
CPSC 768

CPSC 768:
Scalable and Private Graph Algorithms

Quanquan C. Liu
quanquan.liu@yale.edu

Lecture 20: Dynamic Graph Algorithms

CPSC 768

Announcements

• Final project report and presentation: April 24th (last day of
class)

• Final project presentation is a 30 min presentation

CPSC 768

Dynamic Graph Algorithms

• Updates to the graph occur where edges are added and
deleted from the graph

Edge insertions/deletions
arrive sequentially

Maintain graph property after
each update

CPSC 768

Minimize Update Time

• Want: minimize the update time between updates
• Amortized or worst-case (often a gap) Sublinear Runtime:

strive for poly(log	𝑛)

CPSC 768

Minimize Update Time

• Want: minimize the update time between updates
• Amortized or worst-case (often a gap)

• Sometimes need to do preprocessing
• Small polynomial in the input graph

Sublinear Runtime:
strive for poly(log	𝑛)

CPSC 768

Minimize Update Time

• Want: minimize the update time between updates
• Amortized or worst-case (often a gap)

• Sometimes need to do preprocessing
• Small polynomial in the input graph

• Sometimes have queries (e.g. connectivity queries)

Sublinear Runtime:
strive for poly(log	𝑛)

CPSC 768

Many Recent Results in Dynamic Graph
Algorithms
• Dynamic maximum matching (find a matching of maximum

size):
• Best known: 1.973 + 𝜀 -approximation in poly(log	𝑛)

update time [BKSW SODA `23]

CPSC 768

Many Recent Results in Dynamic Graph
Algorithms
• Dynamic maximum matching (find a matching of maximum

size):
• Best known: 1.973 + 𝜀 -approximation in poly(log	𝑛)

update time [BKSW SODA `23]
• Dynamic Δ + 1 -coloring (find a valid coloring with Δ + 1

colors):
• Best known: 𝑂 1 update time [HP, BGKLS TALG `22]

CPSC 768

Many Recent Results in Dynamic Graph
Algorithms
• Dynamic maximum matching (find a matching of maximum

size):
• Best known: 1.973 + 𝜀 -approximation in poly(log	𝑛)

update time [BKSW SODA `23]
• Dynamic Δ + 1 -coloring (find a valid coloring with Δ + 1

colors):
• Best known: 𝑂 1 update time [HP, BGKLS TALG `22]

• Approximate Densest Subgraph:
• Best known: poly(log	𝑛) update time [SW STOC ‘20,

CCHHQRS SODA ‘24]

CPSC 768

Dynamic Algorithms + Other Models

• Dynamic meets distributed:
• Dynamic updates in a distributed graph; very recent, nascent

field
• Count # of rounds/messages sent in the graph

CPSC 768

Dynamic Algorithms + Other Models

• Dynamic meets distributed:
• Dynamic updates in a distributed graph; very recent, nascent

field
• Count # of rounds/messages sent in the graph

• Clique counting [BC ICALP ‘19, L IPL ‘23]
• Maximal Independent Set [AOSS STOC ‘18, ALS ITCS ‘22]

CPSC 768

Dynamic Algorithms + Other Models

• Dynamic meets distributed:
• Dynamic updates in a distributed graph; very recent, nascent

field
• Count # of rounds/messages sent in the graph

• Clique counting [BC ICALP ‘19, L IPL ‘23]
• Maximal Independent Set [AOSS STOC ‘18, ALS ITCS ‘22]

• Learning-augmented Dynamic Algorithms [LS ‘23, BFNP ‘23,
HSSY ‘23]

CPSC 768

Types of Dynamic Algorithms

• Incremental/Decremental vs. Fully Dynamic
• Incremental/decremental algorithms:

• Only edge insertions/deletions, respectively

CPSC 768

Types of Dynamic Algorithms

• Incremental/Decremental vs. Fully Dynamic
• Incremental/decremental algorithms:

• Only edge insertions/deletions, respectively
• Sometimes large gap in runtimes

CPSC 768

Types of Dynamic Algorithms

• Incremental/Decremental vs. Fully Dynamic
• Incremental/decremental algorithms:

• Only edge insertions/deletions, respectively
• Sometimes large gap in runtimes

• Polynomial or exponential gaps in runtimes

CPSC 768

Types of Dynamic Algorithms

[LS ’23]

Best Fully Dynamic Best Partially Dynamic

CPSC 768

Types of Dynamic Algorithms

• Worst-case vs. amortized runtimes

CPSC 768

Types of Dynamic Algorithms

• Worst-case vs. amortized runtimes
• Worst-case runtimes:

• Monte Carlo (whp solution is correct; runtime always
small)

CPSC 768

Types of Dynamic Algorithms

• Worst-case vs. amortized runtimes
• Worst-case runtimes:

• Monte Carlo (whp solution is correct; runtime always
small)

• Las Vegas: runtime is whp; solution is always correct

CPSC 768

Types of Dynamic Algorithms

• Worst-case vs. amortized runtimes
• Worst-case runtimes:

• Monte Carlo (whp solution is correct; runtime always
small)

