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Announcements

• Progress reports (2-3 pages) for final project: Due April 5th. 
• The final project as well as the 30 min presentation is due on 

the last day of class: April 24th. 
• Class notes and schedule for the lectures for the rest of the 

semester have been posted on the course page 
• Check the Course Slack for OPS announcements!

https://quanquancliu.com/cpsc768.html
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Last Time

• Weighted majority algorithm for predicting stock market
• Take the majority opinion from sum of weights of 𝑁 experts
• Decrease weight of experts who were wrong

Theorem: # weighted majority mistakes ≤
2 1 + 𝜀 ⋅ best expert’s # of mistakes + 𝑂 !"# $

%
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Another Stock Market Game

• Each day, more complicated interaction with stock, loss vector 
in [−1, 1]

• 𝑁 experts have losses 𝒎𝒊
𝒕 for 𝒊 ∈ 𝑵  on day 𝒕 ∈ [𝑻] in [−𝟏, 𝟏] 

which means you gain money for negative values and lose 
money for positive values

• We come up with a probability distribution 𝒑𝒕 = [𝒑𝟏𝒕 , … , 𝒑𝑵𝒕 ] 
where with probability 𝑝%& we pick expert 𝑖’s opinion to output

Expected 
LossLoss on day 𝒕: ⟨𝒎𝒕, 𝒑𝒕⟩
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Hedge Algorithm

1. Initialize each 𝑤%' ← 1 for each 𝑖 ∈ [𝑁] 
2. For each 𝑡 ∈ [𝑇]:

a) Set 𝑝%& ←
(!
"

∑#∈ % (#
"

b) Observe the loss vector 𝑚&

c) For each 𝑖 ∈ 𝑁 :
i. Set 𝑤%&*' ← 𝑤%& ⋅ exp −𝜀 ⋅ 𝑚%

&
𝑚%
& > 0, decrease 𝑖’s 

weight; otherwise 
increase 𝑖’s weight
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Show the Expected Loss is Bounded

Theorem: Suppose 𝜀 ∈ 0, 1  and for 𝑡 ∈ [𝑇], then Hedge returns 
a probability distribution where for any expert 𝑖 ∈ [𝑁],  

A
𝒕∈ 𝑻

⟨𝒑𝒕,𝒎𝒕⟩ ≤ A
𝒕∈ 𝑻

𝒎𝒊
𝒕 +

ln 𝑵
𝜺

+ 𝜺𝑻
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Since by the Taylor series 𝑒0 ≤ 1 + 𝑥 + 𝑥1 for 𝑥 ∈ −1, 1 ,

Φ&*' ≤ A
/∈ -

𝑤/& ⋅ 1 − 𝜀 ⋅ 𝑚/& + 𝜀1 𝑚/&
1
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Theorem: Suppose 𝜀 ∈ 0, 1  and for 𝑡 ∈ [𝑇], then Hedge returns 
a probability distribution where for any expert 𝑖 ∈ [𝑁],  

A
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Proof:           Φ!"# ≤ ∑$∈ & 𝑤$! ⋅ 1 − 𝜀 ⋅ 𝑚$! + 𝜀' 𝑚$!
'

≤ ,
$∈ &

𝑤$! ⋅ 1 − 𝜀 ⋅ 𝑚$! + 𝜀'

≤ ,
$∈ &

𝑤$! ⋅ 1 + 𝜀' − ,
$∈ &

𝑤$! ⋅ 𝜀 ⋅ 𝑚$!

