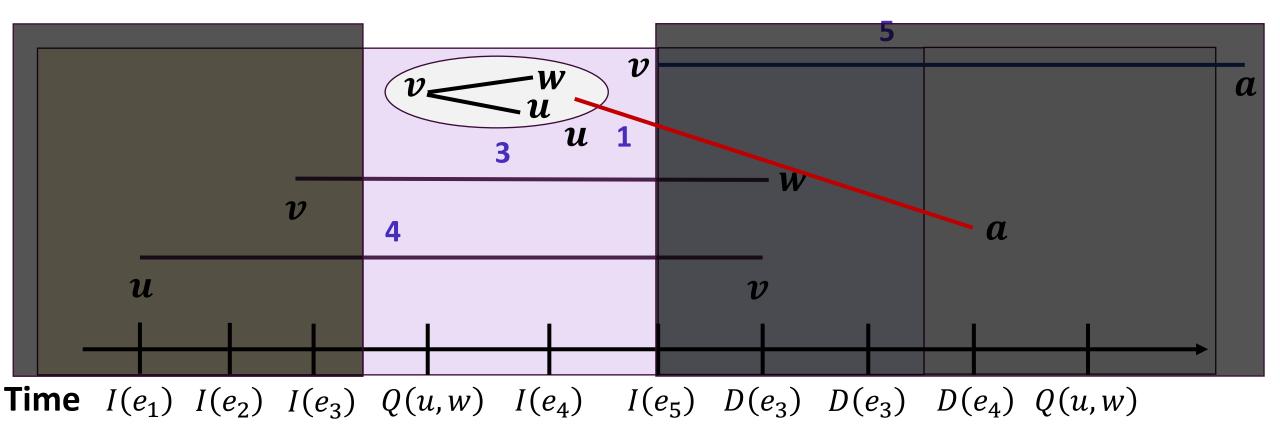
- Red edges are in the MST; Delete permanent edges not red
- Now consider all edges in subproblem; Run any linear time MST algorithm



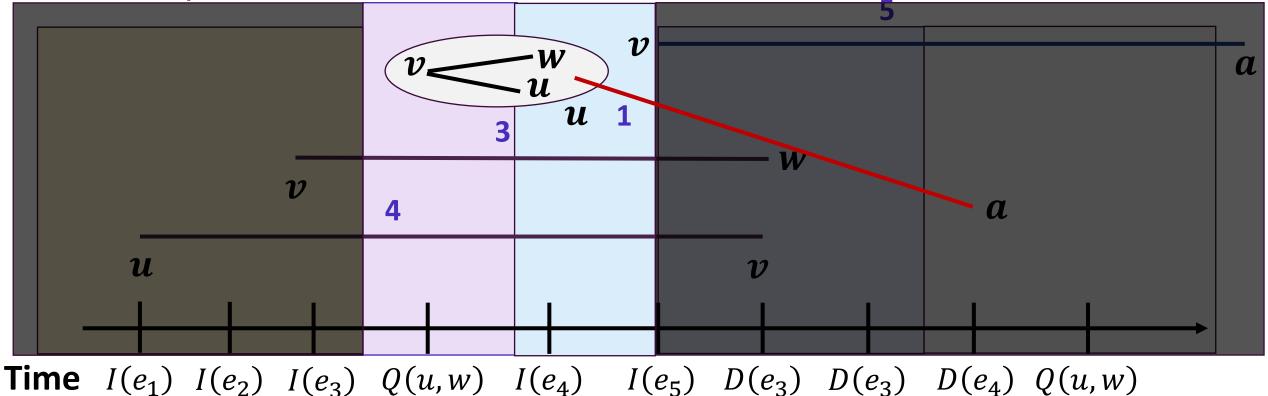
- Now consider all edges in subproblem; Run any linear time MST algorithm
- Contract any permanent edges in the MST; link-cut tree



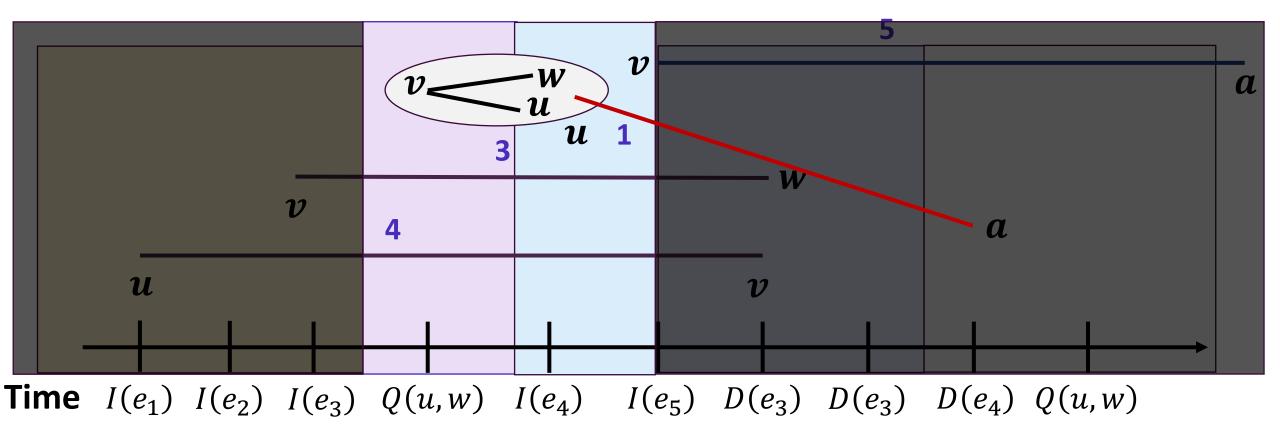
 Pass data structure to next smaller subproblem (persistence)



