
CPSC 768: SCALABLE AND PRIVATE GRAPH ALGORITHMS Lectures 1 and 2

These lecture notes have not undergone rigorous peer-review. Please email quanquan.liu@yale.edu if
you see any errors.

1 Introduction

In the first two lectures, we covered techniques for estimating the frequency of events in a data stream using
o(log n) space; specifically, we discussed techniques for obtaining a (1+ε)-approximation of the number of
bits seen in a stream using O

(
log logn

ε log
(
1
δ

))
space with probability at least 1− δ. Our discussion centers

around the Morris algorithm, which uses a single counter to estimate the number of increments in a stream.
Then, we use the Median Trick, which uses multiple IID estimators, to improve the accuracy and reduce the
probability of failure.

2 The Morris Algorithm

The Morris algorithm is a simple and elegant algorithm for answering queries asking for the estimating the
number of 1 bits seen in a stream using only O(log log n) bits of space, where n is the true total number of
bits seen thus far. Here, and throughout, we label each one bit as an increment. The algorithm maintains
a counter X that is initially zero. Whenever an increment occurs, the algorithm increases X by one with
probability 1/2X . The final estimate is C̃ = 2X − 1.

A query can occur after any number of increments. Hence, we denote the counter X that occurs after i
increments by Xi and the estimate by C̃i.

Algorithm 1 Morris Algorithm
1: X ← 0
2: for each bit in the stream do
3: p← 1/2X

4: r ← random number in [0, 1]
5: if r < p then
6: X ← X + 1
7: end if
8: Upon a query, return 2X − 1
9: end for

The intuition behind the algorithm is that the counter X grows exponentially with the number of incre-
ment; therefore, the estimate C̃ is also an exponential function of X . The algorithm trades off space for
accuracy, as it uses fewer bits to store X than to store n, but introduces some error in the estimation.

2.1 Analysis of the Morris Algorithm

We will first analyze the expected value and the variance of the estimate C̃n (after n increments) produced
by the Morris algorithm. We first prove the expectation.

Lemma 2.1. The expected value of C̃n is equal to n, i.e., E[C̃n] = n.

Proof. First, we note that E[C̃n] + 1 = E[C̃n + 1] = E[2Xn]. Hence, proving E[2Xn] = n + 1 directly
proves our lemma. We will prove this simpler expression.

Quanquan C. Liu q.liu@yale.edu 1

mailto:quanquan.liu@yale.edu

CPSC 768: SCALABLE AND PRIVATE GRAPH ALGORITHMS Lectures 1 and 2

We will use induction on the number of increments. For the base case, when there are no increments,
we have X0 = 0 and 2X0 = 1, so E[2X0] = 1. For the induction step, assume that after n − 1 increments,
we have E[2Xn−1] = n. Then, after the n-th increment, we have

E[2Xn] =
∞∑
j=0

2j · Pr(2Xj = j)

=
∞∑
j=0

2j ·
(
Pr(2Xj = j | Xj−1 = j) · P (Xj−1 = j) + Pr(2Xj = j | Xj−1 = j − 1) · P (Xj−1 = j − 1)

)
=

∞∑
j=0

2j ·
(
P (Xj−1 = j) ·

(
1− 1

2j

)
+ P (Xj−1 = j − 1) · 1

2j−1

)

=

 ∞∑
j=0

2j · P (Xj−1 = j)

−
 ∞∑
j=0

P (Xj−1 = j)

+

2 · ∞∑
j=0

P (Xj−1 = j − 1)


= E[2Xn−1]− 1 + 2

= n− 1 + 2 = n.

where we sum over all possible values of 2Xn , condition on the possible values of Xn−1 (where 2Xn is a
deterministic function of Xn), and the induction hypothesis in the last step. Therefore, by induction, we
have E[2Xn] = n+ 1 for any number of n and E[C̃n] = n.

Now, we would like to provide concentration bounds on the value of C̃n. Using the Markov bound, we
can obtain an easy upper bound with constant probability.

Theorem 1 (Markov’s Inequality). Markov’s Inequality states that for any non-negative random vari-
able X and any positive λ > 0, the probability that X is at least λ is less than or equal to the expected
value of X divided by λ. Formally, it is expressed as:

P (X ≥ λ) ≤ E[X]

λ

where E[X] denotes the expected value of X .

Using Markov’s inequality and Lemma 2.1, if we let λ = 10E[C̃n], then with probability at least 0.9,
C̃n does nto exceed 10n. However, we also want to lower bound the estimate. To lower bound the estimate,
we can use Chebyshev’s inequality that also gives a tighter bound.

Theorem 2 (Chebyshev’s Inequality). Chebyshev’s Inequality states that for any (not necessarily pos-
itive) random variable X with finite expected value µ and finite non-zero variance σ2, the probability
that X is more than k standard deviations away from µ is at most 1/k2. Formally, it is expressed as:

P (|X − µ| ≥ kσ) ≤ 1

k2

for all k > 0.

