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Announcements

• Final project report and presentation: April 24th (last day of 
class)

• Final project presentation is a 30 min presentation
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Dynamic Graph Algorithms

• Updates to the graph occur where edges are added and 
deleted from the graph

Edge insertions/deletions 
arrive sequentially 

Maintain graph property after 
each update
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Minimize Update Time

• Want: minimize the update time between updates
• Amortized or worst-case (often a gap)

• Sometimes need to do preprocessing
• Small polynomial in the input graph

• Sometimes have queries (e.g. connectivity queries) 

Sublinear Runtime: 
strive for poly(log	𝑛)
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size):
• Best known: 1.973 + 𝜀 -approximation in poly(log	𝑛) 

update time [BKSW SODA `23]
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Many Recent Results in Dynamic Graph 
Algorithms
• Dynamic maximum matching (find a matching of maximum 

size):
• Best known: 1.973 + 𝜀 -approximation in poly(log	𝑛) 

update time [BKSW SODA `23]
• Dynamic Δ + 1 -coloring (find a valid coloring with Δ + 1 

colors):
• Best known: 𝑂 1  update time [HP, BGKLS TALG `22]

• Approximate Densest Subgraph:
• Best known: poly(log	𝑛) update time [SW STOC ‘20, 

CCHHQRS SODA ‘24]
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Dynamic Algorithms + Other Models

• Dynamic meets distributed: 
• Dynamic updates in a distributed graph; very recent, nascent 

field
• Count # of rounds/messages sent in the graph

• Clique counting [BC ICALP ‘19, L IPL ‘23]
• Maximal Independent Set [AOSS STOC ‘18, ALS ITCS ‘22]

• Learning-augmented Dynamic Algorithms [LS ‘23, BFNP ‘23, 
HSSY ‘23]
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Types of Dynamic Algorithms

• Incremental/Decremental vs. Fully Dynamic
• Incremental/decremental algorithms:

• Only edge insertions/deletions, respectively
• Sometimes large gap in runtimes

• Polynomial or exponential gaps in runtimes
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Types of Dynamic Algorithms

[LS ’23]

Best Fully Dynamic Best Partially Dynamic
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• Worst-case vs. amortized runtimes



CPSC 768

Types of Dynamic Algorithms

• Worst-case vs. amortized runtimes
• Worst-case runtimes: 

• Monte Carlo (whp solution is correct; runtime always 
small)



CPSC 768

Types of Dynamic Algorithms

• Worst-case vs. amortized runtimes
• Worst-case runtimes: 

• Monte Carlo (whp solution is correct; runtime always 
small)

• Las Vegas: runtime is whp; solution is always correct



CPSC 768

Types of Dynamic Algorithms

• Worst-case vs. amortized runtimes
• Worst-case runtimes: 

• Monte Carlo (whp solution is correct; runtime always 
small)

• Las Vegas: runtime is whp; solution is always correct
• Amortized runtimes:

• Lazy updates strategy where updates are delayed and 
processed all at once
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Types of Dynamic Algorithms

• Easy example of lazy updates:
• 2 + 𝜀 -Approximate Maximum matching with large Θ(𝑛) size

• Each update adds at most one edge to maximum 
matching

• Can afford to wait for 𝜀 ⋅ 𝑛 updates 
• Rerun maximal matching static algorithm after 𝜀 ⋅ 𝑛 

updates
• Amortized update time: 𝑂 !

"#
= 𝑜(𝑛) when 𝑚 = 𝑜(𝑛)
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Types of Dynamic Algorithms

• Adaptive vs. Oblivious vs. Offline-Dynamic Adversaries
• Offline-Dynamic: 

• Sequence of updates occurs offline
• Produce a valid solution after every update, minimize 

amortized update time
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Types of Dynamic Algorithms

• Adaptive vs. Oblivious vs. Offline-Dynamic Adversaries
• Offline-Dynamic: 

• Sequence of updates occurs offline
• Produce a valid solution after every update, minimize 

amortized update time
• Oblivious: 

• Sequence of updates determined before algorithm starts
• Updates come one at a time online
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Types of Dynamic Algorithms

• Adaptive vs. Oblivious vs. Offline-Dynamic Adversaries
• Adaptive:

• Can see algorithm output and determine next update 
based on output

• Can see everything including internal randomness
• Deterministic algorithms always robust against adaptive 

adversaries
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Types of Dynamic Algorithms
• Adaptive vs. Oblivious vs. Offline-Dynamic Adversaries