• Las Vegas: runtime is whp; solution is always correct
• Amortized runtimes:

• Lazy updates strategy where updates are delayed and
processed all at once

CPSC 768

Types of Dynamic Algorithms

• Easy example of lazy updates:
• 2 + 𝜀 -Approximate Maximum matching with large Θ(𝑛) size

CPSC 768

Types of Dynamic Algorithms

• Easy example of lazy updates:
• 2 + 𝜀 -Approximate Maximum matching with large Θ(𝑛) size

• Each update adds at most one edge to maximum
matching

CPSC 768

Types of Dynamic Algorithms

• Easy example of lazy updates:
• 2 + 𝜀 -Approximate Maximum matching with large Θ(𝑛) size

• Each update adds at most one edge to maximum
matching

• Can afford to wait for 𝜀 ⋅ 𝑛 updates

CPSC 768

Types of Dynamic Algorithms

• Easy example of lazy updates:
• 2 + 𝜀 -Approximate Maximum matching with large Θ(𝑛) size

• Each update adds at most one edge to maximum
matching

• Can afford to wait for 𝜀 ⋅ 𝑛 updates
• Rerun maximal matching static algorithm after 𝜀 ⋅ 𝑛

updates

CPSC 768

Types of Dynamic Algorithms

• Easy example of lazy updates:
• 2 + 𝜀 -Approximate Maximum matching with large Θ(𝑛) size

• Each update adds at most one edge to maximum
matching

• Can afford to wait for 𝜀 ⋅ 𝑛 updates
• Rerun maximal matching static algorithm after 𝜀 ⋅ 𝑛

updates
• Amortized update time: 𝑂 !

"#
= 𝑜(𝑛) when 𝑚 = 𝑜(𝑛)

CPSC 768

Types of Dynamic Algorithms

• Adaptive vs. Oblivious vs. Offline-Dynamic Adversaries
• Offline-Dynamic:

• Sequence of updates occurs offline
• Produce a valid solution after every update, minimize

amortized update time

CPSC 768

Types of Dynamic Algorithms

• Adaptive vs. Oblivious vs. Offline-Dynamic Adversaries
• Offline-Dynamic:

• Sequence of updates occurs offline
• Produce a valid solution after every update, minimize

amortized update time
• Oblivious:

• Sequence of updates determined before algorithm starts
• Updates come one at a time online

CPSC 768

Types of Dynamic Algorithms

• Adaptive vs. Oblivious vs. Offline-Dynamic Adversaries
• Adaptive:

• Can see algorithm output and determine next update
based on output

• Can see everything including internal randomness
• Deterministic algorithms always robust against adaptive

adversaries

CPSC 768

Types of Dynamic Algorithms
• Adaptive vs. Oblivious vs. Offline-Dynamic Adversaries

• Adaptive:
• Can see algorithm output and determine next update

based on output
• Can see everything including internal randomness
• Deterministic algorithms always robust against adaptive

adversaries
• Large gap between oblivious and adaptive adversaries:

• Example: dynamic connectivity, polynomial deterministic
worst-case, polylog oblivious worst-case

CPSC 768

Dynamic Connectivity

• Offline Dynamic [Eppstein ‘92]
• Including offline dynamic minimum spanning tree

• Oblivious [Kapron-King-Mountjoy SODA ‘13]
• Deterministic [Frederickson’s Algorithm ‘85]

CPSC 768

Dynamic Connectivity

• Offline Dynamic [Eppstein ‘92]
• Including offline dynamic minimum spanning tree

• Oblivious [Kapron-King-Mountjoy SODA ‘13]
• Deterministic [Frederickson’s Algorithm ‘85] (classic, won’t

discuss today—similar theme to newer algorithms:
http://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15850-
f20/www/notes/lec3.pdf)

http://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15850-f20/www/notes/lec3.pdf
http://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15850-f20/www/notes/lec3.pdf

CPSC 768

Offline-Dynamic Connectivity

• Receive an offline sequence of edge insertion/deletion updates
and queries

CPSC 768

Offline-Dynamic Connectivity

• Receive an offline sequence of edge insertion/deletion updates
and queries

• Insert or delete an edge

CPSC 768

Offline-Dynamic Connectivity

• Receive an offline sequence of edge insertion/deletion updates
and queries

• Insert or delete an edge
• Query(𝑠, 𝑡) queries whether 𝑠 and 𝑡 are connected

CPSC 768

Offline-Dynamic Connectivity

• Receive an offline sequence of edge insertion/deletion updates
and queries

• Insert or delete an edge
• Query(𝑠, 𝑡) queries whether 𝑠 and 𝑡 are connected

• We will use the offline dynamic minimum spanning tree
algorithm of Eppstein ‘92

CPSC 768

Offline-Dynamic Connectivity

• We will use the offline dynamic minimum spanning tree
algorithm of Eppstein ‘92

CPSC 768

Offline-Dynamic Connectivity

• We will use the offline dynamic minimum spanning tree
algorithm of Eppstein ‘92