To use Chebyshev’s inequality, we must first compute the variance, Var[C̃n].

Quanquan C. Liu q.liu@yale.edu 2

mailto:quanquan.liu@yale.edu

CPSC 768: SCALABLE AND PRIVATE GRAPH ALGORITHMS Lectures 1 and 2

Theorem 2.2. The variance of C̃n is n·(n−1)
2 , i.e., Var[C̃n] =

n·(n−1)
2 .

Proof. We will use a similar induction argument as before for the expectation. Again, we first simplify our
expression by noting Var[C̃n] = Var[2Xn − 1] = Var[2Xn]. Also, we further know that Var[2Xn] =
E[22Xn] −

(
E[2Xn]

)
. By Lemma 2.1,

(
E[2Xn]

)
= (n + 1)2. Hence, all that’s left for us to compute is

E[22Xn]. We will prove via induction that E[22Xn] = 3n(n+1)
2 + 1.

For the base case, when there are no increments, we have X0 = 0 and E[22X0] = 1. For the induction
step, assume that after n− 1 increments, we have E[22Xn−1] = 3n(n−1)

2 +1. Then, after the n-th increment,
we have (following the same calculations we performed for the expectation),

E[22Xn−1] =
∞∑
j=0

22j · Pr(22Xj = j)

=
∞∑
j=0

22j ·
(
Pr(22Xj = j | Xj−1 = j) · P (Xj−1 = j) + Pr(22Xj = j | Xj−1 = j − 1) · P (Xj−1 = j − 1)

)
=

∞∑
j=0

22j ·
(
P (Xj−1 = j) ·

(
1− 1

2j

)
+ P (Xj−1 = j − 1) · 1

2j−1

)

=

 ∞∑
j=0

22j · P (Xj−1 = j)

−
 ∞∑
j=0

2j · P (Xj−1 = j)

+

4 · ∞∑
j=0

2j−1 · P (Xj−1 = j − 1)


= E[22Xn−1]− E[2Xn−1] + 4 · E[2Xn−1]

=
3n(n− 1)

2
+ 1− n+ 4n =

3n2

2
+

3n

2
+ 1

=
3n(n+ 1)

2
+ 1.

Therefore, by induction, we have Var[C̃n] = E[22Xn]−
(
E[2Xn]2

)
= 3n(n+1)

2 + 1− (n+ 1)2 = n(n−1)
2 for

any number of increments n.

Setting k =
√
10 to obtain that with probability at least 0.9, C̃n ≤ (

√
10+1) ·n. We also obtain a lower

bound guarantee, but the lower bound guarantee is trivial since C̃n is non-negative. Hence, our remaining
task is to obtain better approximation bounds as well as probability of success. We’ll first tackle getting
better approximation bounds.

3 Improving to (1 + ε)-Approximation

We now introduce the median-of-means trick or otherwise colloquially known as the median trick. The
technique works roughly as follows for appropriate settings of b and T :

• Median-of-Means Trick: The Median-of-Means trick is a method for reducing the variance of an
estimator produced by an algorithm A by running T IID instances of A, dividing the result into b
blocks, computing the mean of each block, and then taking the median of these means. This can
significantly improve the accuracy of the estimate, especially when the distribution of the estimator is
skewed or heavy-tailed.

• Algorithm:

1. Divide T IID estimators into b blocks.

Quanquan C. Liu q.liu@yale.edu 3

mailto:quanquan.liu@yale.edu

CPSC 768: SCALABLE AND PRIVATE GRAPH ALGORITHMS Lectures 1 and 2

2. Compute the mean of each block.

3. Take the median of these b means.

We’ll first discuss the first two steps as applied to the Morris Algorithm. We’ll call this new algorithm
the Morris+ algorithm. The Morris+ algorithm is a simple extension of the Morris. It takes t IID instances
of the Morris algorithm and outputs the mean of the returned values. We’ll set t appropriately later to obtain
our desired (1 + ε)-approximation. We denote the i-th instance of Morris+ after n increments as Xi

n and
C̃i
n.

Algorithm 2 Morris+ Algorithm
Require: Stream of elements S, number of instances t
Ensure: Estimate of the count of elements in S

1: for i = 1 to t do
2: Initialize counter Xi to 0.
3: end for
4: for each element e in S do
5: for i = 1 to t do
6: Generate a random number r in [0, 1]
7: if r < 1

2Xi
then

8: Increment Xi

9: end if
10: end for
11: On a query, compute the mean of 2X1−1, 2X2−1, . . . , 2Xt−1 and return the mean as the estimate

of the count of elements in S
12: end for

Let Ãn = 1
t

∑t
i=1 C̃

i
n. Then, by linearity of expectations, E[Ãn] = n by Lemma 2.1.’ We’ll now

compute the variance.

Lemma 3.1. The variance of Ãn is n·(n−1)
2t2

, i.e., Var[Ãn] =
n·(n−1)

2t2
.