- Pass data structure to next smaller subproblem (persistence)
- Consider non-contracted and not deleted edges in subproblem



 For queries, look at the data structure and edges of smallest subproblem containing the query



 Assume link-cut tree and persistence such that each subproblem with *T* total permanent and non-permanent edges takes *O*(*T*) time

- Assume link-cut tree and persistence such that each subproblem with *T* total permanent and non-permanent edges takes *O*(*T*) time
- First, consider permanent edges, what happens to them?

- Assume link-cut tree and persistence such that each subproblem with *T* total permanent and non-permanent edges takes *O*(*T*) time
- First, consider permanent edges, what happens to them?
 - They are either deleted

- Assume link-cut tree and persistence such that each subproblem with *T* total permanent and non-permanent edges takes *O*(*T*) time
- First, consider permanent edges, what happens to them?
 - They are either deleted, contracted,

- Assume link-cut tree and persistence such that each subproblem with *T* total permanent and non-permanent edges takes *O*(*T*) time
- First, consider permanent edges, what happens to them?
 - They are either deleted, contracted, or neither

- Assume link-cut tree and persistence such that each subproblem with *T* total permanent and non-permanent edges takes *O*(*T*) time
- First, consider permanent edges, what happens to them?
 - They are either deleted, contracted, or neither
 - Deleted and contracted edges charged to previous level

- Assume link-cut tree and persistence such that each subproblem with *T* total permanent and non-permanent edges takes *O*(*T*) time
- First, consider permanent edges, what happens to them?
 - They are either deleted, contracted, or neither
 - Deleted and contracted edges charged to previous level
 - Neither edges are charged to a non-permanent edge in window

- Assume link-cut tree and persistence such that each subproblem with *T* total permanent and non-permanent edges takes *O*(*T*) time
- First, consider permanent edges, what happens to them?
 - They are either deleted, contracted, or neither
 - Deleted and contracted edges charged to previous level
 - Neither edges are charged to a non-permanent edge in window
- Thus, 3T operations in window with T updates

- Assume link-cut tree and persistence such that each subproblem with *T* total permanent and non-permanent edges takes *O*(*T*) time
- First, consider permanent edges, what happens to them?
 - They are either deleted, contracted, or neither
 - Deleted and contracted edges charged to previous level
 - Neither edges are charged to a non-permanent edge in window
- Thus, 3T operations in window with T updates

Total Runtime: $O(T \log(T))$ by

Master Theorem

 Level Data Structure Algorithm of [Kapron-King-Mountjoy SODA '13]

- Level Data Structure Algorithm of [Kapron-King-Mountjoy SODA '13]
- High-Level Idea:
 - Data structure for quickly determining: given a cut if there's an edge (whp) going in between the cut

- Level Data Structure Algorithm of [Kapron-King-Mountjoy SODA '13]
- High-Level Idea:
 - Data structure for quickly determining: given a cut if there's an edge (whp) going in between the cut
 - Data structure for maintaining connected vertices

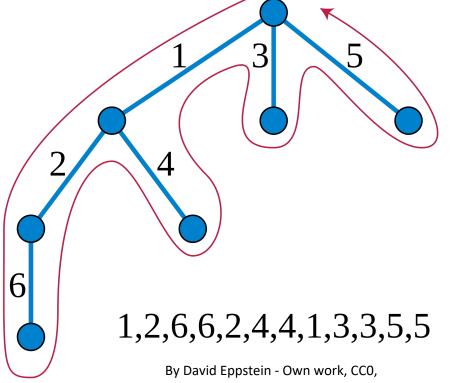
- Level Data Structure Algorithm of [Kapron-King-Mountjoy SODA '13]
- High-Level Idea:
 - Data structure for quickly determining: given a cut if there's an edge (whp) going in between the cut
 - Data structure for maintaining connected vertices
 - Easy access to determine if vertices are in the same connected component

- Data structure:
 - Euler tour tree: Operations and runtimes:
 - Check whether two vertices *u* and *v* are in the same tree: $O(\log n)$ time

- Data structure:
 - Euler tour tree: Operations and runtimes:
 - Check whether two vertices u and v are in the same tree:
 O(log n) time
 - Break a cycle in $O(\log n)$ time