≤ Φ! 1 + 𝜀' − ,
$∈ &

Φ! ⋅ 𝑝$! ⋅ 𝑚$!
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𝒕 𝟐

≤ 𝟏 
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Theorem: Suppose 𝜀 ∈ 0, 1  and for 𝑡 ∈ [𝑇], then Hedge returns 
a probability distribution where for any expert 𝑖 ∈ [𝑁],  

A
𝒕∈ 𝑻

⟨𝒑𝒕,𝒎𝒕⟩ ≤ A
𝒕∈ 𝑻

𝒎𝒊
𝒕 +

ln 𝑵
𝜺

+ 𝜺𝑻

Proof:           Φ!"# ≤ ∑$∈ & 𝑤$! ⋅ 1 − 𝜀 ⋅ 𝑚$! + 𝜀' 𝑚$!
'

≤ ,
$∈ &

𝑤$! ⋅ 1 − 𝜀 ⋅ 𝑚$! + 𝜀'

≤ ,
$∈ &

𝑤$! ⋅ 1 + 𝜀' − ,
$∈ &

𝑤$! ⋅ 𝜀 ⋅ 𝑚$!

≤ Φ! 1 + 𝜀' − ,
$∈ &

Φ! ⋅ 𝑝$! ⋅ 𝑚$!

Splitting the 
equation
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Theorem: Suppose 𝜀 ∈ 0, 1  and for 𝑡 ∈ [𝑇], then Hedge returns 
a probability distribution where for any expert 𝑖 ∈ [𝑁],  

A
𝒕∈ 𝑻

⟨𝒑𝒕,𝒎𝒕⟩ ≤ A
𝒕∈ 𝑻

𝒎𝒊
𝒕 +

ln 𝑵
𝜺

+ 𝜺𝑻

Proof:           Φ!"# ≤ ∑$∈ & 𝑤$! ⋅ 1 − 𝜀 ⋅ 𝑚$! + 𝜀' 𝑚$!
'

≤ ,
$∈ &

𝑤$! ⋅ 1 − 𝜀 ⋅ 𝑚$! + 𝜀'

≤ ,
$∈ &

𝑤$! ⋅ 1 + 𝜀' − ,
$∈ &

𝑤$! ⋅ 𝜀 ⋅ 𝑚$!

≤ Φ! 1 + 𝜀' − 𝜀 ⋅ ,
$∈ &

Φ! ⋅ 𝑝$! ⋅ 𝑚$! Since we set 𝒑𝒋𝒕 = 𝒘𝒋
𝒕/𝚽𝒕
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Theorem: Suppose 𝜀 ∈ 0, 1  and for 𝑡 ∈ [𝑇], then Hedge returns 
a probability distribution where for any expert 𝑖 ∈ [𝑁],  

A
𝒕∈ 𝑻

⟨𝒑𝒕,𝒎𝒕⟩ ≤ A
𝒕∈ 𝑻

𝒎𝒊
𝒕 +

ln 𝑵
𝜺

+ 𝜺𝑻

Proof:           Φ&*' ≤ Φ& 1 + 𝜀1 − 𝜀 ⋅ ∑/∈ - Φ& ⋅ 𝑝/& ⋅ 𝑚/&

= Φ& ⋅ 1 + 𝜀1 − 𝜀 ⋅ �⃗�& , 𝑚&

≤ Φ& ⋅ exp 𝜀1 − 𝜀 ⋅ �⃗�& , 𝑚&
Dot Product
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Theorem: Suppose 𝜀 ∈ 0, 1  and for 𝑡 ∈ [𝑇], then Hedge returns 
a probability distribution where for any expert 𝑖 ∈ [𝑁],  

A
𝒕∈ 𝑻

⟨𝒑𝒕,𝒎𝒕⟩ ≤ A
𝒕∈ 𝑻

𝒎𝒊
𝒕 +

ln 𝑵
𝜺

+ 𝜺𝑻

Proof:           Φ&*' ≤ Φ& 1 + 𝜀1 − 𝜀 ⋅ ∑/∈ - Φ& ⋅ 𝑝/& ⋅ 𝑚/&

= Φ& ⋅ 1 + 𝜀1 − 𝜀 ⋅ �⃗�& , 𝑚&

≤ Φ& ⋅ exp 𝜀1 − 𝜀 ⋅ �⃗�& , 𝑚&

≤ Φ' ⋅ exp 𝜀1 ⋅ 𝑇 − 𝜀A
&&.&

�⃗�& , 𝑚&

  

