CPSC 768: Scalable and Private Graph Algorithms

Lecture 16, 17, 18: Multiplicative Weight Updates

Quanquan C. Liu quanquan.liu@yale.edu

Announcements

- Progress reports (2-3 pages) for final project: Due April 5th.
 - The final project as well as the 30 min presentation is due on the last day of class: **April 24th.**
- Class notes and schedule for the lectures for the rest of the semester have been posted on <u>the course page</u>
- Check the Course Slack for OPS announcements!

Last Time

- Weighted majority algorithm for predicting stock market
 - Take the majority opinion from sum of weights of *N* experts
 - Decrease weight of experts who were wrong

Last Time

- Weighted majority algorithm for predicting stock market
 - Take the majority opinion from sum of weights of N experts
 - Decrease weight of experts who were wrong

Theorem: # weighted majority mistakes $\leq 2(1 + \varepsilon) \cdot \text{best expert's # of mistakes } + O\left(\frac{\log(N)}{\varepsilon}\right)$

 Each day, more complicated interaction with stock, loss vector in [-1,1]

- Each day, more complicated interaction with stock, loss vector in [-1,1]
- N experts have losses m^t_i for i ∈ [N] on day t ∈ [T] in [-1, 1] which means you gain money for negative values and lose money for positive values

- Each day, more complicated interaction with stock, loss vector in [-1,1]
- N experts have losses m^t_i for i ∈ [N] on day t ∈ [T] in [-1, 1] which means you gain money for negative values and lose money for positive values
- We come up with a **probability distribution** $\vec{p}^t = [p_1^t, ..., p_N^t]$ where with probability p_i^t we pick expert *i*'s opinion to output

- Each day, more complicated interaction with stock, loss vector in [-1,1]
- N experts have losses m^t_i for i ∈ [N] on day t ∈ [T] in [-1, 1] which means you gain money for negative values and lose money for positive values
- We come up with a **probability distribution** $\vec{p}^t = [p_1^t, ..., p_N^t]$ where with probability p_i^t we pick expert *i*'s opinion to output

Loss on day $t: \langle \overrightarrow{m}^t, \overrightarrow{p}^t \rangle$

- Each day, more complicated interaction with stock, loss vector in [-1,1]
- N experts have losses m^t_i for i ∈ [N] on day t ∈ [T] in [-1, 1] which means you gain money for negative values and lose money for positive values
- We come up with a **probability distribution** $\vec{p}^t = [p_1^t, ..., p_N^t]$ where with probability p_i^t we pick expert *i*'s opinion

```
Loss on day t: \langle \vec{m}^t, \vec{p}^t \rangle
```

Expected Loss

1. Initialize each $w_i^1 \leftarrow 1$ for each $i \in [N]$

- 1. Initialize each $w_i^1 \leftarrow 1$ for each $i \in [N]$
- 2. For each $t \in [T]$:

- 1. Initialize each $w_i^1 \leftarrow 1$ for each $i \in [N]$ 2. For each $t \in [T]$:
 - a) Set $p_i^t \leftarrow \frac{w_i^t}{\sum_{j \in [N]} w_j^t}$

- 1. Initialize each $w_i^1 \leftarrow 1$ for each $i \in [N]$
- 2. For each $t \in [T]$: a) Set $p_i^t \leftarrow \frac{w_i^t}{\sum_{j \in [N]} w_j^t}$ b) Observe the loss vector \vec{m}^t

- 1. Initialize each $w_i^1 \leftarrow 1$ for each $i \in [N]$
- 2. For each $t \in [T]$: a) Set $p_i^t \leftarrow \frac{w_i^t}{\sum_{j \in [N]} w_j^t}$
 - b) Observe the loss vector \vec{m}^t
 - c) For each $i \in [N]$:

- 1. Initialize each $w_i^1 \leftarrow 1$ for each $i \in [N]$
- 2. For each $t \in [T]$:

a) Set
$$p_i^t \leftarrow \frac{w_i^t}{\sum_{j \in [N]} w_j^t}$$

b) Observe the loss vector \vec{m}^t

c) For each
$$i \in [N]$$
:

i. Set
$$w_i^{t+1} \leftarrow w_i^t \cdot \exp(-\varepsilon \cdot m_i^t)$$

- 1. Initialize each $w_i^1 \leftarrow 1$ for each $i \in [N]$
- 2. For each $t \in [T]$:

a) Set
$$p_i^t \leftarrow \frac{w_i^t}{\sum_{j \in [N]} w_j^t}$$

- b) Observe the loss vector \vec{m}^t
- c) For each $i \in [N]$:

Set
$$w_i^{t+1} \leftarrow w_i^t \cdot \exp(-\varepsilon \cdot m_i^t)$$

 $m_i^t > 0$, decrease *i*'s weight; otherwise increase *i*'s weight

Show the Expected Loss is Bounded

$$\sum_{t\in[T]}\langle \vec{p}^t, \vec{m}^t\rangle \leq \sum_{t\in[T]} m_i^t + \frac{\ln(N)}{\varepsilon} + \varepsilon T$$