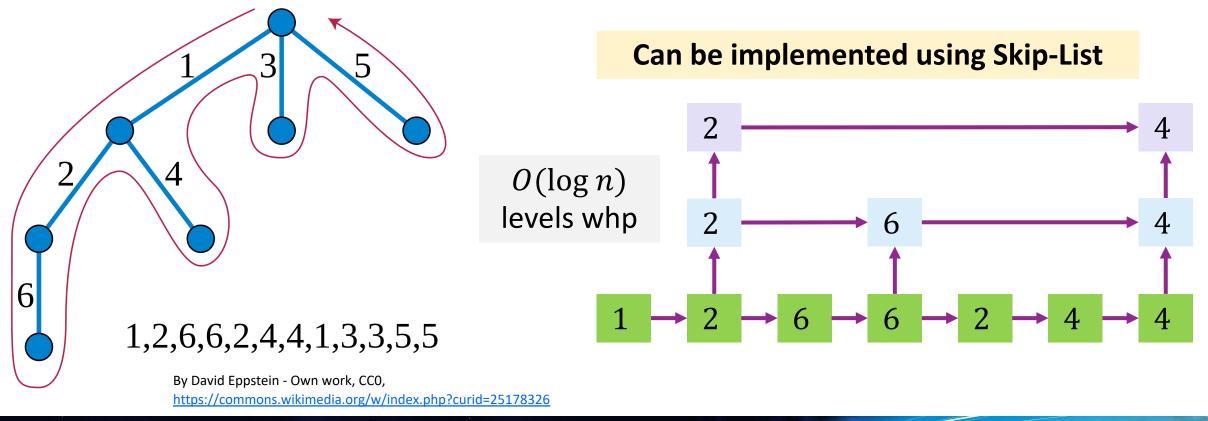
- Data structure:
 - Euler tour tree: Operations and runtimes:
 - Check whether two vertices u and v are in the same tree:
 O(log n) time
 - Break a cycle in $O(\log n)$ time
 - Find SUM or XOR (any commutative, associative operation) of subtree in $O(\log n)$ time

• Euler tour tree (Tarjan-Vishkin '94) high level description:

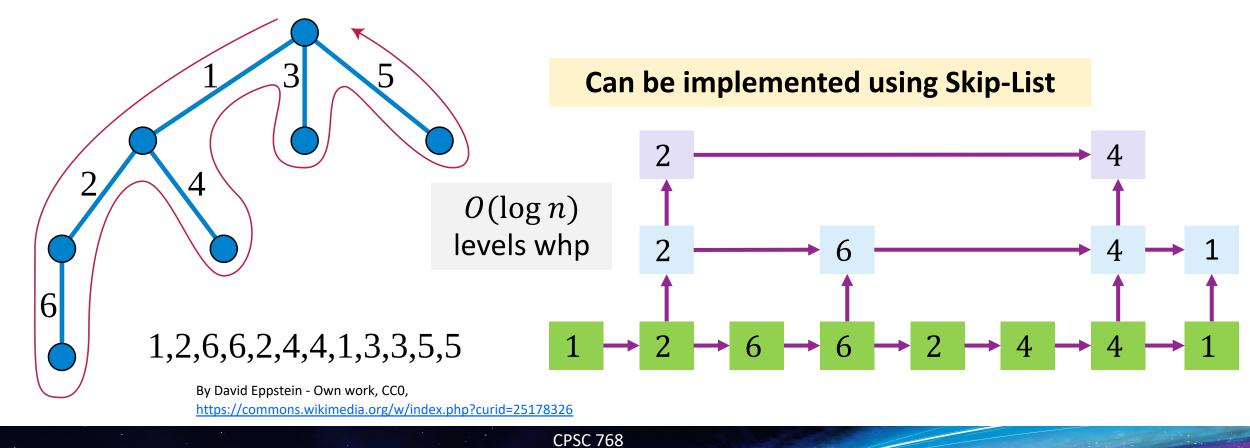


https://commons.wikimedia.org/w/index.php?curid=25178326

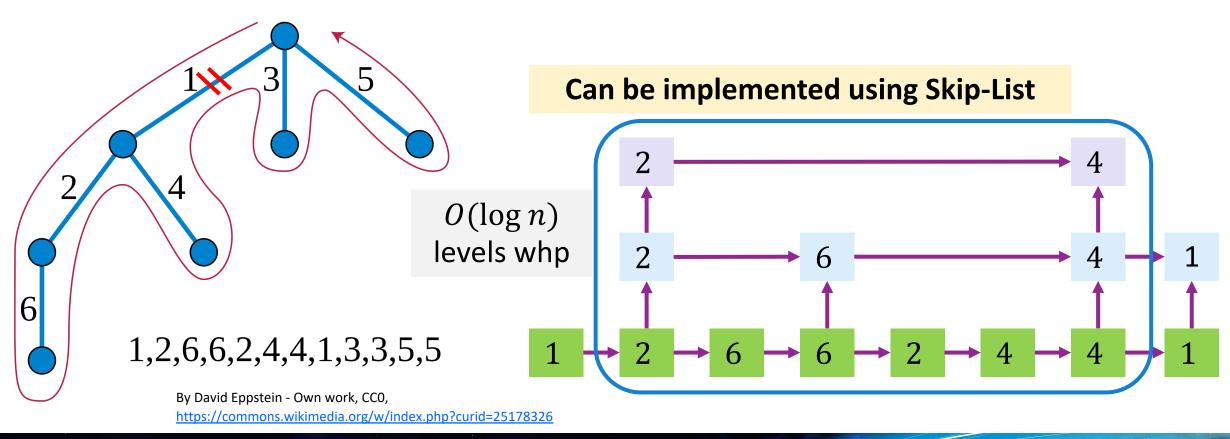
• Euler tour tree (Tarjan-Vishkin '94) high level description:



