
CPSC 768: SCALABLE AND PRIVATE GRAPH ALGORITHMS Lecture 18

These lecture notes have not undergone rigorous peer-review. Please email quanquan.liu@yale.edu if
you see any errors.

1 Introduction

Today we’ll discuss solving the densest subgraph problem with the primal/dual method using the multi-
plicative weight update (MWU) method. Last time, we discussed how to solve packing and covering LPs
using MWU assuming an oracle on that solves a convex combination of the weights in the weights in the
LP. Today, we’ll instantiate this method for the densest subgraph problem. We’ll be discussing the MWU
algorithm given in [BGM14].

Let us first start with the primal and dual formulation of MWU given in [Cha00].

(PRIMAL) Maximum Density Subgraph

maximize
∑
e∈E

xe

subject to
∑
v∈V

yv = 1

xe ≤ yu, xe ≤ yv ∀e = {u, v} ∈ E

yv, xe ≥ 0 ∀e ∈ E, v ∈ V

(DUAL) Lowest Out-Degree Orientation

minimize B

subject to αeu + αev ≥ 1 ∀e = {u, v} ∈ E∑
e∋u

αeu ≤ B ∀u ∈ V where e ∈ E

αeu, αev ≥ 0 ∀e = {u, v} ∈ E

Figure 1: Fig. 1 of [SV20]: Linear programs for densest subgraph (primal) and fractional lowest out-degree
orientation (dual).

The intuition for the primal and dual are as follows. First, for the primal, if xe = 1, then yu, yv both
have to be 1. Charikar showed that the optimum solution to the primal is at least the value of the densest
subgraph in the input graph. This means that whenever an edge xe is in the densest subgraph, then both of its
endpoints must also be in the densest subgraph. Now, we interpret the objective. First, the densest subgraph
objective maximizes

∑
e∈E xe∑
v∈V yv

when we don’t have any constraints on the values for yv. Then, we can scale
the yv values such that

∑
v∈V yv = 1 and the LP ensures that the xe values scale accordingly. Scaling the

yv values as such ensures a simpler objective in the primal.
For the dual, we suppose we distribute weight of 1 on every edge. Then, the constraint αeu + αev ≥ 1

ensures that the weight of 1 on the edge is distributed among its endpoints. Then, we seek to minimize the
maximum weight distributed onto any vertex. Hence, this problem is called the minimum fractional edge
orientation problem since we can consider distributing weights as fractionally orienting the edges and the
problem solves for the minimum such orientation.

Let OPT be the optimum solution to the primal. Then, by primal-dual, the following lemma is true.

Lemma 1.1. The dual with B set to z is feasible if and only if z ≥ OPT.

2 MWU for Densest Subgraphs

We now apply MWU to the dual. Recall that our application of MWU first seeks to find a convex region
on some of the constraints. Note that the number of “experts” of our MWU is m. We’ll define our convex
region K as follows:

Quanquan C. Liu quanquan@mit.edu 1

mailto:quanquan.liu@yale.edu

CPSC 768: SCALABLE AND PRIVATE GRAPH ALGORITHMS Lecture 18

K =

{
αeu ≥ 0 | z = OPT,

∑
e∋u

αeu ≤ z

}
.

Now, we check for feasibility of the constraints αeu + αev ≥ 1. But first, let’s consider the width of the
problem before we set our convex region in stone. Naively, each αev can be as large as OPT. This means
that αev+αeu ≤ 2OPT, i.e. our loss per day is as much as 2OPT! This means that our width ρ = Θ(OPT).
Since OPT can be as large as n, we have that ρ = Θ(n). This is not good for distributed, parallel, any
scalable applications!

Luckily, [BGM14] performs a width reduction to modify the original polyhedral K such that we have
bounded width. Suppose we add an additional constraint to ensure that αev ≤ q for some small constant
q ≥ 1.

K =

{
αeu ≥ 0 | z = OPT,

∑
e∋u

αeu ≤ z, αeu ≤ q

}
.

Then, we can show that the dual is feasible for z if and only if the dual is feasible with this new constraint.
We let DUAL(z) denote the feasibility program when B is set to z and DUAL(z, q) to be the feasibility
program when B is set to z and we add the constraints αev ≤ q. This is true since we do not set αeu to be
larger than necessary to satisfy the constraint αeu + αev ≥ 1. Hence, we do not every set any αeu to be
greater than 1.