• Geometric representation of the problem

Time

CPSC 768

Offline-Dynamic Connectivity
• We will use the offline dynamic minimum spanning tree

algorithm of Eppstein ‘92
• Geometric representation of the problem

Time 𝐼 𝑒! 𝐷 𝑒"𝐼 𝑒" 𝐷 𝑒"

𝒖 𝒗

𝒗
𝒘

𝐼 𝑒#𝑄 𝑢,𝑤

𝒗

𝐼 𝑒$ 𝐷 𝑒#

𝒂

𝒖

𝑄 𝑢,𝑤

5

3

1
4

𝒘 𝒖

𝐼 𝑒%

6

𝒂

CPSC 768

Offline-Dynamic Connectivity

• Geometric representation of the problem
• Divide-and-conquer: process each subproblem

Time 𝐼 𝑒! 𝐷 𝑒"𝐼 𝑒" 𝐷 𝑒"

𝒖 𝒗

𝒗
𝒘

𝐼 𝑒#𝑄 𝑢,𝑤

𝒗

𝐼 𝑒$ 𝐷 𝑒#

𝒂

𝒖

𝑄 𝑢,𝑤

5

3

1
4

𝒘 𝒖

𝐼 𝑒%

6

𝒂

CPSC 768

Offline-Dynamic Connectivity

• Geometric representation of the problem
• Divide-and-conquer: process each subproblem

Time 𝐼 𝑒! 𝐷 𝑒"𝐼 𝑒" 𝐷 𝑒"

𝒖 𝒗

𝒗
𝒘

𝐼 𝑒#𝑄 𝑢,𝑤

𝒗

𝐼 𝑒$ 𝐷 𝑒#

𝒂

𝒖

𝑄 𝑢,𝑤

5

3

1
4

𝒘 𝒖

𝐼 𝑒%

6

𝒂

CPSC 768

Offline-Dynamic Connectivity

• Geometric representation of the problem
• Divide-and-conquer: process each subproblem

Time 𝐼 𝑒! 𝐷 𝑒"𝐼 𝑒" 𝐷 𝑒"

𝒖 𝒗

𝒗
𝒘

𝐼 𝑒#𝑄 𝑢,𝑤

𝒗

𝐼 𝑒$ 𝐷 𝑒#

𝒂

𝒖

𝑄 𝑢,𝑤

5

3

1
4

𝒘 𝒖

𝐼 𝑒%

6

𝒂

CPSC 768

Offline-Dynamic Connectivity

• Geometric representation of the problem
• Divide-and-conquer: process each subproblem

Time 𝐼 𝑒! 𝐷 𝑒"𝐼 𝑒" 𝐷 𝑒"

𝒖 𝒗

𝒗
𝒘

𝐼 𝑒#𝑄 𝑢,𝑤

𝒗

𝐼 𝑒$ 𝐷 𝑒#

𝒂

𝒖

𝑄 𝑢,𝑤

5

3

4

𝒘 𝒖

𝐼 𝑒%

6

1
𝒂

CPSC 768

Offline-Dynamic Connectivity
• First, consider all permanent edges (edges that go across the

subproblem)

Time 𝐼 𝑒! 𝐷 𝑒"𝐼 𝑒" 𝐷 𝑒"

𝒖 𝒗

𝒗
𝒘

𝐼 𝑒#𝑄 𝑢,𝑤

𝒗

𝐼 𝑒$ 𝐷 𝑒#

𝒂

𝒖

𝑄 𝑢,𝑤

5

3

4

𝒘 𝒖

𝐼 𝑒%

6

1
𝒂

CPSC 768

Offline-Dynamic Connectivity
• First, consider all permanent edges (edges that go across the

subproblem)
• Run any linear time MST algorithm on all considered edges

Time 𝐼 𝑒! 𝐷 𝑒"𝐼 𝑒" 𝐷 𝑒"

𝒖 𝒗

𝒗
𝒘

𝐼 𝑒#𝑄 𝑢,𝑤

𝒗

𝐼 𝑒$ 𝐷 𝑒#

𝒂

𝒖

𝑄 𝑢,𝑤

5

3

1
4

𝒘 𝒖

𝐼 𝑒%

6

𝒂

CPSC 768

Offline-Dynamic Connectivity
• Run any linear time MST algorithm on all considered edges
• Red edges are in the MST

Time 𝐼 𝑒! 𝐷 𝑒"𝐼 𝑒" 𝐷 𝑒"

𝒖 𝒗

𝒗
𝒘

𝐼 𝑒#𝑄 𝑢,𝑤

𝒗

𝐼 𝑒$ 𝐷 𝑒#

𝒂

𝒖

𝑄 𝑢,𝑤

5

3

1
4

𝒘 𝒖

𝐼 𝑒%

6

𝒂

CPSC 768

Offline-Dynamic Connectivity
• Run any linear time MST algorithm on all considered edges
• Red edges are in the MST; Delete permanent edges not red

Time 𝐼 𝑒! 𝐷 𝑒"𝐼 𝑒" 𝐷 𝑒"

