CPSC 768:

Scalable and Private Graph Algorithms

Lecture 16, 17, 18: Multiplicative Weight Updates

Quanquan C. Liu

quanquan.liu@yale.edu

Announcements

- Progress reports (2-3 pages) for final project: Due April 5th.
- The final project as well as the 30 min presentation is due on the last day of class: April 24th.
- Class notes and schedule for the lectures for the rest of the semester have been posted on the course page
- Check the Course Slack for OPS announcements!

Last Time

- Weighted majority algorithm for predicting stock market
- Take the majority opinion from sum of weights of N experts
- Decrease weight of experts who were wrong

Last Time

- Weighted majority algorithm for predicting stock market
- Take the majority opinion from sum of weights of N experts
- Decrease weight of experts who were wrong

Theorem: \# weighted majority mistakes \leq

$$
2(1+\varepsilon) \cdot \text { best expert's \# of mistakes }+O\left(\frac{\log (N)}{\varepsilon}\right)
$$

Another Stock Market Game

- Each day, more complicated interaction with stock, loss vector in $[-1,1]$

Another Stock Market Game

- Each day, more complicated interaction with stock, loss vector in $[-1,1]$
- N experts have losses m_{i}^{t} for $i \in[N]$ on day $t \in[T]$ in $[-1,1]$ which means you gain money for negative values and lose money for positive values

Another Stock Market Game

- Each day, more complicated interaction with stock, loss vector in $[-1,1]$
- N experts have losses m_{i}^{t} for $i \in[N]$ on day $t \in[T]$ in $[-1,1]$ which means you gain money for negative values and lose money for positive values
- We come up with a probability distribution $\vec{p}^{t}=\left[p_{1}^{t}, \ldots, \boldsymbol{p}_{N}^{t}\right]$ where with probability p_{i}^{t} we pick expert i 's opinion to output

Another Stock Market Game

- Each day, more complicated interaction with stock, loss vector in $[-1,1]$
- N experts have losses m_{i}^{t} for $i \in[N]$ on day $t \in[T]$ in $[-1,1]$ which means you gain money for negative values and lose money for positive values
- We come up with a probability distribution $\overrightarrow{\boldsymbol{p}}^{t}=\left[p_{1}^{t}, \ldots, \boldsymbol{p}_{N}^{t}\right]$ where with probability p_{i}^{t} we pick expert i 's opinion to output

$$
\text { Loss on day } t:\left\langle\overrightarrow{\boldsymbol{m}}^{t}, \overrightarrow{\boldsymbol{p}}^{t}\right\rangle
$$

Another Stock Market Game

- Each day, more complicated interaction with stock, loss vector in $[-1,1]$
- N experts have losses m_{i}^{t} for $i \in[N]$ on day $t \in[T]$ in $[-1,1]$ which means you gain money for negative values and lose money for positive values
- We come up with a probability distribution $\overrightarrow{\boldsymbol{p}}^{t}=\left[\boldsymbol{p}_{1}^{t}, \ldots, \boldsymbol{p}_{N}^{t}\right]$ where with probability p_{i}^{t} we pick expert i 's opinion

Expected

$$
\text { Loss on day } t:\left\langle\overrightarrow{\boldsymbol{m}}^{t}, \overrightarrow{\boldsymbol{p}}^{t}\right\rangle
$$

Hedge Algorithm

1. Initialize each $w_{i}^{1} \leftarrow 1$ for each $i \in[N]$

Hedge Algorithm

1. Initialize each $w_{i}^{1} \leftarrow 1$ for each $i \in[N]$
2. For each $t \in[T]$:

Hedge Algorithm

1. Initialize each $w_{i}^{1} \leftarrow 1$ for each $i \in[N]$
2. For each $t \in[T]$:
a) Set $p_{i}^{t} \leftarrow \frac{w_{i}^{t}}{\sum_{j \in[N]} w_{j}^{t}}$