• Adaptive:
• Can see algorithm output and determine next update 

based on output
• Can see everything including internal randomness
• Deterministic algorithms always robust against adaptive 

adversaries
• Large gap between oblivious and adaptive adversaries:

• Example: dynamic connectivity, polynomial deterministic 
worst-case, polylog oblivious worst-case
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• Offline Dynamic [Eppstein ‘92]
• Including offline dynamic minimum spanning tree

• Oblivious [Kapron-King-Mountjoy SODA ‘13]
• Deterministic [Frederickson’s Algorithm ‘85]
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Dynamic Connectivity

• Offline Dynamic [Eppstein ‘92]
• Including offline dynamic minimum spanning tree

• Oblivious [Kapron-King-Mountjoy SODA ‘13]
• Deterministic [Frederickson’s Algorithm ‘85] (classic, won’t 

discuss today—similar theme to newer algorithms: 
http://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15850-
f20/www/notes/lec3.pdf)

http://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15850-f20/www/notes/lec3.pdf
http://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15850-f20/www/notes/lec3.pdf
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Offline-Dynamic Connectivity
• We will use the offline dynamic minimum spanning tree 

algorithm of Eppstein ‘92
• Geometric representation of the problem

Time 𝐼 𝑒! 𝐷 𝑒"𝐼 𝑒" 𝐷 𝑒"

𝒖 𝒗

𝒗
𝒘

𝐼 𝑒#𝑄 𝑢,𝑤

𝒗

𝐼 𝑒$ 𝐷 𝑒#

𝒂

𝒖

𝑄 𝑢,𝑤

5

3

1
4

𝒘 𝒖

𝐼 𝑒%

6

𝒂
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Offline-Dynamic Connectivity

• Geometric representation of the problem
• Divide-and-conquer: process each subproblem

Time 𝐼 𝑒! 𝐷 𝑒"𝐼 𝑒" 𝐷 𝑒"

𝒖 𝒗

𝒗
𝒘

𝐼 𝑒#𝑄 𝑢,𝑤

𝒗

𝐼 𝑒$ 𝐷 𝑒#

𝒂

𝒖

𝑄 𝑢,𝑤

5

3

1
4

𝒘 𝒖

𝐼 𝑒%

6

𝒂



CPSC 768

Offline-Dynamic Connectivity

• Geometric representation of the problem
• Divide-and-conquer: process each subproblem

Time 𝐼 𝑒! 𝐷 𝑒"𝐼 𝑒" 𝐷 𝑒"

𝒖 𝒗

𝒗
𝒘

𝐼 𝑒#𝑄 𝑢,𝑤

𝒗

𝐼 𝑒$ 𝐷 𝑒#

𝒂

𝒖

𝑄 𝑢,𝑤

5

3

1
4

𝒘 𝒖

𝐼 𝑒%

6

𝒂



CPSC 768

Offline-Dynamic Connectivity
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Offline-Dynamic Connectivity

• Geometric representation of the problem
• Divide-and-conquer: process each subproblem
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Offline-Dynamic Connectivity
• First, consider all permanent edges (edges that go across the 

subproblem)
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Offline-Dynamic Connectivity
• First, consider all permanent edges (edges that go across the 

subproblem)
• Run any linear time MST algorithm on all considered edges
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Offline-Dynamic Connectivity
• Run any linear time MST algorithm on all considered edges
• Red edges are in the MST
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Offline-Dynamic Connectivity
• Run any linear time MST algorithm on all considered edges
• Red edges are in the MST; Delete permanent edges not red
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Offline-Dynamic Connectivity
• Red edges are in the MST; Delete permanent edges not red
• Now consider all edges in subproblem
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Offline-Dynamic Connectivity
• Red edges are in the MST; Delete permanent edges not red
• Now consider all edges in subproblem; Run any linear time 

MST algorithm

Time 𝐼 𝑒! 𝐷 𝑒"𝐼 𝑒" 𝐷 𝑒"
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Offline-Dynamic Connectivity
• Now consider all edges in subproblem; Run any linear time 

MST algorithm
• Contract any permanent edges in the MST; link-cut tree

Time 𝐼 𝑒! 𝐷 𝑒"𝐼 𝑒" 𝐷 𝑒"