𝒖 𝒗

𝒗
𝒘

𝐼 𝑒#𝑄 𝑢,𝑤

𝒗

𝐼 𝑒$ 𝐷 𝑒#

𝒂

𝒖

𝑄 𝑢,𝑤

5

3

1
4

𝐼 𝑒%

𝒂

CPSC 768

Offline-Dynamic Connectivity
• Red edges are in the MST; Delete permanent edges not red
• Now consider all edges in subproblem

Time 𝐼 𝑒! 𝐷 𝑒"𝐼 𝑒" 𝐷 𝑒"

𝒖 𝒗

𝒗
𝒘

𝐼 𝑒#𝑄 𝑢,𝑤

𝒗

𝐼 𝑒$ 𝐷 𝑒#

𝒂

𝒖

𝑄 𝑢,𝑤

5

3

1
4

𝐼 𝑒%

𝒂

CPSC 768

Offline-Dynamic Connectivity
• Red edges are in the MST; Delete permanent edges not red
• Now consider all edges in subproblem; Run any linear time

MST algorithm

Time 𝐼 𝑒! 𝐷 𝑒"𝐼 𝑒" 𝐷 𝑒"

𝒖 𝒗

𝒗
𝒘

𝐼 𝑒#𝑄 𝑢,𝑤

𝒗

𝐼 𝑒$ 𝐷 𝑒#

𝒂

𝒖

𝑄 𝑢,𝑤

5

3

1
4

𝐼 𝑒%

𝒂

CPSC 768

Offline-Dynamic Connectivity
• Now consider all edges in subproblem; Run any linear time

MST algorithm
• Contract any permanent edges in the MST; link-cut tree

Time 𝐼 𝑒! 𝐷 𝑒"𝐼 𝑒" 𝐷 𝑒"

𝒖 𝒗

𝒗
𝒘

𝐼 𝑒#𝑄 𝑢,𝑤

𝒗

𝐼 𝑒$ 𝐷 𝑒#

𝒂
𝒖

𝑄 𝑢,𝑤

5

3 1

4

𝐼 𝑒%

𝒂

𝒗 𝒘
𝒖

CPSC 768

Offline-Dynamic Connectivity
• Pass data structure to next smaller subproblem

(persistence)

Time 𝐼 𝑒! 𝐷 𝑒"𝐼 𝑒" 𝐷 𝑒"

𝒖 𝒗

𝒗
𝒘

𝐼 𝑒#𝑄 𝑢,𝑤

𝒗

𝐼 𝑒$ 𝐷 𝑒#

𝒂
𝒖

𝑄 𝑢,𝑤

5

3 1

4

𝐼 𝑒%

𝒂

𝒗 𝒘
𝒖

CPSC 768

Offline-Dynamic Connectivity
• Pass data structure to next smaller subproblem (persistence)
• Consider non-contracted and not deleted edges in

subproblem

Time 𝐼 𝑒! 𝐷 𝑒"𝐼 𝑒" 𝐷 𝑒"

𝒖 𝒗

𝒗
𝒘

𝐼 𝑒#𝑄 𝑢,𝑤

𝒗

𝐼 𝑒$ 𝐷 𝑒#

𝒂
𝒖

𝑄 𝑢,𝑤

5

3 1

4

𝐼 𝑒%

𝒂

𝒗 𝒘
𝒖

CPSC 768

Offline-Dynamic Connectivity
• For queries, look at the data structure and edges of smallest

subproblem containing the query

Time 𝐼 𝑒! 𝐷 𝑒"𝐼 𝑒" 𝐷 𝑒"

𝒖 𝒗

𝒗
𝒘

𝐼 𝑒#𝑄 𝑢,𝑤

𝒗

𝐼 𝑒$ 𝐷 𝑒#

𝒂
𝒖

𝑄 𝑢,𝑤

5

3 1

4

𝐼 𝑒%

𝒂

𝒗 𝒘
𝒖

CPSC 768

Offline-Dynamic Connectivity
• Assume link-cut tree and persistence such that each

subproblem with 𝑻 total permanent and non-permanent edges
takes 𝑶(𝑻) time

CPSC 768

Offline-Dynamic Connectivity
• Assume link-cut tree and persistence such that each

subproblem with 𝑻 total permanent and non-permanent edges
takes 𝑶(𝑻) time

• First, consider permanent edges, what happens to them?

CPSC 768

Offline-Dynamic Connectivity
• Assume link-cut tree and persistence such that each

subproblem with 𝑻 total permanent and non-permanent edges
takes 𝑶(𝑻) time

• First, consider permanent edges, what happens to them?
• They are either deleted

CPSC 768

Offline-Dynamic Connectivity
• Assume link-cut tree and persistence such that each

subproblem with 𝑻 total permanent and non-permanent edges
takes 𝑶(𝑻) time

• First, consider permanent edges, what happens to them?
• They are either deleted, contracted,

CPSC 768

Offline-Dynamic Connectivity
• Assume link-cut tree and persistence such that each

subproblem with 𝑻 total permanent and non-permanent edges
takes 𝑶(𝑻) time

• First, consider permanent edges, what happens to them?
• They are either deleted, contracted, or neither