Hedge Algorithm

1. Initialize each $w_{i}^{1} \leftarrow 1$ for each $i \in[N]$
2. For each $t \in[T]$:
a) $\operatorname{Set} p_{i}^{t} \leftarrow \frac{w_{i}^{t}}{\sum_{j \in[N]} w_{j}^{t}}$
b) Observe the loss vector \vec{m}^{t}

Hedge Algorithm

1. Initialize each $w_{i}^{1} \leftarrow 1$ for each $i \in[N]$
2. For each $t \in[T]$:
a) Set $p_{i}^{t} \leftarrow \frac{w_{i}^{t}}{\sum_{j \in[N]} w_{j}^{t}}$
b) Observe the loss vector \vec{m}^{t}
c) For each $i \in[N]$:

Hedge Algorithm

1. Initialize each $w_{i}^{1} \leftarrow 1$ for each $i \in[N]$
2. For each $t \in[T]$:
a) $\operatorname{Set} p_{i}^{t} \leftarrow \frac{w_{i}^{t}}{\sum_{j \in[N]} w_{j}^{t}}$
b) Observe the loss vector \vec{m}^{t}
c) For each $i \in[N]$:
i. Set $w_{i}^{t+1} \leftarrow w_{i}^{t} \cdot \exp \left(-\varepsilon \cdot m_{i}^{t}\right)$

Hedge Algorithm

1. Initialize each $w_{i}^{1} \leftarrow 1$ for each $i \in[N]$
2. For each $t \in[T]$:
a) Set $p_{i}^{t} \leftarrow \frac{w_{i}^{t}}{\sum_{j \in[N]} w_{j}^{t}}$
b) Observe the loss vector \vec{m}^{t}
c) For each $i \in[N]$:
i. Set $w_{i}^{t+1} \leftarrow w_{i}^{t} \cdot \exp \left(-\varepsilon \cdot m_{i}^{t}\right)$
$m_{i}^{t}>0$, decrease i^{\prime} s weight; otherwise increase i 's weight

Show the Expected Loss is Bounded

Theorem: Suppose $\varepsilon \in(0,1]$ and for $t \in[T]$, then Hedge returns a probability distribution where for any expert $i \in[N]$,

$$
\sum_{t \in[\boldsymbol{T}]}\left\langle\overrightarrow{\boldsymbol{p}}^{t}, \overrightarrow{\boldsymbol{m}}^{t}\right\rangle \leq \sum_{t \in[\boldsymbol{T}]} \boldsymbol{m}_{i}^{t}+\frac{\ln (\boldsymbol{N})}{\varepsilon}+\varepsilon \boldsymbol{T}
$$

Theorem: Suppose $\varepsilon \in(0,1]$ and for $t \in[T]$, then Hedge returns a probability distribution where for any expert $i \in[N]$,

$$
\sum_{t \in[T]}\left\langle\overrightarrow{\boldsymbol{p}}^{t}, \vec{m}^{t}\right\rangle \leq \sum_{t \in[T]} m_{i}^{t}+\frac{\ln (\boldsymbol{N})}{\varepsilon}+\varepsilon T
$$

Proof: Define potential function as before $\Phi^{t}=\sum_{i \in[N]} w_{i}^{t}$

Theorem: Suppose $\varepsilon \in(0,1]$ and for $t \in[T]$, then Hedge returns a probability distribution where for any expert $i \in[N]$,

$$
\sum_{t \in[T]}\left\langle\overrightarrow{\boldsymbol{p}}^{t}, \vec{m}^{t}\right\rangle \leq \sum_{t \in[T]} m_{i}^{t}+\frac{\ln (N)}{\varepsilon}+\varepsilon T
$$

Proof: Define potential function as before $\Phi^{t}=\sum_{i \in[N]} w_{i}^{t}$
First note: $\Phi^{1}=N$ and $\Phi^{t+1} \geq w_{i}^{t+1}=\exp \left(-\varepsilon \cdot \sum_{t^{\prime} \leq t} m_{i}^{t^{\prime}}\right)$