Theorem: Suppose $\varepsilon \in (0, 1]$ and for $t \in [T]$, then Hedge returns a probability distribution where for any expert $i \in [N]$, $\sum_{t \in [T]} \langle \vec{p}^t, \vec{m}^t \rangle \leq \sum_{t \in [T]} m_i^t + \frac{\ln(N)}{\varepsilon} + \varepsilon T$

Proof: Define potential function as before $\Phi^t = \sum_{i \in [N]} w_i^t$

Theorem: Suppose $\varepsilon \in (0, 1]$ and for $t \in [T]$, then Hedge returns a probability distribution where for any expert $i \in [N]$, $\sum_{t \in [T]} \langle \vec{p}^t, \vec{m}^t \rangle \leq \sum_{t \in [T]} m_i^t + \frac{\ln(N)}{\varepsilon} + \varepsilon T$

Proof: Define potential function as before $\Phi^t = \sum_{i \in [N]} w_i^t$

First note:
$$\Phi^1 = N$$
 and $\Phi^{t+1} \ge w_i^{t+1} = \exp\left(-\varepsilon \cdot \sum_{t' \le t} m_i^{t'}\right)$

Theorem: Suppose $\varepsilon \in (0, 1]$ and for $t \in [T]$, then Hedge returns a probability distribution where for any expert $i \in [N]$, $\sum_{t \in [T]} \langle \vec{p}^t, \vec{m}^t \rangle \leq \sum_{t \in [T]} m_i^t + \frac{\ln(N)}{\varepsilon} + \varepsilon T$

Proof: Define potential function as before $\Phi^t = \sum_{i \in [N]} w_i^t$ First note: $\Phi^1 = N$ and $\Phi^{t+1} \ge w_i^{t+1} = \exp\left(-\varepsilon \cdot \sum_{t' \le t} m_i^{t'}\right)$ Then, $\Phi^{t+1} = \sum_{i \in [N]} w_i^{t+1} = \sum_{i \in [N]} w_i^t \cdot \exp\left(-\varepsilon \cdot m_i^t\right)$ **Theorem:** Suppose $\varepsilon \in (0, 1]$ and for $t \in [T]$, then Hedge returns a probability distribution where for any expert $i \in [N]$, $\sum_{t \in [T]} \langle \vec{p}^t, \vec{m}^t \rangle \leq \sum_{t \in [T]} m_i^t + \frac{\ln(N)}{\varepsilon} + \varepsilon T$

Proof: Define potential function as before $\Phi^t = \sum_{i \in [N]} w_i^t$ First note: $\Phi^1 = N$ and $\Phi^{t+1} \ge w_i^{t+1} = \exp\left(-\varepsilon \cdot \sum_{t' \le t} m_i^{t'}\right)$ Then, $\Phi^{t+1} = \sum_{j \in [N]} w_j^{t+1} = \sum_{j \in [N]} w_j^t \cdot \exp\left(-\varepsilon \cdot m_j^t\right)$ Since by the Taylor series $e^x \le 1 + x + x^2$ for $x \in [-1, 1]$, **Theorem:** Suppose $\varepsilon \in (0, 1]$ and for $t \in [T]$, then Hedge returns a probability distribution where for any expert $i \in [N]$, $\sum_{t \in [T]} \langle \vec{p}^t, \vec{m}^t \rangle \leq \sum_{t \in [T]} m_i^t + \frac{\ln(N)}{\varepsilon} + \varepsilon T$

Proof: Define potential function as before $\Phi^t = \sum_{i \in [N]} w_i^t$ First note: $\Phi^1 = N$ and $\Phi^{t+1} \ge w_i^{t+1} = \exp\left(-\varepsilon \cdot \sum_{t' \le t} m_i^{t'}\right)$ Then, $\Phi^{t+1} = \sum_{i \in [N]} w_i^{t+1} = \sum_{i \in [N]} w_i^t \cdot \exp(-\varepsilon \cdot m_i^t)$ Since by the Taylor series $e^x \leq 1 + x + x^2$ for $x \in [-1, 1]$, $\Phi^{t+1} \leq \sum w_j^t \cdot \left(1 - \varepsilon \cdot m_j^t + \varepsilon^2 (m_j^t)^2\right)$ $i \in [N]$

$$\sum_{t\in[T]}\langle \vec{p}^t, \vec{m}^t\rangle \leq \sum_{t\in[T]} m_i^t + \frac{\ln(N)}{\varepsilon} + \varepsilon T$$