CPSC 768

Offline-Dynamic Connectivity
• Assume link-cut tree and persistence such that each

subproblem with 𝑻 total permanent and non-permanent edges
takes 𝑶(𝑻) time

• First, consider permanent edges, what happens to them?
• They are either deleted, contracted, or neither
• Deleted and contracted edges charged to previous level

CPSC 768

Offline-Dynamic Connectivity
• Assume link-cut tree and persistence such that each

subproblem with 𝑻 total permanent and non-permanent edges
takes 𝑶(𝑻) time

• First, consider permanent edges, what happens to them?
• They are either deleted, contracted, or neither
• Deleted and contracted edges charged to previous level
• Neither edges are charged to a non-permanent edge in

window

CPSC 768

Offline-Dynamic Connectivity
• Assume link-cut tree and persistence such that each

subproblem with 𝑻 total permanent and non-permanent edges
takes 𝑶(𝑻) time

• First, consider permanent edges, what happens to them?
• They are either deleted, contracted, or neither
• Deleted and contracted edges charged to previous level
• Neither edges are charged to a non-permanent edge in

window
• Thus, 3𝑇 operations in window with 𝑇 updates

CPSC 768

Offline-Dynamic Connectivity
• Assume link-cut tree and persistence such that each

subproblem with 𝑻 total permanent and non-permanent edges
takes 𝑶(𝑻) time

• First, consider permanent edges, what happens to them?
• They are either deleted, contracted, or neither
• Deleted and contracted edges charged to previous level
• Neither edges are charged to a non-permanent edge in

window
• Thus, 3𝑇 operations in window with 𝑇 updates

Total Runtime: 𝑶 𝑻	𝐥𝐨𝐠 𝑻 by
Master Theorem

CPSC 768

Monte Carlo Oblivious Adversary
Dynamic Connectivity
• Level Data Structure Algorithm of [Kapron-King-Mountjoy SODA

‘13]

CPSC 768

Monte Carlo Oblivious Adversary
Dynamic Connectivity
• Level Data Structure Algorithm of [Kapron-King-Mountjoy SODA

‘13]
• High-Level Idea:

• Data structure for quickly determining: given a cut if there’s
an edge (whp) going in between the cut

CPSC 768

Monte Carlo Oblivious Adversary
Dynamic Connectivity
• Level Data Structure Algorithm of [Kapron-King-Mountjoy SODA

‘13]
• High-Level Idea:

• Data structure for quickly determining: given a cut if there’s
an edge (whp) going in between the cut

• Data structure for maintaining connected vertices

CPSC 768

Monte Carlo Oblivious Adversary
Dynamic Connectivity
• Level Data Structure Algorithm of [Kapron-King-Mountjoy SODA

‘13]
• High-Level Idea:

• Data structure for quickly determining: given a cut if there’s
an edge (whp) going in between the cut

• Data structure for maintaining connected vertices
• Easy access to determine if vertices are in the same

connected component

CPSC 768

Monte Carlo Oblivious Adversary
Dynamic Connectivity
• Data structure:

• Euler tour tree: Operations and runtimes:
• Check whether two vertices 𝑢 and 𝑣 are in the same tree:
𝑂(log	𝑛) time

CPSC 768

Monte Carlo Oblivious Adversary
Dynamic Connectivity
• Data structure:

• Euler tour tree: Operations and runtimes:
• Check whether two vertices 𝑢 and 𝑣 are in the same tree:
𝑂(log	𝑛) time

• Break a cycle in 𝑂(log	𝑛) time

CPSC 768

Monte Carlo Oblivious Adversary
Dynamic Connectivity
• Data structure:

• Euler tour tree: Operations and runtimes:
• Check whether two vertices 𝑢 and 𝑣 are in the same tree:
𝑂(log	𝑛) time

• Break a cycle in 𝑂(log	𝑛) time
• Find SUM or XOR (any commutative, associative

operation) of subtree in 𝑂(log	𝑛) time

CPSC 768

Monte Carlo Oblivious Adversary
Dynamic Connectivity
• Euler tour tree (Tarjan-Vishkin ‘94) high level description:

By David Eppstein - Own work, CC0,
https://commons.wikimedia.org/w/index.php?curid=25178326

https://commons.wikimedia.org/w/index.php?curid=25178326

CPSC 768

Monte Carlo Oblivious Adversary
Dynamic Connectivity
• Euler tour tree (Tarjan-Vishkin ‘94) high level description:

By David Eppstein - Own work, CC0,
https://commons.wikimedia.org/w/index.php?curid=25178326

Can be implemented using Skip-List

1 2 6 6 2 4 4

2 6 4

2 4
𝑂(log	𝑛)

levels whp

https://commons.wikimedia.org/w/index.php?curid=25178326

CPSC 768

Monte Carlo Oblivious Adversary
Dynamic Connectivity
• Euler tour tree allows you to remove a subtree very easily

By David Eppstein - Own work, CC0,
https://commons.wikimedia.org/w/index.php?curid=25178326

Can be implemented using Skip-List

1 2 6 6 2 4 4

2 6 4

2 4
𝑂(log	𝑛)

levels whp

1

1

https://commons.wikimedia.org/w/index.php?curid=25178326

CPSC 768

Monte Carlo Oblivious Adversary
Dynamic Connectivity
• Delete edge 1

By David Eppstein - Own work, CC0,
https://commons.wikimedia.org/w/index.php?curid=25178326