Since 𝟏 + 𝒙 ≤ 𝒆𝒙
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Theorem: Suppose 𝜀 ∈ 0, 1  and for 𝑡 ∈ [𝑇], then Hedge returns 
a probability distribution where for any expert 𝑖 ∈ [𝑁],  

A
𝒕∈ 𝑻

⟨𝒑𝒕,𝒎𝒕⟩ ≤ A
𝒕∈ 𝑻

𝒎𝒊
𝒕 +

ln 𝑵
𝜺

+ 𝜺𝑻

Proof:           Φ&*' ≤ Φ& 1 + 𝜀1 − 𝜀 ⋅ ∑/∈ - Φ& ⋅ 𝑝/& ⋅ 𝑚/&

= Φ& ⋅ 1 + 𝜀1 − 𝜀 ⋅ �⃗�& , 𝑚&

≤ Φ& ⋅ exp 𝜀1 − 𝜀 ⋅ �⃗�& , 𝑚&

≤ Φ' ⋅ exp 𝜀1 ⋅ 𝑇 − 𝜀A
&&.&

�⃗�& , 𝑚&

  

Substituting 
recursively
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Theorem: Suppose 𝜀 ∈ 0, 1  and for 𝑡 ∈ [𝑇], then Hedge returns 
a probability distribution where for any expert 𝑖 ∈ [𝑁],  

A
𝒕∈ 𝑻

⟨𝒑𝒕,𝒎𝒕⟩ ≤ A
𝒕∈ 𝑻

𝒎𝒊
𝒕 +

ln 𝑵
𝜺

+ 𝜺𝑻

Proof: Combining upper and lower bounds on Φ&*'

exp −𝜀 ⋅ A
&&.&

𝑚%
& ≤ Φ&*' ≤ Φ' ⋅ exp 𝜀1 ⋅ 𝑇 − 𝜀A

&&.&

�⃗�& , 𝑚&

−𝜀 ⋅ A
&&.&

𝑚%
& ≤ ln 𝑁 + 𝜀1 ⋅ 𝑇 − 𝜀A

&&.&

�⃗�& , 𝑚&

  

Take ln of both 
sides
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Theorem: Suppose 𝜀 ∈ 0, 1  and for 𝑡 ∈ [𝑇], then Hedge returns 
a probability distribution where for any expert 𝑖 ∈ [𝑁],  

A
𝒕∈ 𝑻

⟨𝒑𝒕,𝒎𝒕⟩ ≤ A
𝒕∈ 𝑻

𝒎𝒊
𝒕 +

ln 𝑵
𝜺

+ 𝜺𝑻

Proof: Combining upper and lower bounds on Φ&*'

exp −𝜀 ⋅ A
&&.&

𝑚%
& ≤ Φ&*' ≤ Φ' ⋅ exp 𝜀1 ⋅ 𝑇 − 𝜀A

&&.&

�⃗�& , 𝑚&

−𝜀 ⋅ A
&&.&

𝑚%
& ≤ ln 𝑁 + 𝜀1 ⋅ 𝑇 − 𝜀A

&&.&

�⃗�& , 𝑚&

  ∑&&.& �⃗�& , 𝑚& ≤ 23 -
4

+ 𝜀 ⋅ 𝑇 + ∑&&.&𝑚%
& Rearrange
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Theorem: Suppose 𝜀 ∈ 0, 1  and for 𝑡 ∈ [𝑇], then Hedge returns 
a probability distribution where for any expert 𝑖 ∈ [𝑁],  

A
𝒕∈ 𝑻

⟨𝒑𝒕,𝒎𝒕⟩ ≤ A
𝒕∈ 𝑻

𝒎𝒊
𝒕 +

ln 𝑵
𝜺

+ 𝜺𝑻

Corollary (Average cost): 𝜀 ∈ 0, 1 , 𝑡 ∈ 𝑇 , 𝑇 ≥ (	*+ &
,!