Proof:
$$\Phi^{t+1} \leq \sum_{j \in [N]} w_j^t \cdot \left(1 - \varepsilon \cdot m_j^t + \varepsilon^2 (m_j^t)^2\right)$$

$$\sum_{t\in[T]}\langle \vec{p}^t, \vec{m}^t\rangle \leq \sum_{t\in[T]} m_i^t + \frac{\ln(N)}{\varepsilon} + \varepsilon T$$

$$\begin{array}{ll} \textbf{Proof:} & \Phi^{t+1} \leq \sum_{j \in [N]} w_j^t \cdot \left(1 - \varepsilon \cdot m_j^t + \varepsilon^2 \left(m_j^t\right)^2\right) \\ & \leq \sum_{j \in [N]} w_j^t \cdot \left(1 - \varepsilon \cdot m_j^t + \varepsilon^2\right) & \textbf{Since} \left(m_j^t\right)^2 \leq 1 \end{array}$$

$$\sum_{t\in[T]}\langle \vec{p}^t, \vec{m}^t\rangle \leq \sum_{t\in[T]} m_i^t + \frac{\ln(N)}{\varepsilon} + \varepsilon T$$

$$\begin{array}{ll} \textbf{Proof:} & \Phi^{t+1} \leq \sum_{j \in [N]} w_j^t \cdot \left(1 - \varepsilon \cdot m_j^t + \varepsilon^2 \left(m_j^t\right)^2\right) \\ & \leq \sum_{j \in [N]} w_j^t \cdot \left(1 - \varepsilon \cdot m_j^t + \varepsilon^2\right) \\ & \leq \sum_{j \in [N]} w_j^t \cdot \left(1 + \varepsilon^2\right) - \sum_{j \in [N]} w_j^t \cdot \varepsilon \cdot m_j^t & \begin{array}{ll} \textbf{Splitting the} \\ & \textbf{equation} \end{array} \end{array}$$

$$\sum_{t\in[T]}\langle \vec{p}^t, \vec{m}^t\rangle \leq \sum_{t\in[T]} m_i^t + \frac{\ln(N)}{\varepsilon} + \varepsilon T$$

$$\begin{array}{ll} \textbf{Proof:} \qquad \Phi^{t+1} \leq \sum_{j \in [N]} w_j^t \cdot \left(1 - \varepsilon \cdot m_j^t + \varepsilon^2 \left(m_j^t\right)^2\right) \\ \qquad \leq \sum_{j \in [N]} w_j^t \cdot \left(1 - \varepsilon \cdot m_j^t + \varepsilon^2\right) \\ \qquad \leq \sum_{j \in [N]} w_j^t \cdot \left(1 + \varepsilon^2\right) - \sum_{j \in [N]} w_j^t \cdot \varepsilon \cdot m_j^t \\ \qquad \leq \Phi^t (1 + \varepsilon^2) - \varepsilon \cdot \sum_{j \in [N]} \Phi^t \cdot p_j^t \cdot m_j^t \quad \textbf{Since we set } p_j^t = w_j^t / \Phi^t \end{pmatrix}$$

CPSC 768

$$\sum_{t\in[T]}\langle \vec{p}^t, \vec{m}^t\rangle \leq \sum_{t\in[T]} m_i^t + \frac{\ln(N)}{\varepsilon} + \varepsilon T$$

Proof:
$$\Phi^{t+1} \leq \Phi^t (1 + \varepsilon^2) - \varepsilon \cdot \sum_{j \in [N]} \Phi^t \cdot p_j^t \cdot m_j^t$$

= $\Phi^t \cdot ((1 + \varepsilon^2) - \varepsilon \cdot \langle \vec{p}^t, \vec{m}^t \rangle)$ **Dot Product**

$$\sum_{t\in[T]}\langle \vec{p}^t, \vec{m}^t\rangle \leq \sum_{t\in[T]} m_i^t + \frac{\ln(N)}{\varepsilon} + \varepsilon T$$

$$\begin{array}{ll} \textbf{Proof:} & \Phi^{t+1} \leq \Phi^t (1+\varepsilon^2) - \varepsilon \cdot \sum_{j \in [N]} \Phi^t \cdot p_j^t \cdot m_j^t \\ & = \Phi^t \cdot \left((1+\varepsilon^2) - \varepsilon \cdot \langle \vec{p}^t, \vec{m}^t \rangle \right) \\ & \leq \Phi^t \cdot \exp(\varepsilon^2 - \varepsilon \cdot \langle \vec{p}^t, \vec{m}^t \rangle) & \textbf{Since } 1 + x \leq e^x \end{array}$$

$$\sum_{t\in[T]}\langle \vec{p}^t, \vec{m}^t\rangle \leq \sum_{t\in[T]} m_i^t + \frac{\ln(N)}{\varepsilon} + \varepsilon T$$

$$\begin{array}{ll} \textbf{Proof:} & \Phi^{t+1} \leq \Phi^t (1+\varepsilon^2) - \varepsilon \cdot \sum_{j \in [N]} \Phi^t \cdot p_j^t \cdot m_j^t \\ & = \Phi^t \cdot \left((1+\varepsilon^2) - \varepsilon \cdot \langle \vec{p}^t, \vec{m}^t \rangle \right) \\ & \leq \Phi^t \cdot \exp(\varepsilon^2 - \varepsilon \cdot \langle \vec{p}^t, \vec{m}^t \rangle) \\ & \leq \Phi^1 \cdot \exp\left(\varepsilon^2 \cdot T - \varepsilon \sum_{t' \leq t} \langle \vec{p}^t, \vec{m}^t \rangle\right) \end{array}$$