Euler tour tree allows you to remove a subtree very easily



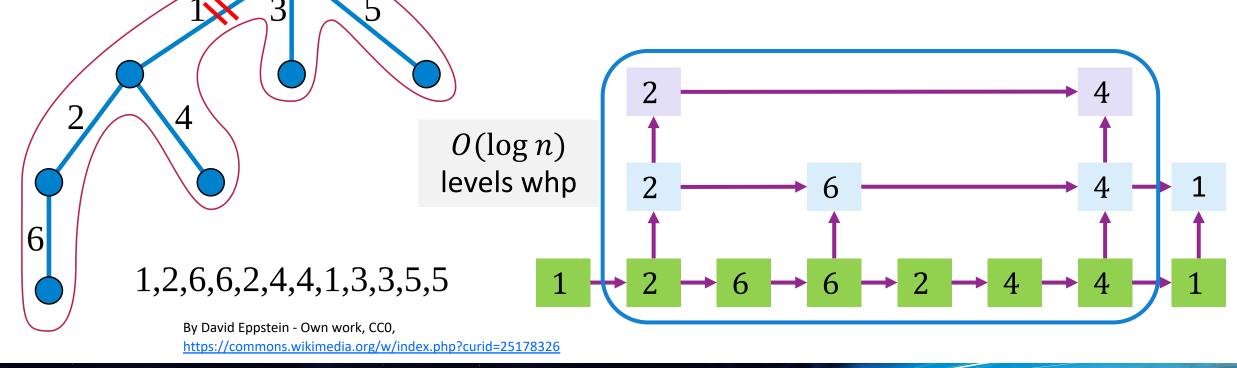
Delete edge 1



Monte Carlo Oblivious Adversary Dynamic Connectivity

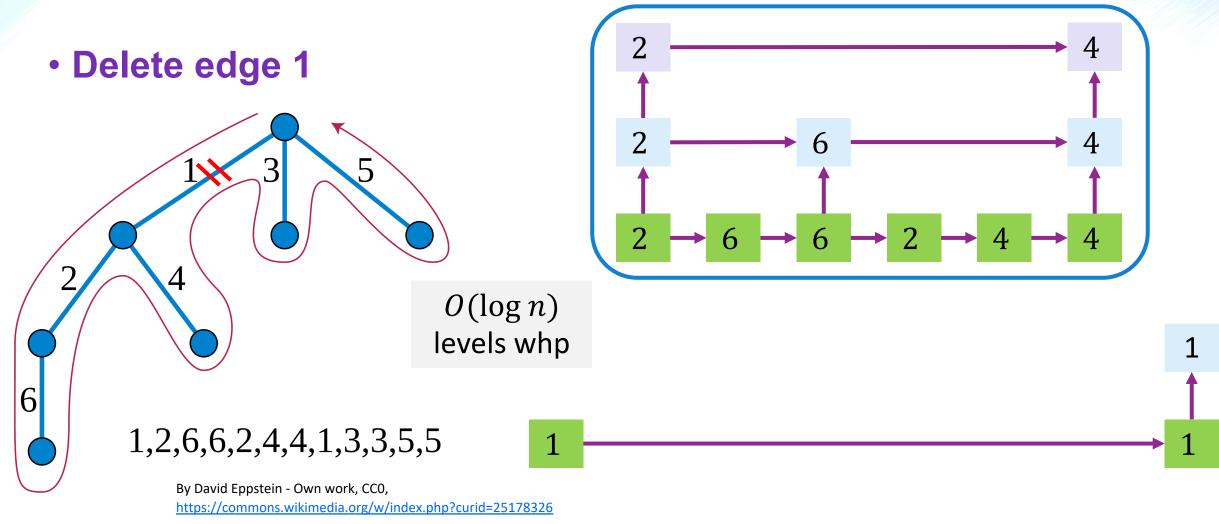
Delete edge 1

Remove relevant contiguous section of skip-list and link together the ends



CPSC 768

Monte Carlo Oblivious Adversary Dynamic Connectivity



CPSC 768

Start from initially empty graph

- Start from initially empty graph
- Maintain spanning trees of connected components using Euler
 Tour Trees

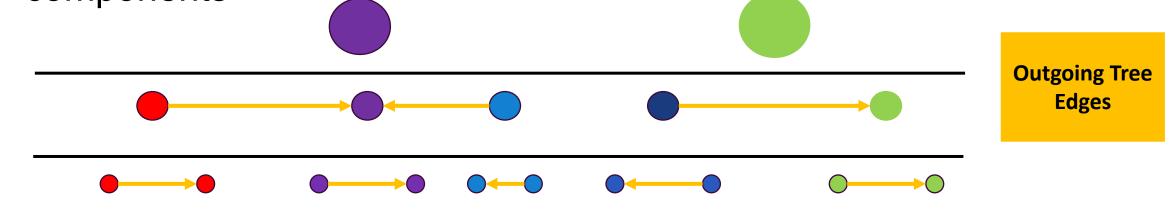
- Start from initially empty graph
- Maintain spanning trees of connected components using Euler Tour Trees
- Maintain Monte Carlo Boruvka tree (MST) data structure where in each level, you add a new edge between not connected components