, then Hedge 
returns a probability distribution where for any expert 𝑖 ∈ [𝑁],  

1
𝑻
⋅ ,
𝒕∈ 𝑻

⟨𝒑𝒕,𝒎𝒕⟩ ≤
𝟏
𝑻
⋅ ,
𝒕∈ 𝑻

𝒎𝒊
𝒕 + 𝟐𝜺
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Theorem: Suppose 𝜀 ∈ 0, 1  and for 𝑡 ∈ [𝑇], then Hedge returns 
a probability distribution where for any expert 𝑖 ∈ [𝑁],  

A
𝒕∈ 𝑻

⟨𝒑𝒕,𝒎𝒕⟩ ≤ A
𝒕∈ 𝑻

𝒎𝒊
𝒕 +

ln 𝑵
𝜺

+ 𝜺𝑻

Corollary (Average cost): 𝜀 ∈ 0, 1 , 𝑡 ∈ 𝑇 , 𝑇 ≥ (	*+ &
,!

, then Hedge 
returns a probability distribution where for any expert 𝑖 ∈ [𝑁],  

1
𝑻
⋅ ,
𝒕∈ 𝑻

⟨𝒑𝒕,𝒎𝒕⟩ ≤
𝟏
𝑻
⋅ ,
𝒕∈ 𝑻

𝒎𝒊
𝒕 + 𝟐𝜺

Multiply by '
5

 on both sides 
and set large enough 𝑇 to 

simplify 23 -
4

 term
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Corollary (Average cost): 𝜀 ∈ 0, 1 , 𝑡 ∈ 𝑇 , 𝑇 ≥ (	𝝆𝟐*+ &
,!

,𝒎𝒊
𝒕 ∈ [−𝝆, 𝝆], then 

Hedge returns a probability distribution where for any expert 𝑖 ∈ [𝑁],  
1
𝑻 ⋅ ,

𝒕∈ 𝑻

⟨𝒑𝒕,𝒎𝒕⟩ ≤
𝟏
𝑻 ⋅ ,

𝒕∈ 𝑻

𝒎𝒊
𝒕 + 𝟐𝜺

Corollary (Average cost): 𝜀 ∈ 0, 1 , 𝑡 ∈ 𝑇 , 𝑇 ≥ (	*+ &
,!

, then Hedge 
returns a probability distribution where for any expert 𝑖 ∈ [𝑁],  

1
𝑻
⋅ ,
𝒕∈ 𝑻

⟨𝒑𝒕,𝒎𝒕⟩ ≤
𝟏
𝑻
⋅ ,
𝒕∈ 𝑻

𝒎𝒊
𝒕 + 𝟐𝜺

𝝆𝟐 comes from 
Taylor expansion
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Solving LPs (Approximately) using MWU

• LPs with 𝑚 constraints of the form
min	𝑐7𝑥

s. t. 𝐴𝑥 ≥ 𝑏
𝑥 ≥ 0
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Solving LPs (Approximately) using MWU

• LPs with 𝑚 constraints of the form
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• Need to check for feasibility of 𝑨𝑥 ≥ 𝒃 in 𝐾
• Assume we have an oracle returns 𝒙 ∈ 𝑲 satisfying following: 

• Either 𝒘𝒕 ⋅ 𝑨𝑥 ≥ 𝒘𝒕 ⋅ 𝒃 for convex combination of constraints 
using vector 𝒘

• Or infeasible (no such 𝒙)
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Solving LPs (Approximately) using MWU
• Simple convex region: 𝐾 = 𝑥 ∈ ℝ?	 𝑥 ≥ 0, 𝑐7𝑥 = 𝑂𝑃𝑇}
• Need to check for feasibility of 𝑨𝑥 ≥ 𝒃 in 𝐾
• Assume we have an oracle returns 𝒙 ∈ 𝑲 satisfying following: 

• Either 𝒘𝒕 ⋅ 𝑨𝑥 ≥ 𝒘𝒕 ⋅ 𝒃 for convex combination of constraints 
using vector 𝒘

• Or infeasible (no such 𝒙)
• Using oracle and MWU show:

• For a particular ``guess”  of OPT using binary search, the 
solution is feasible or infeasible (and take the smallest 
feasible ``guess’’)
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𝑨𝒙 ≥ 𝒃, 𝒙 ∈ 𝑲, then there is a solution 

to 𝒘𝒕 ⋅ 𝑨𝑥 ≥ 𝒘𝒕 ⋅ 𝒃. Contrapositive gives 
infeasibility.  