Theorem: Suppose $\varepsilon \in (0, 1]$ and for $t \in [T]$, then Hedge returns a probability distribution where for any expert $i \in [N]$, $\sum_{t \in [T]} \langle \vec{p}^t, \vec{m}^t \rangle \leq \sum_{t \in [T]} m_i^t + \frac{\ln(N)}{\varepsilon} + \varepsilon T$

Proof: Combining upper and lower bounds on Φ^{t+1}

$$\exp\left(-\varepsilon \cdot \sum_{t' \le t} m_i^t\right) \le \Phi^{t+1} \le \Phi^1 \cdot \exp\left(\varepsilon^2 \cdot T - \varepsilon \sum_{t' \le t} \langle \vec{p}^t, \vec{m}^t \rangle\right)$$
$$-\varepsilon \cdot \sum_{t' \le t} m_i^t \le \ln(N) + \varepsilon^2 \cdot T - \varepsilon \sum_{t' \le t} \langle \vec{p}^t, \vec{m}^t \rangle \qquad \text{Take In of both sides}$$

Theorem: Suppose $\varepsilon \in (0, 1]$ and for $t \in [T]$, then Hedge returns a probability distribution where for any expert $i \in [N]$, $\sum_{t \in [T]} \langle \vec{p}^t, \vec{m}^t \rangle \leq \sum_{t \in [T]} m_i^t + \frac{\ln(N)}{\varepsilon} + \varepsilon T$

Proof: Combining upper and lower bounds on Φ^{t+1}

$$\begin{split} \exp\left(-\varepsilon \cdot \sum_{t' \leq t} m_i^t\right) &\leq \Phi^{t+1} \leq \Phi^1 \cdot \exp\left(\varepsilon^2 \cdot T - \varepsilon \sum_{t' \leq t} \langle \vec{p}^t, \vec{m}^t \rangle\right) \\ &-\varepsilon \cdot \sum_{t' \leq t} m_i^t \leq \ln(N) + \varepsilon^2 \cdot T - \varepsilon \sum_{t' \leq t} \langle \vec{p}^t, \vec{m}^t \rangle \\ &\sum_{t' \leq t} \langle \vec{p}^t, \vec{m}^t \rangle \leq \frac{\ln(N)}{\varepsilon} + \varepsilon \cdot T + \sum_{t' \leq t} m_i^t \end{split}$$
 Rearrange

CPSC 768

Theorem: Suppose $\varepsilon \in (0, 1]$ and for $t \in [T]$, then Hedge returns a probability distribution where for any expert $i \in [N]$, $\sum \langle \overrightarrow{m}t \ \overrightarrow{m}t \rangle < \sum m^t + \frac{\ln(N)}{\ln(N)} + cT$

$$\sum_{t\in[T]}\langle \vec{p}^t, \vec{m}^t\rangle \leq \sum_{t\in[T]} m_i^t + \frac{m(n)}{\varepsilon} + \varepsilon T$$

Corollary (Average cost): $\varepsilon \in (0, 1], t \in [T], T \ge \frac{4 \ln(N)}{\varepsilon^2}$, then Hedge returns a probability distribution where for any expert $i \in [N]$, $\frac{1}{T} \cdot \sum_{t \in [T]} \langle \vec{p}^t, \vec{m}^t \rangle \le \frac{1}{T} \cdot \sum_{t \in [T]} m_i^t + 2\varepsilon$ **Theorem:** Suppose $\varepsilon \in (0, 1]$ and for $t \in [T]$, then Hedge returns a probability distribution where for any expert $i \in [N]$, $\sum \langle \overrightarrow{mt} \ \overrightarrow{mt} \rangle < \sum m^t + \frac{\ln(N)}{\ln(N)} + cT$

$$\sum_{t\in[T]}\langle \vec{p}^t, \vec{m}^t\rangle \leq \sum_{t\in[T]} m_i^t + \frac{m(n)}{\varepsilon} + \varepsilon T$$

Corollary (Average cost): $\varepsilon \in (0, 1], t \in [T], T \ge \frac{4 \ln(N)}{c^2}$, then Hedge returns a probability distribution where for any expert $i \in [N]$, $\frac{1}{T} \cdot \sum_{t \in [T]} \langle \vec{p}^t, \vec{m}^t \rangle \leq \frac{1}{T} \cdot \sum_{t \in [T]} m_i^t + 2\varepsilon$ Multiply by $\frac{1}{T}$ on both sides and set large enough T to simplify $\frac{\ln(N)}{c}$ term

Corollary (Average cost): $\varepsilon \in (0, 1], t \in [T], T \ge \frac{4 \rho^2 \ln(N)}{\varepsilon^2}, m_i^t \in [-\rho, \rho]$, then