𝒖 𝒗

𝒗
𝒘

𝐼 𝑒#𝑄 𝑢,𝑤

𝒗

𝐼 𝑒$ 𝐷 𝑒#

𝒂
𝒖

𝑄 𝑢,𝑤

5

3 1

4

𝐼 𝑒%

𝒂

𝒗 𝒘
𝒖
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Offline-Dynamic Connectivity
• Pass data structure to next smaller subproblem 

(persistence)

Time 𝐼 𝑒! 𝐷 𝑒"𝐼 𝑒" 𝐷 𝑒"
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Offline-Dynamic Connectivity
• Pass data structure to next smaller subproblem (persistence)
• Consider non-contracted and not deleted edges in 

subproblem

Time 𝐼 𝑒! 𝐷 𝑒"𝐼 𝑒" 𝐷 𝑒"
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𝒂
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3 1
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𝒗 𝒘
𝒖
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Offline-Dynamic Connectivity
• For queries, look at the data structure and edges of smallest 

subproblem containing the query

Time 𝐼 𝑒! 𝐷 𝑒"𝐼 𝑒" 𝐷 𝑒"

𝒖 𝒗

𝒗
𝒘

𝐼 𝑒#𝑄 𝑢,𝑤

𝒗

𝐼 𝑒$ 𝐷 𝑒#

𝒂
𝒖

𝑄 𝑢,𝑤

5

3 1

4

𝐼 𝑒%

𝒂

𝒗 𝒘
𝒖



CPSC 768

Offline-Dynamic Connectivity
• Assume link-cut tree and persistence such that each 

subproblem with 𝑻 total permanent and non-permanent edges 
takes 𝑶(𝑻) time



CPSC 768

Offline-Dynamic Connectivity
• Assume link-cut tree and persistence such that each 

subproblem with 𝑻 total permanent and non-permanent edges 
takes 𝑶(𝑻) time

• First, consider permanent edges, what happens to them?



CPSC 768

Offline-Dynamic Connectivity
• Assume link-cut tree and persistence such that each 

subproblem with 𝑻 total permanent and non-permanent edges 
takes 𝑶(𝑻) time

• First, consider permanent edges, what happens to them?
• They are either deleted 



CPSC 768

Offline-Dynamic Connectivity
• Assume link-cut tree and persistence such that each 

subproblem with 𝑻 total permanent and non-permanent edges 
takes 𝑶(𝑻) time

• First, consider permanent edges, what happens to them?
• They are either deleted, contracted, 



CPSC 768

Offline-Dynamic Connectivity
• Assume link-cut tree and persistence such that each 

subproblem with 𝑻 total permanent and non-permanent edges 
takes 𝑶(𝑻) time

• First, consider permanent edges, what happens to them?
• They are either deleted, contracted, or neither



CPSC 768

Offline-Dynamic Connectivity
• Assume link-cut tree and persistence such that each 

subproblem with 𝑻 total permanent and non-permanent edges 
takes 𝑶(𝑻) time

• First, consider permanent edges, what happens to them?
• They are either deleted, contracted, or neither
• Deleted and contracted edges charged to previous level



CPSC 768

Offline-Dynamic Connectivity
• Assume link-cut tree and persistence such that each 

subproblem with 𝑻 total permanent and non-permanent edges 
takes 𝑶(𝑻) time

• First, consider permanent edges, what happens to them?
• They are either deleted, contracted, or neither
• Deleted and contracted edges charged to previous level
• Neither edges are charged to a non-permanent edge in 

window



CPSC 768

Offline-Dynamic Connectivity
• Assume link-cut tree and persistence such that each 

subproblem with 𝑻 total permanent and non-permanent edges 
takes 𝑶(𝑻) time

• First, consider permanent edges, what happens to them?
• They are either deleted, contracted, or neither
• Deleted and contracted edges charged to previous level
• Neither edges are charged to a non-permanent edge in 

window
• Thus, 3𝑇 operations in window with 𝑇 updates 



CPSC 768

Offline-Dynamic Connectivity
• Assume link-cut tree and persistence such that each 

subproblem with 𝑻 total permanent and non-permanent edges 
takes 𝑶(𝑻) time

• First, consider permanent edges, what happens to them?
• They are either deleted, contracted, or neither
• Deleted and contracted edges charged to previous level
• Neither edges are charged to a non-permanent edge in 

window
• Thus, 3𝑇 operations in window with 𝑇 updates 

Total Runtime: 𝑶 𝑻	𝐥𝐨𝐠 𝑻  by 
Master Theorem
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Monte Carlo Oblivious Adversary 
Dynamic Connectivity
• Level Data Structure Algorithm of [Kapron-King-Mountjoy SODA 