- Start from initially empty graph
- Maintain spanning trees of connected components using Euler Tour Trees
- Maintain Monte Carlo Boruvka tree (MST) data structure where in each level, you add a new edge between not connected components

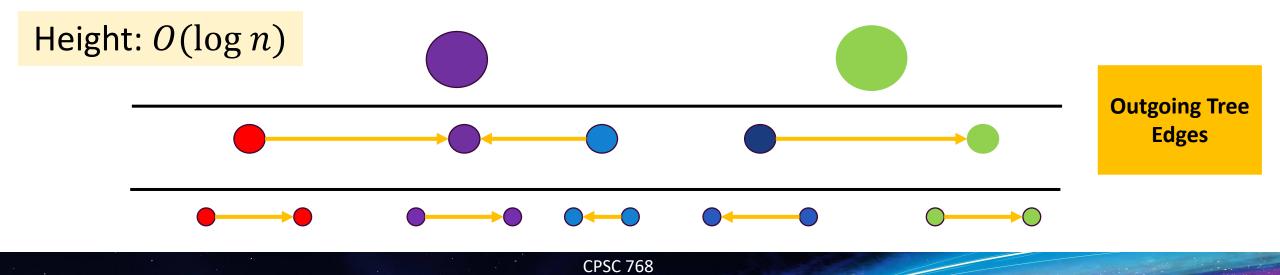
CPSC 768

- Start from initially empty graph
- Maintain spanning trees of connected components using Euler Tour Trees
- Maintain Monte Carlo Boruvka tree (MST) data structure where in each level, you add a new edge between not connected components

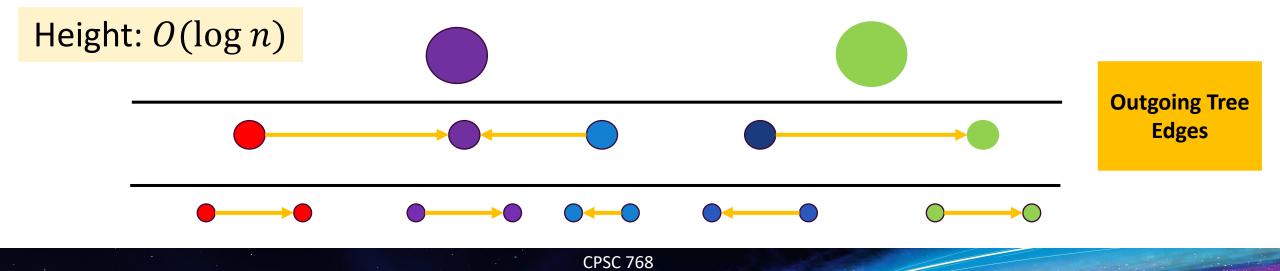
CPSC 768



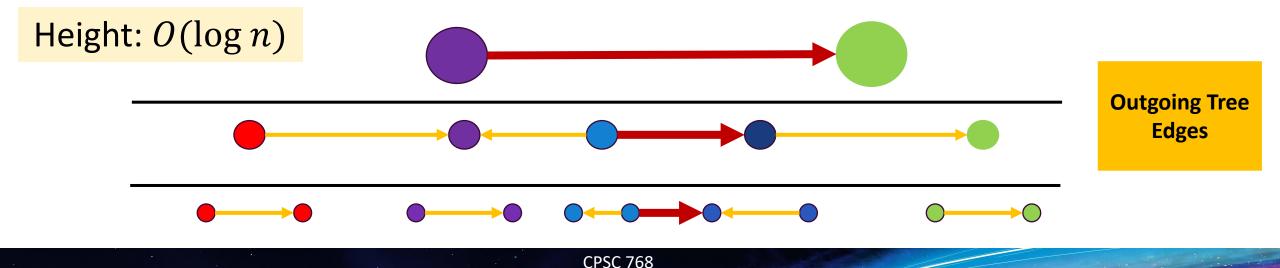
• Want: poly(log *n*) runtime



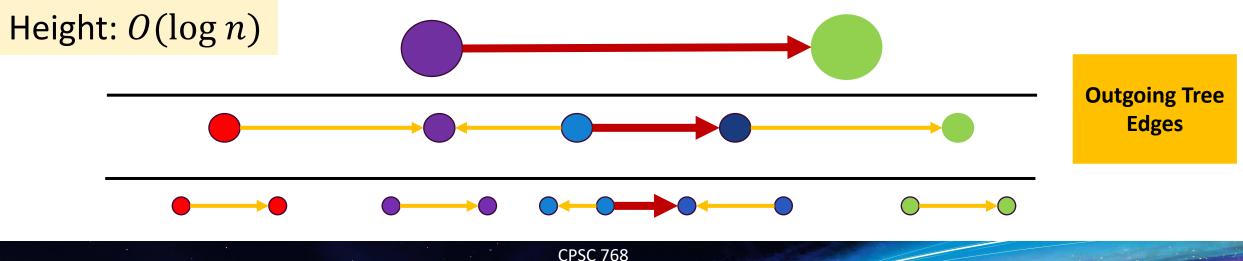
- Want: poly(log *n*) runtime
- On edge insertion: if between two disconnected components on top level
 - Insert into every level