Can be implemented using Skip-List

1 2 6 6 2 4 4

2 6 4

2 4
𝑂(log	𝑛)

levels whp

1

1

https://commons.wikimedia.org/w/index.php?curid=25178326

CPSC 768

Monte Carlo Oblivious Adversary
Dynamic Connectivity
• Delete edge 1

By David Eppstein - Own work, CC0,
https://commons.wikimedia.org/w/index.php?curid=25178326

Remove relevant contiguous section of
skip-list and link together the ends

1 2 6 6 2 4 4

2 6 4

2 4
𝑂(log	𝑛)

levels whp

1

1

https://commons.wikimedia.org/w/index.php?curid=25178326

CPSC 768

Monte Carlo Oblivious Adversary
Dynamic Connectivity
• Delete edge 1

By David Eppstein - Own work, CC0,
https://commons.wikimedia.org/w/index.php?curid=25178326

1

2 6 6 2 4 4

2 6 4

2 4

𝑂(log	𝑛)
levels whp

1

1

https://commons.wikimedia.org/w/index.php?curid=25178326

CPSC 768

Monte Carlo Oblivious Adversary Dynamic Connectivity
[Gibbs-Kapron-King-Thorn ‘15]

• Start from initially empty graph

CPSC 768

Monte Carlo Oblivious Adversary Dynamic Connectivity
[Gibbs-Kapron-King-Thorn ‘15]

• Start from initially empty graph
• Maintain spanning trees of connected components using Euler

Tour Trees

CPSC 768

Monte Carlo Oblivious Adversary Dynamic Connectivity
[Gibbs-Kapron-King-Thorn ‘15]

• Start from initially empty graph
• Maintain spanning trees of connected components using Euler

Tour Trees
• Maintain Monte Carlo Boruvka tree (MST) data structure where

in each level, you add a new edge between not connected
components

CPSC 768

Monte Carlo Oblivious Adversary Dynamic Connectivity
[Gibbs-Kapron-King-Thorn ‘15]

• Start from initially empty graph
• Maintain spanning trees of connected components using Euler

Tour Trees
• Maintain Monte Carlo Boruvka tree (MST) data structure where

in each level, you add a new edge between not connected
components

CPSC 768

Monte Carlo Oblivious Adversary Dynamic Connectivity
[Gibbs-Kapron-King-Thorn ‘15]

• Start from initially empty graph
• Maintain spanning trees of connected components using Euler

Tour Trees
• Maintain Monte Carlo Boruvka tree (MST) data structure where

in each level, you add a new edge between not connected
components

Outgoing Tree
Edges

CPSC 768

Monte Carlo Oblivious Adversary Dynamic Connectivity
[Gibbs-Kapron-King-Thorn ‘15]

• Want: poly(log	𝑛) runtime

Outgoing Tree
Edges

Height: 𝑂(log	𝑛)

CPSC 768

Monte Carlo Oblivious Adversary Dynamic Connectivity
[Gibbs-Kapron-King-Thorn ‘15]

• Want: poly(log	𝑛) runtime
• On edge insertion: if between two disconnected components on

top level
• Insert into every level

Outgoing Tree
Edges

Height: 𝑂(log	𝑛)

CPSC 768

Monte Carlo Oblivious Adversary Dynamic Connectivity
[Gibbs-Kapron-King-Thorn ‘15]

• Want: poly(log	𝑛) runtime
• On edge insertion: if between two disconnected components on

top level
• Insert into every level (still an MST)

Outgoing Tree
Edges

Height: 𝑂(log	𝑛)

CPSC 768

Monte Carlo Oblivious Adversary Dynamic Connectivity
[Gibbs-Kapron-King-Thorn ‘15]

• Want: poly(log	𝑛) runtime
• On edge insertion: if between two disconnected components on

top level
• Insert into every level (still an MST)

• Update XOR data structure

Outgoing Tree
Edges

Height: 𝑂(log	𝑛)

CPSC 768

Monte Carlo Oblivious Adversary Dynamic Connectivity
[Gibbs-Kapron-King-Thorn ‘15]

• On edge deletion: if deletion of an outgoing tree edge:
• Delete from every level

Outgoing Tree
Edges

Height: 𝑂(log	𝑛)

CPSC 768

Monte Carlo Oblivious Adversary Dynamic Connectivity
[Gibbs-Kapron-King-Thorn ‘15]

• On edge deletion: if deletion of an outgoing tree edge:
• Delete from every level
• Search for replacement edge from XOR data structure

Outgoing Tree
Edges

Height: 𝑂(log	𝑛)

CPSC 768

Monte Carlo Oblivious Adversary Dynamic Connectivity
[Gibbs-Kapron-King-Thorn ‘15]

• On edge deletion: if deletion of an outgoing tree edge:
• Delete from every level
• Search for replacement edge from XOR data structure

• Update XOR data structure

Outgoing Tree
Edges

Height: 𝑂(log	𝑛)