Hedge returns a probability distribution where for any expert $i \in [N]$,

$$\frac{1}{T} \cdot \sum_{t \in [T]} \langle \vec{p}^t, \vec{m}^t \rangle \leq \frac{1}{T} \cdot \sum_{t \in [T]} m_i^t + 2\varepsilon$$

$$\rho^2 \text{ comes from}$$
Taylor expansion

Corollary (Average cost): $\varepsilon \in (0, 1], t \in [T], T \ge \frac{4 \ln(N)}{\varepsilon^2}$, then Hedge returns a probability distribution where for any expert $i \in [N]$, $\frac{1}{T} \cdot \sum_{t \in [T]} \langle \vec{p}^t, \vec{m}^t \rangle \le \frac{1}{T} \cdot \sum_{t \in [T]} m_i^t + 2\varepsilon$

Solving LPs (Approximately) using MWU

- LPs with *m* constraints of the form $\min c^{\mathrm{T}}x$ s. t. $Ax \ge b$
 - $x \ge 0$

CPSC 768

Solving LPs (Approximately) using MWU

• LPs with *m* constraints of the form $\min c^{\mathrm{T}}x$

s. t.
$$Ax \ge b$$

 $x \ge 0$

• Suppose we know $c^T x^* = OPT$ using **binary search**, find an ε -approximate solution \tilde{x} s.t.

$$c^{\mathrm{T}} \tilde{x} = 0 \mathrm{PT}$$
$$A \tilde{x} \ge b - \varepsilon \mathbf{1}$$
$$\tilde{x} \ge 0$$

or output infeasible
• Suppose we know $c^{T}x^{*} = OPT$ using **binary search**, find an ε -approximate solution \tilde{x} s.t.

$$c^{\mathrm{T}} \tilde{x} = \mathrm{OPT}$$
$$A\tilde{x} \ge b - \varepsilon \mathbf{1}$$
$$\tilde{x} \ge 0$$

or output infeasible

• Runtime is $O\left(\frac{\rho^2 \log m}{\epsilon^2}\right)$ where ρ is the width

• Suppose we know $c^{T}x^{*} = OPT$ using **binary search**, find an ε -approximate solution \tilde{x} s.t.

$$c^{\mathrm{T}} \tilde{x} = \mathrm{OPT}$$
$$A\tilde{x} \ge b - \varepsilon \mathbf{1}$$
$$\tilde{x} \ge 0$$

or output infeasible

- Runtime is $O\left(\frac{\rho^2 \log m}{\epsilon^2}\right)$ where ρ is the width
- Simple convex region: $K = \{x \in \mathbb{R}^n \mid x \ge 0, c^T x = OPT\}$

• Suppose we know $c^{T}x^{*} = OPT$ using **binary search**, find an ε -approximate solution \tilde{x} s.t.

 $c^{\mathrm{T}} \tilde{x} = \mathrm{OPT}$ $A\tilde{x} \ge b - \varepsilon \mathbf{1}$ $\tilde{x} \ge 0$

or output infeasible

- Runtime is $O\left(\frac{\rho^2 \log m}{\epsilon^2}\right)$ where ρ is the width
- Simple convex region: $K = \{x \in \mathbb{R}^n \mid x \ge 0, c^T x = OPT\}$
- Need to check for feasibility of $Ax \ge b$ in K

- Simple convex region: $K = \{x \in \mathbb{R}^n \mid x \ge 0, c^T x = OPT\}$
- Need to check for feasibility of $Ax \ge b$ in K

- Simple convex region: $K = \{x \in \mathbb{R}^n \mid x \ge 0, c^T x = OPT\}$
- Need to check for feasibility of $Ax \ge b$ in K
- Assume we have an oracle returns $x \in K$ satisfying following:

- Simple convex region: $K = \{x \in \mathbb{R}^n \mid x \ge 0, c^T x = OPT\}$
- Need to check for feasibility of $Ax \ge b$ in K
- Assume we have an oracle returns $x \in K$ satisfying following:
 - Either $w^t \cdot Ax \ge w^t \cdot b$ for convex combination of constraints using vector w

- Simple convex region: $K = \{x \in \mathbb{R}^n \mid x \ge 0, c^T x = OPT\}$
- Need to check for feasibility of $Ax \ge b$ in K
- Assume we have an oracle returns $x \in K$ satisfying following:
 - Either $w^t \cdot Ax \ge w^t \cdot b$ for convex combination of constraints using vector w
 - Or infeasible (no such x)

- Simple convex region: $K = \{x \in \mathbb{R}^n \mid x \ge 0, c^T x = OPT\}$
- Need to check for feasibility of $Ax \ge b$ in K
- Assume we have an oracle returns $x \in K$ satisfying following:
 - Either $w^t \cdot Ax \ge w^t \cdot b$ for convex combination of constraints using vector w
 - Or infeasible (no such x)
- Using oracle and MWU show:
 - For a particular ``guess" of OPT using binary search, the solution is feasible or infeasible (and take the smallest feasible ``guess")

- Each constraint $\alpha^{T} x \ge \beta$ is an expert
- Total of *m* experts

- Each constraint $\alpha^{T} x \ge \beta$ is an expert
- Total of *m* experts
- Another way to look at it:

- Each constraint $\alpha^{T} x \ge \beta$ is an expert
- Total of *m* experts
- Another way to look at it use oracle, find x using oracle using old weights, then find new weights w:

- Each constraint $\alpha^{T} x \ge \beta$ is an expert
- Total of *m* experts
- Another way to look at it use oracle, find x using oracle using old weights, then find new weights w:

<u>Theorem</u>: If there were a solution to $Ax \ge b, x \in K$, then there is a solution to $w^t \cdot Ax \ge w^t \cdot b$. Contrapositive gives infeasibility.