CPSC 768

Solving LPs (Approximately) using MWU

• Each constraint 𝜶𝐓𝒙 ≥ 𝜷 is an expert
• Total of 𝒎 experts
• Another way to look at it use oracle, find 𝑥 using oracle using 

old weights, then find new weights 𝒘:

Theorem: If there were a solution to 
𝑨𝒙 ≥ 𝒃, 𝒙 ∈ 𝑲, then there is a solution 

to 𝒘𝒕 ⋅ 𝑨𝑥 ≥ 𝒘𝒕 ⋅ 𝒃. Contrapositive gives 
infeasibility.  

Finds a set of non-negative 
weights certifying 

infeasibility

Finds an approximate 
solution certifying 
 𝒂𝒋 ⋅ 𝒙	 − 𝒃𝒋 ≥ −𝜺
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𝑐7	 X𝑥 = 	OPT
𝐴X𝑥 ≥ 𝑏	 − 𝜀𝟏

X𝑥 ≥ 0
• Either: 

• Finds a set of non-negative weights certifying 
infeasibility

• Finds an approximate solution certifying 𝒂𝒋 ⋅ 𝒙	 − 𝒃𝒋 ≥ −𝜺
• Conditions are not necessarily disjoint
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• 𝑚 experts, one per row
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• Otherwise, take solution 𝑥& to impose cost 𝑚/& = 𝑎% ⋅ 𝑥& − 𝑏/
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Recall Hedge Algorithm

1. Initialize each 𝑤%' ← 1 for each 𝑖 ∈ [𝑁] 
2. For each 𝑡 ∈ [𝑇]:

a) Set 𝑝%& ←
(!
"

∑#∈ % (#
"

b) Observe the loss vector 𝑚&

c) For each 𝑖 ∈ 𝑁 :
i. Set 𝑤%&*' ← 𝑤%& ⋅ exp −𝜀 ⋅ 𝑚%

&
𝑚%
& > 0, decrease 𝑖’s 

weight; otherwise 
increase 𝑖’s weight
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𝑐7	 X𝑥 = 	OPT
𝐴X𝑥 ≥ 𝑏	 − 𝜀𝟏

X𝑥 ≥ 0
• Use oracle or solve system at each time 𝑡

• If no solution, halt and output infeasible
• Otherwise, take solution 𝑥& to impose cost 𝑚/& = 𝑎% ⋅ 𝑥& − 𝑏/

• Update weights using Hedge algorithm
• If after 𝑇 rounds (we’ll define 𝑇), the solution is non-negative, 

then return 𝑥 = '
5
⋅ ∑&∈ 5 𝑥&
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• Runtime and cost?
Corollary (Average cost): 𝜀 ∈ 0, 1 , 𝑡 ∈ 𝑇 , 𝑇 ≥ (	1!*+ &

,!
, 𝑚2

! ∈ [−𝜌, 𝜌], then 
Hedge returns a probability distribution where for any expert 𝑖 ∈ [𝑁],  

1
𝑻 ⋅ ,

𝒕∈ 𝑻

⟨𝒑𝒕,𝒎𝒕⟩ ≤
𝟏
𝑻 ⋅ ,

𝒕∈ 𝑻

𝒎𝒊
𝒕 + 𝟐𝜺
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• Runtime and cost?

• Determine 𝜌 = max
/,0,&

1, 𝑎/ ⋅ 𝑥& 	− 𝑏/  (maximum cost at any round)

• Get , 𝑇 ≥ C	D(23 -
4(

 using corollary and substitute 𝑤 for �⃗�

Corollary (Average cost): 𝜀 ∈ 0, 1 , 𝑡 ∈ 𝑇 , 𝑇 ≥ (	1!*+ &
,!