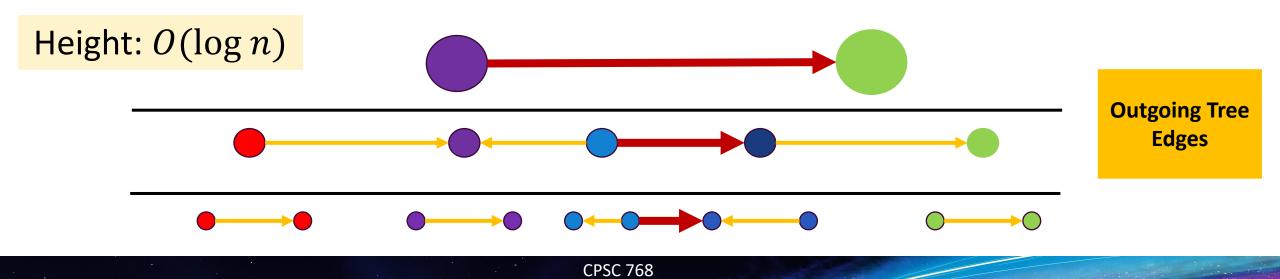
- Want: poly(log *n*) runtime
- On edge insertion: if between two disconnected components on top level
 - Insert into every level (still an MST)



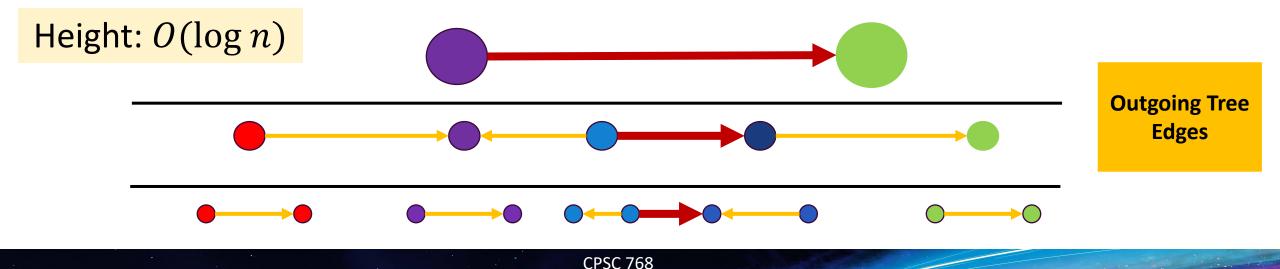
- Want: poly(log *n*) runtime
- On edge insertion: if between two disconnected components on top level
 - Insert into every level (still an MST)
- Update XOR data structure



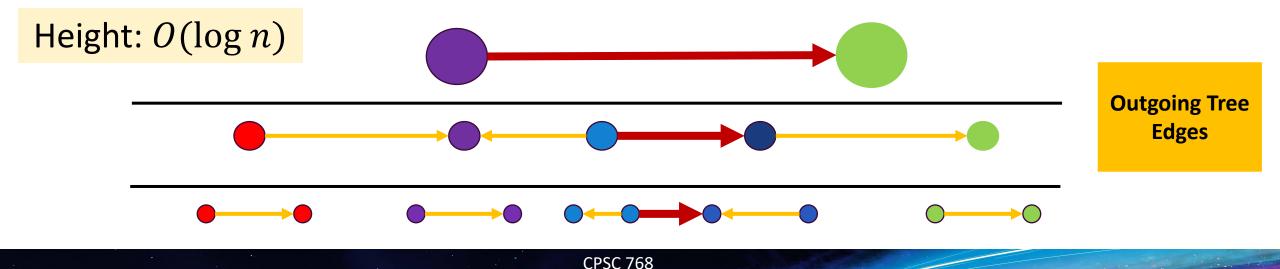
- On edge deletion: if deletion of an outgoing tree edge:
 - Delete from every level



- On edge deletion: if deletion of an outgoing tree edge:
 - Delete from every level
 - Search for replacement edge from XOR data structure



- On edge deletion: if deletion of an **outgoing tree edge**:
 - Delete from every level
 - Search for replacement edge from XOR data structure
- Update XOR data structure



- On edge deletion: if deletion of an **outgoing tree edge**:
 - Delete from every level
 - Search for replacement edge from XOR data structure
- Update XOR data structure



- Searching efficiently for new outgoing edges:
 - XOR data structure
 - Each vertex has an ID

- Searching efficiently for new outgoing edges:
 - XOR data structure
 - Each vertex has an ID
 - Each vertex stores XOR of IDs of sampled edges adjacent to it

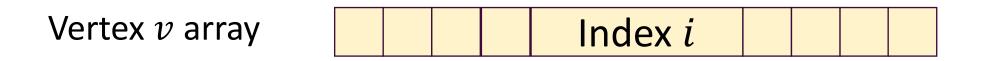
- Searching efficiently for new outgoing edges:
 - XOR data structure
 - Each vertex has an ID
 - Each vertex stores XOR of IDs of sampled edges adjacent to it
 - How do we store sampled edges?