CPSC 768

Monte Carlo Oblivious Adversary Dynamic Connectivity
[Gibbs-Kapron-King-Thorn ‘15]

• On edge deletion: if deletion of an outgoing tree edge:
• Delete from every level
• Search for replacement edge from XOR data structure

• Update XOR data structure

Outgoing Tree
Edges

Height: 𝑂(log	𝑛)

CPSC 768

Monte Carlo Oblivious Adversary Dynamic Connectivity
[Gibbs-Kapron-King-Thorn ‘15]

• Searching efficiently for new outgoing edges:
• XOR data structure

• Each vertex has an ID

CPSC 768

Monte Carlo Oblivious Adversary Dynamic Connectivity
[Gibbs-Kapron-King-Thorn ‘15]

• Searching efficiently for new outgoing edges:
• XOR data structure

• Each vertex has an ID
• Each vertex stores XOR of IDs of sampled edges

adjacent to it

CPSC 768

Monte Carlo Oblivious Adversary Dynamic Connectivity
[Gibbs-Kapron-King-Thorn ‘15]

• Searching efficiently for new outgoing edges:
• XOR data structure

• Each vertex has an ID
• Each vertex stores XOR of IDs of sampled edges

adjacent to it
• How do we store sampled edges?

CPSC 768

Monte Carlo Oblivious Adversary Dynamic Connectivity
[Gibbs-Kapron-King-Thorn ‘15]

• Searching efficiently for new outgoing edges:
• XOR data structure

• Each vertex has an ID
• Each vertex stores XOR of IDs of sampled edges

adjacent to it
• How do we store sampled edges?

• In an array where sample probability depends on
index of array

CPSC 768

Monte Carlo Oblivious Adversary Dynamic Connectivity
[Gibbs-Kapron-King-Thorn ‘15]

• Searching efficiently for new outgoing edges:
• XOR data structure

• Each vertex has an ID
• Each vertex stores XOR of IDs of sampled edges

adjacent to it
• How do we store sampled edges?

• In an array where sample probability depends on
index of array

• Each node stores such an array

CPSC 768

Monte Carlo Oblivious Adversary Dynamic Connectivity
[Gibbs-Kapron-King-Thorn ‘15]

• XOR data structure
• Each vertex has an ID; each vertex stores XOR of IDs of

sampled edges adjacent to it

Index 𝑖Vertex 𝑣 array

CPSC 768

Monte Carlo Oblivious Adversary Dynamic Connectivity
[Gibbs-Kapron-King-Thorn ‘15]

• XOR data structure
• Each vertex has an ID; each vertex stores XOR of IDs of

sampled edges adjacent to it
• Store in an array where sample probability depends on

index of array
• Each node stores such an array

Index 𝑖Vertex 𝑣 array

CPSC 768

Monte Carlo Oblivious Adversary Dynamic Connectivity
[Gibbs-Kapron-King-Thorn ‘15]

• XOR data structure
• Each vertex has an ID; each vertex stores XOR of IDs of

sampled edges adjacent to it
• Store in an array where sample probability depends on

index of array
• Each node stores such an array

Index 𝑖Vertex 𝑣 array

Store edge (𝐼𝐷! , 𝐼𝐷") in index 𝑖 with probability #
$!

CPSC 768

Monte Carlo Oblivious Adversary Dynamic Connectivity
[Gibbs-Kapron-King-Thorn ‘15]

• XOR data structure
• Each vertex has an ID; each vertex stores XOR of IDs of

sampled edges adjacent to it
• Store in an array where sample probability depends on

index of array
• Each node stores such an array

Index 𝑖Vertex 𝑣 array

By store we mean XOR the edge with whatever is stored there

CPSC 768

Monte Carlo Oblivious Adversary Dynamic Connectivity
[Gibbs-Kapron-King-Thorn ‘15]

• XOR data structure
• Duplicate each index 𝑂(log	𝑛) times; with high probability, at

least one index stores exactly one edge

Index 𝑖Vertex 𝑣 array

By store we mean XOR the edge with whatever is stored there

CPSC 768

Monte Carlo Oblivious Adversary Dynamic Connectivity
[Gibbs-Kapron-King-Thorn ‘15]

• XOR data structure
• Duplicate each index 𝑂(log	𝑛) times; with high probability, at

least one index stores exactly one edge
• Use this data structure to find an edge across a cut quickly

CPSC 768

Monte Carlo Oblivious Adversary Dynamic Connectivity
[Gibbs-Kapron-King-Thorn ‘15]

• XOR data structure
• Duplicate each index 𝑂(log	𝑛) times; with high probability, at

least one index stores exactly one edge
• Use this data structure to find an edge across a cut quickly

• Compute XOR of values stored in every index of every node
in Euler Tour Tree with tree edges—every tree edge stored in
every index

CPSC 768

Monte Carlo Oblivious Adversary Dynamic Connectivity
[Gibbs-Kapron-King-Thorn ‘15]

• XOR data structure
• Duplicate each index 𝑂(log	𝑛) times; with high probability, at

least one index stores exactly one edge
• Use this data structure to find an edge across a cut quickly