, 𝑚2
! ∈ [−𝜌, 𝜌], then 

Hedge returns a probability distribution where for any expert 𝑖 ∈ [𝑁],  
1
𝑻 ⋅ ,

𝒕∈ 𝑻

⟨𝒑𝒕,𝒎𝒕⟩ ≤
𝟏
𝑻 ⋅ ,

𝒕∈ 𝑻

𝒎𝒊
𝒕 + 𝟐𝜺
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• Runtime and cost?

• Get , 𝑇 ≥ C	D(23 -
4(

 using corollary and substitute 𝑤 for �⃗�

• '
5
⋅ ∑&∈5𝑚%

& + 2𝜀 = '
5
⋅ ∑&∈5 𝑎/ ⋅ 𝑥& 	− 𝑏/ + 2𝜀 = 𝑎/ ⋅ 𝑥 	− 𝑏/ + 2𝜀

Corollary (Average cost): 𝜀 ∈ 0, 1 , 𝑡 ∈ 𝑇 , 𝑇 ≥ (	1!*+ &
,!

, 𝑚2
! ∈ [−𝜌, 𝜌], then 

Hedge returns a probability distribution where for any expert 𝑖 ∈ [𝑁],  
1
𝑻 ⋅ ,

𝒕∈ 𝑻

⟨𝒑𝒕,𝒎𝒕⟩ ≤
𝟏
𝑻 ⋅ ,

𝒕∈ 𝑻

𝒎𝒊
𝒕 + 𝟐𝜺
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• Runtime and cost?

• Get , 𝑇 ≥ C	D(23 -
4(

 using corollary and substitute 𝑤 for �⃗�

• '
5
⋅ ∑&∈5𝑚%

& + 2𝜀 = '
5
⋅ ∑&∈5 𝑎/ ⋅ 𝑥& 	− 𝑏/ + 2𝜀 = 𝑎/ ⋅ 𝑥 	− 𝑏/ + 2𝜀

Corollary (Average cost): 𝜀 ∈ 0, 1 , 𝑡 ∈ 𝑇 , 𝑇 ≥ (	1!*+ &
,!

, 𝑚2
! ∈ [−𝜌, 𝜌], then 

Hedge returns a probability distribution where for any expert 𝑖 ∈ [𝑁],  
1
𝑻 ⋅ ,

𝒕∈ 𝑻

⟨𝒑𝒕,𝒎𝒕⟩ ≤
𝟏
𝑻 ⋅ ,

𝒕∈ 𝑻

𝒎𝒊
𝒕 + 𝟐𝜺 𝑎/ ⋅ 𝑥 	− 𝑏/ + 2𝜀 ≥ 0 

means
𝑎' ⋅ 𝑥 	≥ 𝑏' − 2𝜀 
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Last Time…
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min	𝑐(𝑥

s. t. 𝐴𝑥 ≥ 𝑏
𝑥 ≥ 0

𝑐(	 ;𝑥 = 	OPT
𝐴;𝑥 ≥ 𝑏	 − 𝜀𝟏

;𝑥 ≥ 0

Binary Search 
for OPT
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• Use oracle to solve convex combination 𝒘𝐓𝑨𝑥 ≥ 𝒘𝐓 ⋅ 𝒃 at each 
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Theorem: If there were a solution to 
𝑨𝒙 ≥ 𝒃, 𝒙 ∈ 𝑲, then there is a solution 

to 𝒘𝒕 ⋅ 𝑨𝑥 ≥ 𝒘𝒕 ⋅ 𝒃. Contrapositive gives 
infeasibility.  
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• Use oracle to solve convex combination 𝒘𝐓𝑨𝑥 ≥ 𝒘𝐓𝒃 at each 
time 𝑡 where 𝒘 is weight vector, initially all 1s

• If no solution, halt and output infeasible
• Otherwise, take solution 𝑥& to impose cost 𝑚/& = 𝑎% ⋅ 𝑥& − 𝑏/

min	𝑐(𝑥
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• Use oracle to solve convex combination 𝒘𝐓𝑨𝑥 ≥ 𝒘𝐓𝒃 at each 
time 𝑡 where 𝒘 is weight vector, initially all 1s