‘13]
• High-Level Idea:

• Data structure for quickly determining: given a cut if there’s 
an edge (whp) going in between the cut

• Data structure for maintaining connected vertices
• Easy access to determine if vertices are in the same 

connected component
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Monte Carlo Oblivious Adversary 
Dynamic Connectivity
• Data structure: 

• Euler tour tree: Operations and runtimes:
•  Check whether two vertices 𝑢 and 𝑣 are in the same tree: 
𝑂(log	𝑛) time

• Break a cycle in 𝑂(log	𝑛) time
• Find SUM or XOR (any commutative, associative 

operation) of subtree in 𝑂(log	𝑛) time
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Monte Carlo Oblivious Adversary 
Dynamic Connectivity
• Euler tour tree (Tarjan-Vishkin ‘94) high level description:

By David Eppstein - Own work, CC0, 
https://commons.wikimedia.org/w/index.php?curid=25178326

https://commons.wikimedia.org/w/index.php?curid=25178326


CPSC 768

Monte Carlo Oblivious Adversary 
Dynamic Connectivity
• Euler tour tree (Tarjan-Vishkin ‘94) high level description:

By David Eppstein - Own work, CC0, 
https://commons.wikimedia.org/w/index.php?curid=25178326

Can be implemented using Skip-List

1 2 6 6 2 4 4

2 6 4

2 4
𝑂(log	𝑛) 

levels whp

https://commons.wikimedia.org/w/index.php?curid=25178326
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Monte Carlo Oblivious Adversary 
Dynamic Connectivity
• Euler tour tree allows you to remove a subtree very easily

By David Eppstein - Own work, CC0, 
https://commons.wikimedia.org/w/index.php?curid=25178326

Can be implemented using Skip-List
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Monte Carlo Oblivious Adversary 
Dynamic Connectivity
• Delete edge 1

By David Eppstein - Own work, CC0, 
https://commons.wikimedia.org/w/index.php?curid=25178326

Can be implemented using Skip-List
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Monte Carlo Oblivious Adversary 
Dynamic Connectivity
• Delete edge 1

By David Eppstein - Own work, CC0, 
https://commons.wikimedia.org/w/index.php?curid=25178326

Remove relevant contiguous section of 
skip-list and link together the ends 
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𝑂(log	𝑛) 

levels whp
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Monte Carlo Oblivious Adversary 
Dynamic Connectivity
• Delete edge 1

By David Eppstein - Own work, CC0, 
https://commons.wikimedia.org/w/index.php?curid=25178326
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Monte Carlo Oblivious Adversary Dynamic Connectivity 
[Gibbs-Kapron-King-Thorn ‘15]

• Start from initially empty graph
• Maintain spanning trees of connected components using Euler 

Tour Trees
• Maintain Monte Carlo Boruvka tree (MST) data structure where 

in each level, you add a new edge between not connected 
components

Outgoing Tree 
Edges
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Monte Carlo Oblivious Adversary Dynamic Connectivity 
[Gibbs-Kapron-King-Thorn ‘15]

• Want: poly(log	𝑛) runtime

Outgoing Tree 
Edges

Height: 𝑂(log	𝑛)
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Monte Carlo Oblivious Adversary Dynamic Connectivity 
[Gibbs-Kapron-King-Thorn ‘15]

• Want: poly(log	𝑛) runtime
• On edge insertion: if between two disconnected components on 

top level
• Insert into every level (still an MST)

• Update XOR data structure

Outgoing Tree 
Edges

Height: 𝑂(log	𝑛)
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Monte Carlo Oblivious Adversary Dynamic Connectivity 
[Gibbs-Kapron-King-Thorn ‘15]

• On edge deletion: if deletion of an outgoing tree edge:
• Delete from every level 

Outgoing Tree 
Edges

Height: 𝑂(log	𝑛)
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Monte Carlo Oblivious Adversary Dynamic Connectivity 
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• Searching efficiently for new outgoing edges:
• XOR data structure 

• Each vertex has an ID
• Each vertex stores XOR of IDs of sampled edges 

adjacent to it 
• How do we store sampled edges?