- Each constraint $\alpha^{T} x \ge \beta$ is an expert
- Total of *m* experts
- Another way to look at it use oracle, find *x* using oracle using old weights, then find new weights *w*:

<u>Theorem</u>: If there were a solution to $Ax \ge b, x \in K$, then there is a solution to $w^t \cdot Ax \ge w^t \cdot b$. Contrapositive gives infeasibility. Finds a set of non-negative weights certifying infeasibility

Finds an approximate solution certifying $a_i \cdot x - b_i \ge -\varepsilon$

- Either:
 - Finds a set of non-negative weights certifying infeasibility
 - Finds an approximate solution certifying $a_i \cdot x b_i \ge -\varepsilon$
- Conditions are not necessarily disjoint

$$c^{\mathrm{T}} \tilde{x} = 0 \mathrm{PT}$$
$$A \tilde{x} \ge b - \varepsilon \mathbf{1}$$
$$\tilde{x} \ge 0$$

• *m* experts, one per row

- m experts, one per row
- weight w_i^t denotes weight of expert at time $t \in [T]$
 - At time t = 1, all weights are 1

- m experts, one per row
- weight w_j^t denotes weight of expert at time $t \in [T]$
 - At time t = 1, all weights are 1
- Use **oracle** to solve $w^t \cdot Ax \ge w^t \cdot b$ at each time t

- m experts, one per row
- weight w_i^t denotes weight of expert at time $t \in [T]$
 - At time t = 1, all weights are 1
- Use **oracle** to solve $w^t \cdot Ax \ge w^t \cdot b$ at each time t
 - If no solution, halt and output infeasible

- m experts, one per row
- weight w_i^t denotes weight of expert at time $t \in [T]$
 - At time t = 1, all weights are 1
- Use **oracle** to solve $w^t \cdot Ax \ge w^t \cdot b$ at each time t
 - If no solution, halt and output infeasible
 - Otherwise, take solution x^t to impose cost $m_i^t = a_i \cdot x^t b_i$

- Use *oracle* or solve system at each time *t*
 - If no solution, halt and output infeasible
 - Otherwise, take solution x^t to impose cost $m_i^t = a_i \cdot x^t b_j$
- Why use this cost?

- Use *oracle* or solve system at each time *t*
 - If no solution, halt and output infeasible
 - Otherwise, take solution x^t to impose cost $m_i^t = a_i \cdot x^t b_j$
- Why use this cost?
 - Whenever $a_i \cdot x^t b_j > 0$, we have ``oversatisfied'' the constraint

- Use *oracle* or solve system at each time *t*
 - If no solution, halt and output infeasible
 - Otherwise, take solution x^t to impose cost $m_i^t = a_i \cdot x^t b_j$
- Why use this cost?
 - Whenever $a_i \cdot x^t b_j > 0$, we have ``oversatisfied'' the constraint
 - Reduce weight of constraint next round

- Use *oracle* or solve system at each time *t*
 - If no solution, halt and output infeasible
 - Otherwise, take solution x^t to impose cost $m_i^t = a_i \cdot x^t b_j$
- Why use this cost?
 - Whenever $a_i \cdot x^t b_j > 0$, we have ``oversatisfied" the constraint
 - Reduce weight of constraint next round; otherwise, increase

- Use *oracle* or solve system at each time *t*
 - If no solution, halt and output infeasible
 - Otherwise, take solution x^t to impose cost $m_i^t = a_i \cdot x^t b_j$
- Why use this cost?
 - Whenever $a_i \cdot x^t b_j > 0$, we have ``oversatisfied" the constraint
 - Reduce weight of constraint next round; otherwise, increase

Recall Hedge Algorithm

- 1. Initialize each $w_i^1 \leftarrow 1$ for each $i \in [N]$
- 2. For each $t \in [T]$:

a) Set
$$p_i^t \leftarrow \frac{w_i^t}{\sum_{j \in [N]} w_j^t}$$

- b) Observe the loss vector \vec{m}^t
- c) For each $i \in [N]$: i. Set $w_i^{t+1} \leftarrow w_i^t \cdot \exp(-\varepsilon \cdot m_i^t)$

 $m_i^t > 0$, decrease *i*'s weight; otherwise increase *i*'s weight

- Use *oracle* or solve system at each time *t*
 - If no solution, halt and output infeasible
 - Otherwise, take solution x^t to impose cost $m_i^t = a_i \cdot x^t b_j$
- Update weights using Hedge algorithm

- Use *oracle* or solve system at each time *t*
 - If no solution, halt and output infeasible
 - Otherwise, take solution x^t to impose cost $m_i^t = a_i \cdot x^t b_j$
- Update weights using Hedge algorithm
- If after *T* rounds (we'll define *T*), the solution is non-negative, then return $\overline{x} = \frac{1}{T} \cdot \sum_{t \in [T]} x^t$

• Runtime and cost?