• If no solution, halt and output infeasible
• Otherwise, take solution 𝑥& to impose cost 𝑚/& = 𝑎% ⋅ 𝑥& − 𝑏/

• Use Hedge algorithm to update

min	𝑐(𝑥
s. t. 𝐴𝑥 ≥ 𝑏
𝑥 ≥ 0

𝑐(	 ;𝑥 = 	OPT
𝐴;𝑥 ≥ 𝑏	 − 𝜀𝟏

;𝑥 ≥ 0

Binary Search 
for OPT
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• Runtime and cost?

• Get 𝑇 ≥ C	D(23 -
4(

 using corollary and substitute 𝑤 for �⃗�

Corollary (Average cost): 𝜀 ∈ 0, 1 , 𝑡 ∈ 𝑇 , 𝑇 ≥ (	1!*+ &
,!

, 𝑚2
! ∈ [−𝜌, 𝜌], then 

Hedge returns a probability distribution where for any expert 𝑖 ∈ [𝑁],  
1
𝑻 ⋅ ,

𝒕∈ 𝑻

⟨𝒑𝒕,𝒎𝒕⟩ ≤
𝟏
𝑻 ⋅ ,

𝒕∈ 𝑻

𝒎𝒊
𝒕 + 𝟐𝜺
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• Analysis: 
• '
𝑻
⋅ ∑𝒕∈ 𝑻 ⟨𝒑𝒕,𝒎𝒕⟩ = ⟨𝒑𝒕, 𝑨𝒙𝒕 	− 𝒃⟩ = 𝒘𝐓𝑨𝑥 − 𝒘𝐓 ⋅ 𝒃 ≥ 𝟎

• 𝟏
𝑻
⋅ ∑𝒕∈ 𝑻 𝒎𝒊

𝒕 + 𝟐𝜺 = '
5
⋅ ∑&∈5 𝑎/ ⋅ 𝑥& 	− 𝑏/ + 2𝜀 = 𝑎/ ⋅ 𝑥 	− 𝑏/ + 2𝜀

• Putting it together:
• 𝑎/ ⋅ 𝑥 	− 𝑏/ + 2𝜀 ≥ 0

• Satisfies:
𝑐7	 X𝑥 = 	OPT
𝐴X𝑥 ≥ 𝑏	 − 𝜀E𝟏

X𝑥 ≥ 0
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Packing and Covering LPs

• Covering LPs:
• If the constraint matrix A is all positive
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Packing and Covering LPs

• Covering LPs:
• If the constraint matrix 𝐴 is all positive, i.e. 𝐴𝑥 ≥ 1
• Put enough weight on 𝑥 to cover every constraint
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Packing and Covering LPs

• Covering LPs:
• If for an all positive constraint matrix 𝐴: 𝐴𝑥 ≥ 𝑏
• Put enough weight on 𝑥 to cover every constraint

• Packing LPs:
• If for an all positive matrix constraint: 𝐴𝑥 ≤ 𝑏
• Packing as much into 𝑥 as possible without violating any 

constraint
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Packing and Covering LPs

• Covering LPs:
• If for an all positive constraint matrix 𝐴: 𝐴𝑥 ≥ 𝑏
• Put enough weight on 𝑥 to cover every constraint

• Packing LPs:
• If for an all positive matrix constraint: 𝐴𝑥 ≤ 𝑏
• Packing as much into 𝑥 as possible without violating any 

constraint
• Packing LPs, just flip the feasibility constraint for the oracle:

• 𝑝5𝐴𝑥 ≤ 𝑝5𝑏
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Example Applications: Densest Subgraph

• Problem Definition:

Densest Subgraph: Given a graph 𝐺 = 𝑉, 𝐸 , find a subset of 
vertices that maximizes max

)⊆+

, )
+ )

 the density of the induced 

subgraph on 𝑆.  