Theorem: Suppose $\varepsilon \in(0,1]$ and for $t \in[T]$, then Hedge returns a probability distribution where for any expert $i \in[N]$,

$$
\sum_{t \in[T]}\left\langle\vec{p}^{t}, \vec{m}^{t}\right\rangle \leq \sum_{t \in[T]} m_{i}^{t}+\frac{\ln (N)}{\varepsilon}+\varepsilon T
$$

Proof: Define potential function as before $\Phi^{t}=\sum_{i \in[N]} w_{i}^{t}$
First note: $\Phi^{1}=N$ and $\Phi^{t+1} \geq w_{i}^{t+1}=\exp \left(-\varepsilon \cdot \sum_{t^{\prime} \leq t} m_{i}^{t^{\prime}}\right)$
Then, $\Phi^{t+1}=\sum_{j \in[N]} w_{j}^{t+1}=\sum_{j \in[N]} w_{j}^{t} \cdot \exp \left(-\varepsilon \cdot m_{j}^{t}\right)$

Theorem: Suppose $\varepsilon \in(0,1]$ and for $t \in[T]$, then Hedge returns a probability distribution where for any expert $i \in[N]$,

$$
\sum_{t \in[T]}\left\langle\vec{p}^{t}, \vec{m}^{t}\right\rangle \leq \sum_{t \in[T]} m_{i}^{t}+\frac{\ln (N)}{\varepsilon}+\varepsilon T
$$

Proof: Define potential function as before $\Phi^{t}=\sum_{i \in[N]} w_{i}^{t}$
First note: $\Phi^{1}=N$ and $\Phi^{t+1} \geq w_{i}^{t+1}=\exp \left(-\varepsilon \cdot \sum_{t^{\prime} \leq t} m_{i}^{t^{\prime}}\right)$
Then, $\Phi^{t+1}=\sum_{j \in[N]} w_{j}^{t+1}=\sum_{j \in[N]} w_{j}^{t} \cdot \exp \left(-\varepsilon \cdot m_{j}^{t}\right)$
Since by the Taylor series $e^{x} \leq 1+x+x^{2}$ for $x \in[-1,1]$,

Theorem: Suppose $\varepsilon \in(0,1]$ and for $t \in[T]$, then Hedge returns a probability distribution where for any expert $i \in[N]$,

$$
\sum_{t \in[T]}\left\langle\vec{p}^{t}, \vec{m}^{t}\right\rangle \leq \sum_{t \in[T]} m_{i}^{t}+\frac{\ln (N)}{\varepsilon}+\varepsilon T
$$

Proof: Define potential function as before $\Phi^{t}=\sum_{i \in[N]} w_{i}^{t}$
First note: $\Phi^{1}=N$ and $\Phi^{t+1} \geq w_{i}^{t+1}=\exp \left(-\varepsilon \cdot \sum_{t^{\prime} \leq t} m_{i}^{t^{\prime}}\right)$
Then, $\Phi^{t+1}=\sum_{j \in[N]} w_{j}^{t+1}=\sum_{j \in[N]} w_{j}^{t} \cdot \exp \left(-\varepsilon \cdot m_{j}^{t}\right)$
Since by the Taylor series $e^{x} \leq 1+x+x^{2}$ for $x \in[-1,1]$,

$$
\Phi^{t+1} \leq \sum_{j \in[N]} w_{j}^{t} \cdot\left(1-\varepsilon \cdot m_{j}^{t}+\varepsilon^{2}\left(m_{j}^{t}\right)^{2}\right)
$$

Theorem: Suppose $\varepsilon \in(0,1]$ and for $t \in[T]$, then Hedge returns a probability distribution where for any expert $i \in[N]$,

$$
\sum_{t \in[T]}\left\langle\overrightarrow{\boldsymbol{p}}^{t}, \vec{m}^{t}\right\rangle \leq \sum_{t \in[T]} m_{i}^{t}+\frac{\ln (N)}{\varepsilon}+\varepsilon T
$$