• Runtime and cost?

Corollary (Average cost): $\varepsilon \in (0, 1], t \in [T], T \ge \frac{4 \rho^2 \ln(N)}{\varepsilon^2}, m_i^t \in [-\rho, \rho]$, then Hedge returns a probability distribution where for any expert $i \in [N]$, $\frac{1}{T} \cdot \sum_{t \in [T]} \langle \vec{p}^t, \vec{m}^t \rangle \le \frac{1}{T} \cdot \sum_{t \in [T]} m_i^t + 2\varepsilon$

• Runtime and cost?

Corollary (Average cost): $\varepsilon \in (0, 1], t \in [T], T \ge \frac{4 \rho^2 \ln(N)}{\varepsilon^2}, m_i^t \in [-\rho, \rho]$, then Hedge returns a probability distribution where for any expert $i \in [N]$, $\frac{1}{T} \cdot \sum_{t \in [T]} \langle \vec{p}^t, \vec{m}^t \rangle \le \frac{1}{T} \cdot \sum_{t \in [T]} m_i^t + 2\varepsilon$

• Determine $\rho = \max_{j,x,t} \{1, |a_j \cdot x^t - b_j|\}$ (maximum cost at any round) • Get , $T \ge \frac{4 \rho^2 \ln(N)}{\epsilon^2}$ using corollary and substitute \vec{w} for \vec{p}

• Runtime and cost?

Corollary (Average cost): $\varepsilon \in (0, 1], t \in [T], T \ge \frac{4 \rho^2 \ln(N)}{\varepsilon^2}, m_i^t \in [-\rho, \rho]$, then Hedge returns a probability distribution where for any expert $i \in [N]$, $\frac{1}{T} \cdot \sum_{t \in [T]} \langle \vec{p}^t, \vec{m}^t \rangle \le \frac{1}{T} \cdot \sum_{t \in [T]} m_i^t + 2\varepsilon$

• Get,
$$T \ge \frac{4 \rho^2 \ln(N)}{\varepsilon^2}$$
 using corollary and substitute \vec{w} for \vec{p}
• $\frac{1}{T} \cdot \sum_{t \in T} m_i^t + 2\varepsilon = \frac{1}{T} \cdot \sum_{t \in T} (a_j \cdot x^t - b_j) + 2\varepsilon = a_j \cdot \overline{x} - b_j + 2\varepsilon$

• Runtime and cost?

Corollary (Average cost): $\varepsilon \in (0, 1], t \in [T], T \ge \frac{4 \rho^2 \ln(N)}{\varepsilon^2}, m_i^t \in [-\rho, \rho]$, then Hedge returns a probability distribution where for any expert $i \in [N]$. $\frac{1}{T} \cdot \sum_{t \in [T]} \langle \vec{p}^t, \vec{m}^t \rangle \leq \frac{1}{T} \cdot \sum_{t \in [T]} m_i^t + 2 \qquad \begin{array}{c} a_j \cdot \overline{x} & -b_j + 2\varepsilon \geq 0 \\ \\ means \\ a_j \cdot \overline{x} & \geq b_j - 2\varepsilon \end{array}$ • Get , $T \ge \frac{4 \rho^2 \ln(N)}{c^2}$ using corollary and substitute \vec{w} for \vec{p} • $\frac{1}{\tau} \cdot \sum_{t \in T} m_i^t + 2\varepsilon = \frac{1}{\tau} \cdot \sum_{t \in T} (a_j \cdot x^t - b_j) + 2\varepsilon = a_j \cdot \overline{x} - b_j + 2\varepsilon$

Last Time...

CPSC 768

 $\min c^{\mathrm{T}} x$
s. t. $Ax \ge b$
 $x \ge 0$

Binary Search for OPT

CPSC 768

 $\begin{array}{l} \min c^{\mathrm{T}} x \\ \mathrm{s.\,t.\,} Ax \ge b \\ x \ge 0 \end{array} \quad \begin{array}{l} \text{Binary Search} \\ \text{for OPT} \end{array} \quad \begin{array}{l} c^{\mathrm{T}} \ \tilde{x} = \ \mathrm{OPT} \\ A \widetilde{x} \ge b \\ \tilde{x} \ge 0 \end{array}$

• Use oracle to solve convex combination $w^T A x \ge w^T \cdot b$ at each time t where w is weight vector, initially all $1 \le m$

 $\min c^{\mathrm{T}} x$ s. t. $Ax \ge b$ $x \ge 0$

Binary Search for OPT

$$c^{\mathrm{T}} \tilde{x} = \mathrm{OPT}$$
$$A\tilde{x} \ge b - \varepsilon \mathbf{1}$$
$$\tilde{x} \ge 0$$

• Use **oracle** to solve convex combination $w^T A x \ge w^T b$ at each time t where w is weight vector, initially all $1 \le m$

<u>Theorem</u>: If there were a solution to $Ax \ge b, x \in K$, then there is a solution to $w^t \cdot Ax \ge w^t \cdot b$. Contrapositive gives infeasibility.