Now, what is the weight of the new system? The width is now at most 2q! Since q = O(1); we have
now reduced the weight to O

(
logm
ε2

)
for constant ε.

We’ve reduced the width so let’s proceed with our new K. We now define our oracle. Recall that we want
our oracle to solve a convex combination of our constraints αeu+αev ≥ 1. The easiest convex combination
is to sum up all of these constraints. The left hand size of the sum simplifies to

∑
v

∑
e incident to v αev. We

now multiply both sides by p. Hence, we obtain the following constraint

∑
v

∑
e incident to v

peαev ≥ ||p||1.

If the above constraint is not satisfied then DUAL(z, q) is infeasible. Hence, our oracle ORACLE(p) just
needs to return α ∈ K that computes:

C(p, z, q) = max
α∈K

∑
v

∑
e incident to v

peαev

We output infeasible if the above value is less than ||p||1.
Otherwise, we return 1

T

∑
t∈[T] α

t as the feasible solution. We now prove the existence of a linear time
oracle.

Lemma 2.1. ORACLE(p) can be computed in O(m) time.

Proof. For any p, for each v, the optimum solution C(p, z, q) sets αev as follows. Let r = ⌊ zq ⌋ and let
s = z − r · q. Then, set αev = q for the r largest pe incident to v and αev = s for the (r + 1)-st largest pe.
We can find and set these values for each vertex in O(m) time.

Quanquan C. Liu quanquan@mit.edu 2

mailto:quanquan.liu@yale.edu

CPSC 768: SCALABLE AND PRIVATE GRAPH ALGORITHMS Lecture 18

Thus, in O
(
m logm

ε2

)
time for constant q, our MWU algorithm returns infeasible for the Dual or finds α

where αeu + αev ≥ 1− ε for all constraints.
Finally, we use primal-dual to find a solution to the primal. Suppose we pass x for p in C(p, z, q). We

show the following theorem about the x returned by ORACLE(x).

Theorem 2.2. Let D̃ be the smallest value found via binary searching (1+ε)i values for i ∈ [log(n)] where
our MWU procedure does not return infeasible. Then, for any ε ∈ (0, 1/3) and any constant q ≥ 1, we
satisfy:

1. the MWU does not return infeasible and returns an α where D̃ is guaranteed to be in OPT(1− ε) ≤
D̃ ≤ D(1 + ε),

2. the MWU returns an x where
∑

e∈E xe ≥ (1− 3ε) · C(x, D̃, q).

Proof. First, suppose that D̃ < D∗ ·(1−ε) and the MWU does not return infeasible. Since MWU guarantees
that the α values satisfy αeu + αev ≥ 1 − ε. This means that scaling up D̃ by 1

1−ε results in a feasible

solution for the original dual constraints. Thus, we obtained a value D∗
new = D̃

1−ε < D∗ which contradicts
the optimality of D∗; hence the MWU must return infeasible in this case. Furthermore, D̃ ≤ (1 + ε) ·D∗

by our binary search procedure and for all values D̃ ∈ [D∗, D∗(1 + ε)], the MWU will return a feasible
solution. Hence, if the MWU procedure does not return infeasible, then, we are guaranteed Item 1.

Then, for D̃ ≤ (1 + ε) ·D∗, it must be the case for

λ∗ = {λ | αeu + αev ≥ λ∀e = (u, v), α ∈ K},

it must hold that λ∗ ≤ 1+ ε. Otherwise, if λ∗ > 1+ ε, we can scale α by > 1/(1+ ε) and obtain a feasible
solution to the dual with D̃

λ∗ < D∗ which is not possible. Hence, it must hold by the guarantees of MWU
that

(1 + ε) ·
∑
e∈E

xe ≥ (1− ε) · C(x, D̃, q)

∑
e∈E

xe ≥ (1− ε) · C(x, D̃, q)

1 + ε∑
e∈E

xe ≥ (1− ε)2 · C(x, D̃, q)∑
e∈E

xe ≥ (1− 3ε) · C(x, D̃, q).