Proof. The calculation proceeds quite simply because all C̃i
n are IID:

Var[Ãn] = Var

[
1

t

t∑
i=1

C̃i
n

]

=
1

t2
·

t∑
i=1

Var[C̃i
n]

=
1

t2
· n(n− 1)

2
.

So we see that simply by repeating the algorithm t times and taking the mean, we’ve reduced the variance
by a factor of 1

t . Setting, t =
√
10
ε2

gives our desired (1 + ε)-approximation using Chebyshev’s inequality
with at least 0.9 probability when k =

√
10.

Given our desired approximation, we now need to amplify the probability of success.

Quanquan C. Liu q.liu@yale.edu 4

mailto:quanquan.liu@yale.edu

CPSC 768: SCALABLE AND PRIVATE GRAPH ALGORITHMS Lectures 1 and 2

3.1 Amplifying the Probability of Success by Taking the Median

The idea is to run the algorithm multiple times independently and take the median of the outputs as the final
output. This method can reduce the probability of failure to any desired level by increasing the number of
repetitions logarithmically in terms of the inverse of the probability of failure.

We will analyze the median trick using the Chernoff bound, which is a useful tool for bounding the tail
probabilities of sums of independent random variables.

Theorem 3 (Chernoff Bound). The Chernoff Bound is a probabilistic inequality that provides an upper
bound on the tail distribution of sums of independent random variables. There are many variants of the
bound; we present the common multiplicative version. Formally, it is expressed as:

Upper Tail: for any ψ > 0, P (X ≥ (1 + ψ)µ) ≤ e−
ψ2µ
3

and
Lower Tail: for any ψ ∈ (0, 1), P (X ≤ (1− ψ)µ) ≤ e−

ψ2µ
2 ,

where X is a random variable representing the sum of independent Bernoulli trials, and µ is the ex-
pected value of X .

Now, we can extend Morris+ quite simply by running r IID copies of the algorithm and then taking the
median of the results. We call this the Morris++ algorithm.

Algorithm 3 Morris++ Algorithm using Median
Require: Stream of elements S, number of instances t, number of runs r
Ensure: Median of the estimates from r runs of Morris+

1: Initialize an empty list L
2: for j = 1 to r do
3: for i = 1 to t do
4: Initialize counter Xi to 0
5: end for
6: end for
7: for each element e in S do
8: for j = 1 to r do
9: for i = 1 to t do

10: Generate a random number p in [0, 1]
11: if p < 1

2Xi
then

12: Increment Xi

13: end if
14: end for
15: Compute the mean of 2X1 − 1, 2X2 − 1, . . . , 2Xt − 1
16: Add the mean to the list L
17: end for
18: On a query, sort the list L and return the median of the list L
19: Empty L
20: end for

Let Y i
n = 1 if Ãi

n gives a (1 + ε)-approximation of n and Y i
n = 0, otherwise. Clearly, the Y i

n variables
are Bernoulli variables. Then, it follows that E[Y i

n] = Pr(Yi = 1) ≥ 0.9. Let J̃n =
∑r

i=1 Y
i
n. This means

Quanquan C. Liu q.liu@yale.edu 5

mailto:quanquan.liu@yale.edu

CPSC 768: SCALABLE AND PRIVATE GRAPH ALGORITHMS Lectures 1 and 2

that E[J̃n] = 0.9r. When J̃n > 0.5r, we’ll obtain a (1 + ε)-approximation of n if we take the median!
Now, we only need to upper bound the probability that J̃n ≤ 0.5r.

Lemma 3.2. The probability that J̃n ≤ 0.5r is at most e−0.42·0.9·r/2.

Proof. We directly use the lower tail bound of the Chernoff bound. Substituting ψ = 0.4, we get

Pr(J̃n ≤ (1− 0.4) · 0.9r) ≤ e−0.42·0.9·r/2.

In order to obtain at most a probability of failure of δ, we set r such that e−0.42·0.9·r/2 ≤ δ. Solving, we
obtain r ≥ 2 ln(1/δ)

0.42·0.9 = O(log(1/δ)).
Altogether, we see that Morris++ gets a (1+ε)-approximation of n with probability at least 1−δ when

the space used is O
(
log(1/δ) log logn

ε2

)
.

This does not quite get us the high probability bound in o(log n) space, but very recently, Nelson and
Yu [NY22] showed an (optimal) space bound of O(log log n + log(1/ε) + log(1/δ)) that gets a (1 + ε)-
approximation and does obtain the desired high probability bound.

References

[NY22] Jelani Nelson and Huacheng Yu. Optimal bounds for approximate counting. In Proceedings of the
41st ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, pages 119–
127, 2022.

Quanquan C. Liu q.liu@yale.edu 6

mailto:quanquan.liu@yale.edu

	Introduction
	The Morris Algorithm
	Analysis of the Morris Algorithm

	Improving to (1+)-Approximation
	Amplifying the Probability of Success by Taking the Median