CPSC 768
$\min c^{\mathrm{T}} x$ s. t. $Ax \ge b$ $x \ge 0$

Binary Search for OPT

$$c^{\mathrm{T}} \tilde{x} = 0 \mathrm{PT}$$
$$A \tilde{x} \ge b - \varepsilon \mathbf{1}$$
$$\tilde{x} \ge 0$$

 Use oracle to solve convex combinatio time t where w is weight vector, initia

<u>Theorem</u>: If there were a solution to $Ax \ge b, x \in K$, then there is a solution to $w^t \cdot Ax \ge w^t \cdot b$. Contrapositive gives infeasibility. Finds a set of non-negative weights certifying infeasibility

Finds an approximate solution certifying

$$a_j \cdot x - b_j \geq -\varepsilon$$

 $\begin{array}{l} \min c^{\mathrm{T}} x \\ \text{s. t. } Ax \ge b \\ x \ge 0 \end{array} \quad \begin{array}{l} \text{Binary Search} \\ \text{for OPT} \end{array} \quad \begin{array}{l} c^{\mathrm{T}} \ \tilde{x} = \ 0 \text{PT} \\ A \tilde{x} \ge b \\ \tilde{x} \ge 0 \end{array}$

- Use oracle to solve convex combination $w^T A x \ge w^T b$ at each time t where w is weight vector, initially all 1s
 - If no solution, halt and output infeasible
 - Otherwise, take solution x^t to impose cost $m_i^t = a_i \cdot x^t b_i$

 $\begin{array}{l} \min c^{\mathrm{T}} x \\ \mathrm{s.\,t.\,} Ax \ge b \\ x \ge 0 \end{array} \quad \begin{array}{l} \text{Binary Search} \\ \text{for OPT} \end{array} \quad \begin{array}{l} c^{\mathrm{T}} \ \tilde{x} = \ 0 \text{PT} \\ A \tilde{x} \ge b \\ \tilde{x} \ge 0 \end{array}$

- Use oracle to solve convex combination $w^{T}Ax \ge w^{T}b$ at each time t where w is weight vector, initially all 1s
 - If no solution, halt and output infeasible
 - Otherwise, take solution x^t to impose cost $m_i^t = a_i \cdot x^t b_i$
- Use Hedge algorithm to update

• Runtime and cost?

Corollary (Average cost): $\varepsilon \in (0, 1], t \in [T], T \ge \frac{4 \rho^2 \ln(N)}{\varepsilon^2}, m_i^t \in [-\rho, \rho]$, then Hedge returns a probability distribution where for any expert $i \in [N]$, $\frac{1}{T} \cdot \sum_{t \in [T]} \langle \vec{p}^t, \vec{m}^t \rangle \le \frac{1}{T} \cdot \sum_{t \in [T]} m_i^t + 2\varepsilon$

• Get $T \ge \frac{4 \rho^2 \ln(N)}{\epsilon^2}$ using corollary and substitute \vec{w} for \vec{p}

• Analysis:

•
$$\frac{1}{T} \cdot \sum_{t \in [T]} \langle \vec{p}^t, \vec{m}^t \rangle = \langle \vec{p}^t, Ax^t - b \rangle = w^T Ax - w^T \cdot b \ge 0$$

• $\frac{1}{T} \cdot \sum_{t \in [T]} m_i^t + 2\varepsilon = \frac{1}{T} \cdot \sum_{t \in T} (a_j \cdot x^t - b_j) + 2\varepsilon = a_j \cdot \overline{x} - b_j + 2\varepsilon$

• Putting it together:

•
$$a_j \cdot \overline{x} - b_j + 2\varepsilon \ge 0$$

• Satisfies:

$$c^{\mathrm{T}} \tilde{x} = \mathrm{OPT}$$
$$A\tilde{x} \ge b - \varepsilon' \mathbf{1}$$
$$\tilde{x} \ge 0$$

- Covering LPs:
 - If the constraint matrix A is all positive

• Covering LPs:

- If the constraint matrix A is all positive, i.e. $Ax \ge 1$
- Put enough weight on x to **cover** every constraint

• Covering LPs:

- If for an all positive constraint matrix $A: Ax \ge b$
- Put enough weight on x to **cover** every constraint

• Packing LPs:

- If for an all positive matrix constraint: $Ax \le b$
- **Packing** as much into *x* as possible without violating any constraint

• Covering LPs:

- If for an all positive constraint matrix $A: Ax \ge b$
- Put enough weight on x to **cover** every constraint

• Packing LPs:

- If for an all positive matrix constraint: $Ax \le b$
- **Packing** as much into *x* as possible without violating any constraint
- Packing LPs, just flip the feasibility constraint for the oracle:
 - $p^T A x \leq p^T b$

Example Applications: Densest Subgraph

• Problem Definition:

Densest Subgraph: Given a graph G = (V, E), find a subset of vertices that maximizes $\max_{S \subseteq V} \left(\frac{E(S)}{V(S)}\right)$ the density of the induced subgraph on S.