Now, we need to find the solution from the primal. However, one major obstacle to finding the solution
to the primal is as follows. We used MWU to solve the modified dual problem. Unfortunately, DUAL(D̃, q)
has a different primal than the original primal. In particular, the primal feasibility problem corresponding to
DUAL(D̃, q) is the following:

∑
e∈E xe∑

e∈E,v∈V

(
D̃yv + qzev

) ≥ 1

where xe ≤ min (yu + zeu, yv + zev) ∀e = (u, v) ∈ E.

Quanquan C. Liu quanquan@mit.edu 3

mailto:quanquan.liu@yale.edu

CPSC 768: SCALABLE AND PRIVATE GRAPH ALGORITHMS Lecture 18

The primal corresponding with DUAL(D̃) does not have the z variables. Although the exact optimal
primal solution will set z = 0, this is not the case for ε-approximate solutions since ε-approximate solutions
can set large z so that we do not know how to interpret the corresponding x,y variables in the context of the
original primal.

Now, we show the procedure used in [BGM14] that rounds an ε-approximate solution to DUAL(D̃, q)
into an ε-approximate solution to DUAL(D̃). Recall from our oracle that C(x, D̃, q) is computed by first
sorting, for every vertex v, the values xe of the edges incident to v in non-increasing order, and assigning q
to the first r = ⌊D̃/q⌋ edges in this order and s = D̃ − q · r to the (r + 1)-st edge in this order. Let the
sorted order be x1(v) ≥ x2(v) ≥ · · · ≥ xk(v). Thus, we can also write our C(x, D̃, q) as follows:

C(x, D̃, q) =
∑
v∈V

(
s · xr+1(v) +

r∑
i=1

qxi(v)

)
. (2.1)

Using this formulation, we now prove the following two steps of our rounding algorithm.

Discretization Discretization exactly does what it sounds, it discretizes the returned xe values so that we
end up with a small number of distinct values of xe. Let X = maxe∈E xe. Then, we scale up or down the
xe values such that X = 1. Now, we consider all edges e with xe ≤ ε/m2. The sum of xe of all of these
edges contributes at most ε/m to

∑
e∈E xe. We set the value of these xe’s to xe = 0. Using Eq. (2.1), the

largest r+1 values of xe are multiplied with either r or s. Since we rescaled the xe values such that X = 1,
C(x, D̃, q) ≥ 2 with the rescaled x. Since, we originally have that

∑
e∈E xe ≥ (1 − 3ε)C(x, D̃, q), our

new rescaled vector with all values of xe ≤ ε/m2 set to 0 satisfies:

∑
e∈E

xe ≥ (1− 3ε)C(x, D̃, q)− ε/m∑
e∈E

xe ≥ (1− 4ε)C(x, D̃, q).

Now, we round each rescaled xe down to the nearest power of (1 + ε), which does not change the value
of xe by more than a factor of (1 + ε). This means that the resulting x satisfies

∑
e∈E

xe ≥
(1− 4ε)C(x, D̃, q)

1 + ε∑
e∈E

xe ≥ (1− 6ε)C(x, D̃, q).

Now that we have rounded every value of xe to the nearest power of (1 + ε) and we are guaranteed that
xe ≥ ε

m2 , there are now only O
(
logm
ε

)
distinct values of xe.

Line Sweep Using our values of xe, we will now find an approximate densest subgraph (subset of vertices
whose induced subgraph is an approximate densest subgraph). Recall that intuitively the xe values tells
us which edges are in the densest subgraph. Hence, approximately optimal xe values should tell us the
approximate densest subgraph.

Fix a γ ≥ 0. Let I(xe) = 1 if xe ≥ γ. Let G(γ) be the subgraph induced by the set of edges xe ≥ γ.
Let E(γ) be the set of such induced edges and V (γ) denote the set of the endpoints of these edges. Let

Quanquan C. Liu quanquan@mit.edu 4

mailto:quanquan.liu@yale.edu

CPSC 768: SCALABLE AND PRIVATE GRAPH ALGORITHMS Lecture 18

dv(γ) be the degree of v in G(γ). Then, dv(γ) =
∑

e∈N(v) I(xe) and |E(γ)| =
∑

e∈E I(xe). Finally, let

Hv(γ) =
∑
v∈V

(
s

q
· I(xr+1(v)) +

r∑
i=1

I(xi(v))

)
. (2.2)

We now show the following lemma.