- Searching efficiently for new outgoing edges:
 - XOR data structure
 - Each vertex has an ID
 - Each vertex stores XOR of IDs of sampled edges adjacent to it
 - How do we store sampled edges?
 - In an array where sample probability depends on index of array

- Searching efficiently for new outgoing edges:
 - XOR data structure
 - Each vertex has an ID
 - Each vertex stores XOR of IDs of sampled edges adjacent to it
 - How do we store sampled edges?
 - In an array where sample probability depends on index of array
 - Each node stores such an array

XOR data structure

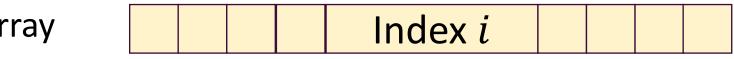
 Each vertex has an ID; each vertex stores XOR of IDs of sampled edges adjacent to it



XOR data structure

- Each vertex has an ID; each vertex stores XOR of IDs of sampled edges adjacent to it
- Store in an array where sample probability depends on index of array
 - Each node stores such an array

Vertex v array



XOR data structure

- Each vertex has an ID; each vertex stores XOR of IDs of sampled edges adjacent to it
- Store in an array where sample probability depends on index of array
 - Each node stores such an array

Vertex v array

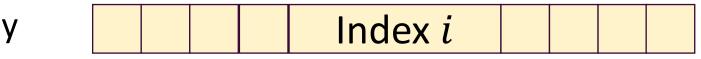
Index *i*

Store edge (ID_v, ID_u) in index *i* with probability $\frac{1}{2^i}$

• XOR data structure

- Each vertex has an ID; each vertex stores XOR of IDs of sampled edges adjacent to it
- Store in an array where sample probability depends on index of array
 - Each node stores such an array

Vertex v array



CPSC 768

By store we mean XOR the edge with whatever is stored there

XOR data structure

• Duplicate each index $O(\log n)$ times; with high probability, at least one index stores **exactly one edge**

By store we mean XOR the edge with whatever is stored there

CPSC 768

XOR data structure

- Duplicate each index $O(\log n)$ times; with high probability, at least one index stores **exactly one edge**
- Use this data structure to find an edge across a cut quickly

XOR data structure

- Duplicate each index $O(\log n)$ times; with high probability, at least one index stores **exactly one edge**
- Use this data structure to find an edge across a cut quickly
- Compute XOR of values stored in every index of every node in Euler Tour Tree with tree edges—every tree edge stored in every index

XOR data structure

- Duplicate each index $O(\log n)$ times; with high probability, at least one index stores **exactly one edge**
- Use this data structure to find an edge across a cut quickly
- Compute XOR of values stored in every index of every node in Euler Tour Tree with tree edges—every tree edge stored in every index

CPSC 768

If XOR data structure of tree only contains tree edges, returns 0

XOR data structure

- Duplicate each index $O(\log n)$ times; with high probability, at least one index stores **exactly one edge**
- Use this data structure to find an edge across a cut quickly
- Compute XOR of values stored in every index of every node in Euler Tour Tree with tree edges—every tree edge stored in every index

CPSC 768

 ID_e

Otherwise, if contains one

outgoing edge, returns ID,

- Why have different probabilities of sampling:
 - Due to XOR data structure, return exactly one edge in cut whp

CPSC 768

 IDe

 Otherwise, if contains one outgoing edge, returns IDe

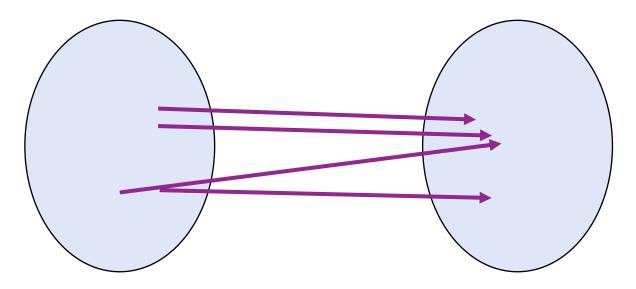
- Why have different probabilities of sampling:
 - Due to XOR data structure, return exactly one edge in cut whp

CPSC 768

Cutset data structure

ID_e Otherwise, if contains one outgoing edge, returns ID_e

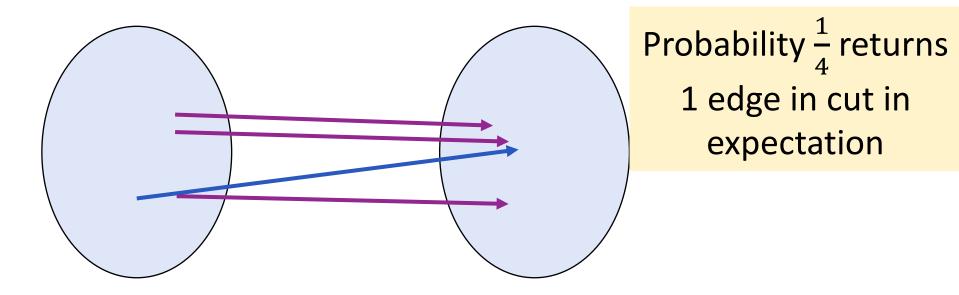
- Why have different probabilities of sampling:
 - Due to XOR data structure, return exactly one edge in cut whp
 - Cutset data structure