• Compute XOR of values stored in every index of every node
in Euler Tour Tree with tree edges—every tree edge stored in
every index

If XOR data structure of tree only
contains tree edges, returns 0

CPSC 768

Monte Carlo Oblivious Adversary Dynamic Connectivity
[Gibbs-Kapron-King-Thorn ‘15]

• XOR data structure
• Duplicate each index 𝑂(log	𝑛) times; with high probability, at

least one index stores exactly one edge
• Use this data structure to find an edge across a cut quickly

• Compute XOR of values stored in every index of every node
in Euler Tour Tree with tree edges—every tree edge stored in
every index

Otherwise, if contains one
outgoing edge, returns 𝑰𝑫𝒆

𝑰𝑫𝒆

CPSC 768

Monte Carlo Oblivious Adversary Dynamic Connectivity
[Gibbs-Kapron-King-Thorn ‘15]

• Why have different probabilities of sampling:
• Due to XOR data structure, return exactly one edge in cut

whp

Otherwise, if contains one
outgoing edge, returns 𝑰𝑫𝒆

𝑰𝑫𝒆

CPSC 768

Monte Carlo Oblivious Adversary Dynamic Connectivity
[Gibbs-Kapron-King-Thorn ‘15]

• Why have different probabilities of sampling:
• Due to XOR data structure, return exactly one edge in cut

whp
• Cutset data structure

Otherwise, if contains one
outgoing edge, returns 𝑰𝑫𝒆

𝑰𝑫𝒆

CPSC 768

Monte Carlo Oblivious Adversary Dynamic Connectivity
[Gibbs-Kapron-King-Thorn ‘15]

• Why have different probabilities of sampling:
• Due to XOR data structure, return exactly one edge in cut

whp
• Cutset data structure

CPSC 768

Monte Carlo Oblivious Adversary Dynamic Connectivity
[Gibbs-Kapron-King-Thorn ‘15]

• Why have different probabilities of sampling:
• Due to XOR data structure, return exactly one edge in cut

whp
• Cutset data structure

Probability %
&
 returns

1 edge in cut in
expectation

CPSC 768

Monte Carlo Oblivious Adversary Dynamic Connectivity
[Gibbs-Kapron-King-Thorn ‘15]

• On edge deletion: if deletion of an outgoing tree edge:
• Delete from every level
• Search for replacement edge from XOR data structure

• Update XOR data structure

Outgoing Tree
Edges

Height: 𝑂(log	𝑛)

CPSC 768

Monte Carlo Oblivious Adversary Dynamic Connectivity
[Gibbs-Kapron-King-Thorn ‘15]

• Additional details: newly inserted replacement edge can cause
cycles in higher levels

Outgoing Tree
Edges

Height: 𝑂(log	𝑛)

CPSC 768

Monte Carlo Oblivious Adversary Dynamic Connectivity
[Gibbs-Kapron-King-Thorn ‘15]

• Additional details: newly inserted replacement edge can cause
cycles in higher levels

• Break cycles using binary search in Euler Tour tree

Outgoing Tree
Edges

Height: 𝑂(log	𝑛)

CPSC 768

Monte Carlo Oblivious Adversary Dynamic Connectivity
[Gibbs-Kapron-King-Thorn ‘15]

• Additional details: newly inserted replacement edge can cause
cycles in higher levels

• Break cycles using binary search in Euler Tour tree
• Total: poly(log	𝒏) time per operation

Outgoing Tree
Edges

Height: 𝑂(log	𝑛)

CPSC 768

Monte Carlo Oblivious Adversary Dynamic Connectivity
[Gibbs-Kapron-King-Thorn ‘15]

• Correctness with High Probability:
• Each level’s randomness is independent of previous level

CPSC 768

Monte Carlo Oblivious Adversary Dynamic Connectivity
[Gibbs-Kapron-King-Thorn ‘15]

• Correctness with High Probability:
• Each level’s randomness is independent of previous level
• 𝑂(log	𝑛) levels success with high probability:

CPSC 768

Monte Carlo Oblivious Adversary Dynamic Connectivity
[Gibbs-Kapron-King-Thorn ‘15]

• Correctness with High Probability:
• Each level’s randomness is independent of previous level
• 𝑂(log	𝑛) levels success with high probability:

• Count # of connected components decrease using cutset

CPSC 768

Monte Carlo Oblivious Adversary Dynamic Connectivity
[Gibbs-Kapron-King-Thorn ‘15]

• Correctness with High Probability:
• Each level’s randomness is independent of previous level
• 𝑂(log	𝑛) levels success with high probability:

• Count # of connected components decrease using cutset
• Each level expected decrease number of connected

components by %
'

CPSC 768

Monte Carlo Oblivious Adversary Dynamic Connectivity
[Gibbs-Kapron-King-Thorn ‘15]

• Correctness with High Probability:
• Each level’s randomness is independent of previous level
• 𝑂(log	𝑛) levels success with high probability:

• Count # of connected components decrease using cutset
• Each level expected decrease number of connected

components by %
'

• Thus, by Chernoff, 𝑂(log	𝑛) levels suffice