Lemma 2.3. There exists a γ where G(γ) ̸= and |E(γ)| ≥ q(1−6ε)
∑

v∈V Hv(γ). Furthermore, this value

of γ can be computed in O
(
m logm

ε

)
time.

Proof. First, observe that

∑
e∈E

xe =

∫ 1

0
|E(γ)|dγ

and

C(x, D̃, q) = q

∫ 1

0

∑
v∈V

Hv(γ)dγ,

by definition of our variables. Since
∑

e∈E xe ≥ (1− 6ε)C(x, D̃, q), there must exist a γ where |E(γ)| ≥
q(1 − 6ε)

∑
v∈V Hv(γ). Since there are only O

(
logm
ε

)
distinct values of γ, we can search through all

possible values of γ in O (m) per value of γ and compute the associated values to determine whether
|E(γ)| ≥ q(1− 6ε)

∑
v∈V Hv(γ).

We now prove our final theorem.

Theorem 2.4. For any ε ∈ (0, 1/12), a subgraph of density at least (1 − ε)D∗ can be computed in
O
(
m logm

ε2

)
time.

Proof. By Lemma 2.3, there exists a value γ (which we can find in polynomial time) that satisfies |E(γ)| ≥
q(1− 6ε)

∑
v∈V Hv(γ). Fix γ to be such a γ. Let V1 be the set of vertices where for every v ∈ V1, we have

xr+1(v) ≥ γ. For these vertices v ∈ V1, we have Hv(γ) =
s
q +
∑r

i=1 1 = r+ s
q = D̃

q . Let V2 denote V \V1

and we have dw(γ) = Hw(γ) for w ∈ V2; this is true since I(xr+1(w)) = 0 for these vertices.
Thus, we can show the following

∑
v∈V

Hv(γ) =
∑
v∈V1

Hv(γ) +
∑
v∈V2

Hv(γ) =
D̃

q
· |V1|+

∑
v∈V2

dv(γ).

Suppose we consider the induced subgraph consisting of V1. Then, by using the property |E(γ)| ≥
q(1− 6ε)

∑
v∈V Hv(γ),

|E1| ≥ |E(γ)| −
∑
v∈V2

dv(γ) ≥ q(1− 6ε)

D̃

q
· |V1|+

∑
v∈V2

dv(γ)

−
∑
v∈V2

dv(γ).

Since q(1 − 6ε)X ≥ X when q ≥ 2 and ε < 1/12, it holds that |E1| ≥ (1 − 6ε)D̃|V1| and so we get a
(1− 7ε)-approximate densest subgraph by binary searching for D̃.

Now, the final piece is to show that V1 is non-empty. Suppose first that
∑

v∈V2
dv(γ) = 0, then |E1| ≥

|E(γ)| > 0 and V1 is non-empty. Otherwise, the final inequality is strict, and we have that |E1| > 0 which
implies that V1 is non-empty. Hence the density is at least D̃(1− 6ε) ≥ (1− 7ε)D∗.

Quanquan C. Liu quanquan@mit.edu 5

mailto:quanquan.liu@yale.edu

CPSC 768: SCALABLE AND PRIVATE GRAPH ALGORITHMS Lecture 18

Note that the above proof requires q > 1 + 6ε; otherwise, an approximate solution is not guaranteed.
[SV20] gives a different interpretation of this algorithm and provides the complete analysis without

using MWU as a blackbox. Please refer to their paper for this alternative analysis.

References

[BGM14] Bahman Bahmani, Ashish Goel, and Kamesh Munagala. Efficient primal-dual graph algorithms
for mapreduce. In International Workshop on Algorithms and Models for the Web-Graph, pages
59–78. Springer, 2014.

[Cha00] Moses Charikar. Greedy approximation algorithms for finding dense components in a graph.
In International workshop on approximation algorithms for combinatorial optimization, pages
84–95. Springer, 2000.

[SV20] Hsin-Hao Su and Hoa T. Vu. Distributed Dense Subgraph Detection and Low Outdegree Orien-
tation. In 34th International Symposium on Distributed Computing, pages 15:1–15:18, 2020.

Quanquan C. Liu quanquan@mit.edu 6

mailto:quanquan.liu@yale.edu

	Introduction
	MWU for Densest Subgraphs