• In an array where sample probability depends on 
index of array

• Each node stores such an array
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• XOR data structure 
• Each vertex has an ID; each vertex stores XOR of IDs of 

sampled edges adjacent to it 

Index 𝑖Vertex 𝑣 array
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• XOR data structure 
• Each vertex has an ID; each vertex stores XOR of IDs of 
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Monte Carlo Oblivious Adversary Dynamic Connectivity 
[Gibbs-Kapron-King-Thorn ‘15]

• XOR data structure 
• Each vertex has an ID; each vertex stores XOR of IDs of 

sampled edges adjacent to it 
• Store in an array where sample probability depends on 

index of array
• Each node stores such an array

Index 𝑖Vertex 𝑣 array

Store edge (𝐼𝐷! , 𝐼𝐷") in index 𝑖 with probability #
$!
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Monte Carlo Oblivious Adversary Dynamic Connectivity 
[Gibbs-Kapron-King-Thorn ‘15]

• XOR data structure 
• Each vertex has an ID; each vertex stores XOR of IDs of 

sampled edges adjacent to it 
• Store in an array where sample probability depends on 

index of array
• Each node stores such an array

Index 𝑖Vertex 𝑣 array

By store we mean XOR the edge with whatever is stored there
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Monte Carlo Oblivious Adversary Dynamic Connectivity 
[Gibbs-Kapron-King-Thorn ‘15]

• XOR data structure 
• Duplicate each index 𝑂(log	𝑛) times; with high probability, at 

least one index stores exactly one edge

Index 𝑖Vertex 𝑣 array

By store we mean XOR the edge with whatever is stored there
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Monte Carlo Oblivious Adversary Dynamic Connectivity 
[Gibbs-Kapron-King-Thorn ‘15]

• XOR data structure 
• Duplicate each index 𝑂(log	𝑛) times; with high probability, at 

least one index stores exactly one edge
• Use this data structure to find an edge across a cut quickly

• Compute XOR of values stored in every index of every node 
in Euler Tour Tree with tree edges—every tree edge stored in 
every index

If XOR data structure of tree only 
contains tree edges, returns 0
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Monte Carlo Oblivious Adversary Dynamic Connectivity 
[Gibbs-Kapron-King-Thorn ‘15]

• XOR data structure 
• Duplicate each index 𝑂(log	𝑛) times; with high probability, at 

least one index stores exactly one edge
• Use this data structure to find an edge across a cut quickly

• Compute XOR of values stored in every index of every node 
in Euler Tour Tree with tree edges—every tree edge stored in 
every index

Otherwise, if contains one 
outgoing edge, returns 𝑰𝑫𝒆

𝑰𝑫𝒆
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• Why have different probabilities of sampling:
• Due to XOR data structure, return exactly one edge in cut 

whp

Otherwise, if contains one 
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𝑰𝑫𝒆
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Monte Carlo Oblivious Adversary Dynamic Connectivity 
[Gibbs-Kapron-King-Thorn ‘15]

• Why have different probabilities of sampling:
• Due to XOR data structure, return exactly one edge in cut 

whp
• Cutset data structure

Probability %
&
 returns 

1 edge in cut in 
expectation
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Monte Carlo Oblivious Adversary Dynamic Connectivity 
[Gibbs-Kapron-King-Thorn ‘15]

• On edge deletion: if deletion of an outgoing tree edge:
• Delete from every level 
• Search for replacement edge from XOR data structure

• Update XOR data structure

Outgoing Tree 
Edges

Height: 𝑂(log	𝑛)
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• Additional details: newly inserted replacement edge can cause 
cycles in higher levels

Outgoing Tree 
Edges

Height: 𝑂(log	𝑛)
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• Additional details: newly inserted replacement edge can cause 
cycles in higher levels

• Break cycles using binary search in Euler Tour tree
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Monte Carlo Oblivious Adversary Dynamic Connectivity 
[Gibbs-Kapron-King-Thorn ‘15]

• Additional details: newly inserted replacement edge can cause 
cycles in higher levels

• Break cycles using binary search in Euler Tour tree
• Total: poly(log	𝒏) time per operation

Outgoing Tree 
Edges

Height: 𝑂(log	𝑛)
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Monte Carlo Oblivious Adversary Dynamic Connectivity 
[Gibbs-Kapron-King-Thorn ‘15]

• Correctness with High Probability:
• Each level’s randomness is independent of previous level
• 𝑂(log	𝑛) levels success with high probability:

• Count # of connected components decrease using cutset 
• Each level expected decrease number of connected 

components by %
'

• Thus, by Chernoff, 𝑂(log	𝑛) levels suffice