- Why have different probabilities of sampling:
 - Due to XOR data structure, return exactly one edge in cut whp

CPSC 768

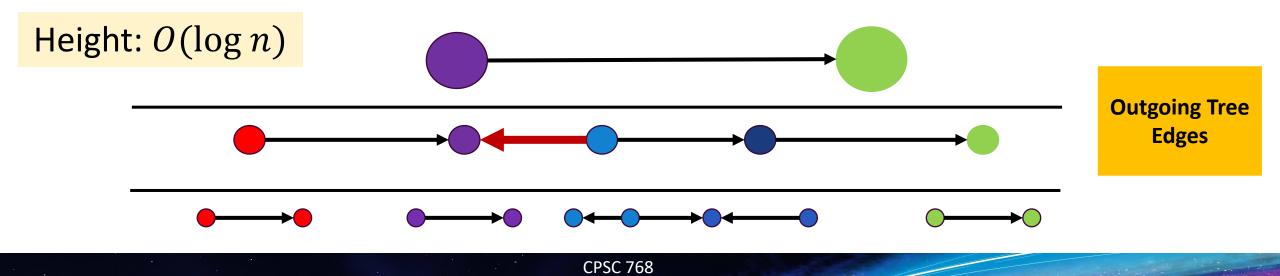
Cutset data structure



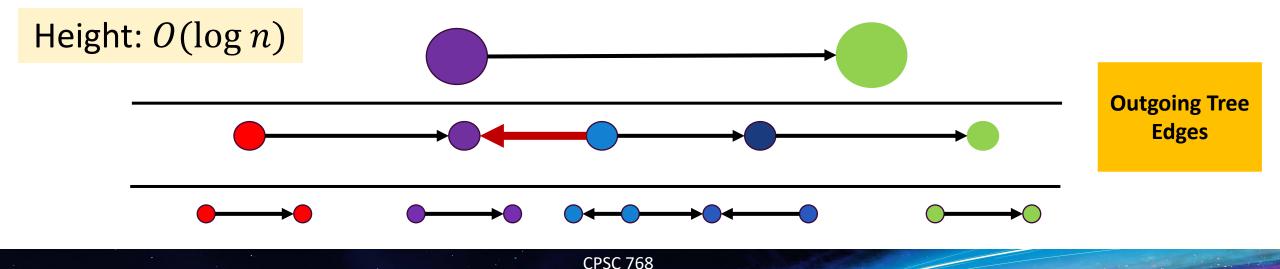
- On edge deletion: if deletion of an **outgoing tree edge**:
 - Delete from every level
 - Search for replacement edge from XOR data structure
- Update XOR data structure



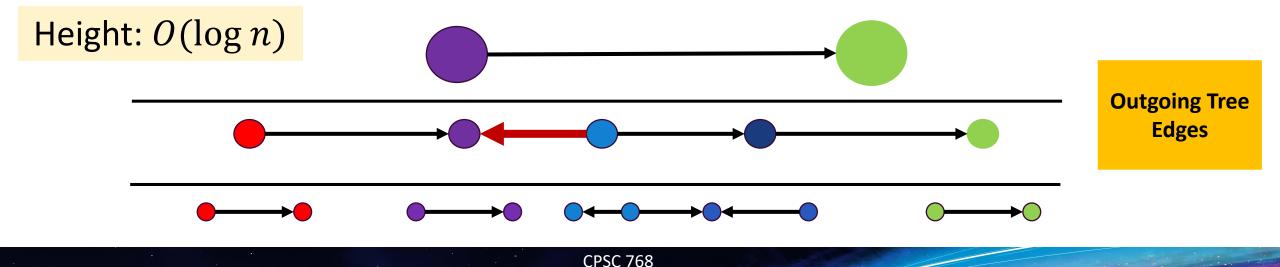
 Additional details: newly inserted replacement edge can cause cycles in higher levels



- Additional details: newly inserted replacement edge can cause cycles in higher levels
 - Break cycles using binary search in Euler Tour tree



- Additional details: newly inserted replacement edge can cause cycles in higher levels
 - Break cycles using binary search in Euler Tour tree
 - Total: poly(log *n*) time per operation



- Correctness with High Probability:
 - Each level's randomness is independent of previous level

- Correctness with High Probability:
 - Each level's randomness is independent of previous level
 - $O(\log n)$ levels success with high probability:

- Correctness with High Probability:
 - Each level's randomness is independent of previous level
 - $O(\log n)$ levels success with high probability:
 - Count # of connected components decrease using cutset

- Correctness with High Probability:
 - Each level's randomness is independent of previous level
 - $O(\log n)$ levels success with high probability:
 - Count # of connected components decrease using cutset
 - Each level expected decrease number of connected components by $\frac{1}{8}$

- Correctness with High Probability:
 - Each level's randomness is independent of previous level
 - $O(\log n)$ levels success with high probability:
 - Count # of connected components decrease using cutset
 - Each level expected decrease number of connected components by $\frac{1}{8}$
 - Thus, by Chernoff, $O(\log n)$ levels suffice