Proof: $\quad \Phi^{t+1} \leq \sum_{j \in[N]} w_{j}^{t} \cdot\left(1-\varepsilon \cdot m_{j}^{t}+\varepsilon^{2}\left(m_{j}^{t}\right)^{2}\right)$

Theorem: Suppose $\varepsilon \in(0,1]$ and for $t \in[T]$, then Hedge returns a probability distribution where for any expert $i \in[N]$,

$$
\sum_{t \in[T]}\left\langle\vec{p}^{t}, \vec{m}^{t}\right\rangle \leq \sum_{t \in[T]} m_{i}^{t}+\frac{\ln (N)}{\varepsilon}+\varepsilon T
$$

Proof:

$$
\begin{aligned}
\Phi^{t+1} \leq & \sum_{j \in[N]} w_{j}^{t} \cdot\left(1-\varepsilon \cdot m_{j}^{t}+\varepsilon^{2}\left(m_{j}^{t}\right)^{2}\right) \\
& \leq \sum_{j \in[N]} w_{j}^{t} \cdot\left(1-\varepsilon \cdot m_{j}^{t}+\varepsilon^{2}\right) \quad \text { Since }\left(\boldsymbol{m}_{j}^{t}\right)^{2} \leq \mathbf{1}
\end{aligned}
$$

Theorem: Suppose $\varepsilon \in(0,1]$ and for $t \in[T]$, then Hedge returns a probability distribution where for any expert $i \in[N]$,

$$
\sum_{t \in[T]}\left\langle\overrightarrow{\boldsymbol{p}}^{t}, \vec{m}^{t}\right\rangle \leq \sum_{t \in[T]} m_{i}^{t}+\frac{\ln (N)}{\varepsilon}+\varepsilon T
$$

Proof: $\quad \Phi^{t+1} \leq \sum_{j \in[N]} w_{j}^{t} \cdot\left(1-\varepsilon \cdot m_{j}^{t}+\varepsilon^{2}\left(m_{j}^{t}\right)^{2}\right)$

$$
\leq \sum_{j \in[N]} w_{j}^{t} \cdot\left(1-\varepsilon \cdot m_{j}^{t}+\varepsilon^{2}\right)
$$

$$
\leq \sum_{j \in[N]} w_{j}^{t} \cdot\left(1+\varepsilon^{2}\right)-\sum_{j \in[N]} w_{j}^{t} \cdot \varepsilon \cdot m_{j}^{t} \quad \begin{gathered}
\text { Splitting the } \\
\text { equation }
\end{gathered}
$$

Theorem: Suppose $\varepsilon \in(0,1]$ and for $t \in[T]$, then Hedge returns a probability distribution where for any expert $i \in[N]$,

$$
\sum_{t \in[T]}\left\langle\vec{p}^{t}, \vec{m}^{t}\right\rangle \leq \sum_{t \in[T]} m_{i}^{t}+\frac{\ln (N)}{\varepsilon}+\varepsilon T
$$

Proof: $\quad \begin{aligned} \Phi^{t+1} \leq & \sum_{j \in[N]} w_{j}^{t} \cdot\left(1-\varepsilon \cdot m_{j}^{t}+\varepsilon^{2}\left(m_{j}^{t}\right)^{2}\right) \\ & \leq \sum_{j \in[N]} w_{j}^{t} \cdot\left(1-\varepsilon \cdot m_{j}^{t}+\varepsilon^{2}\right) \\ \leq & \sum_{j \in[N]} w_{j}^{t} \cdot\left(1+\varepsilon^{2}\right)-\sum_{j \in[N]} w_{j}^{t} \cdot \varepsilon \cdot m_{j}^{t} \\ \leq & \Phi^{t}\left(1+\varepsilon^{2}\right)-\varepsilon \cdot \sum_{j \in[N]} \Phi^{t} \cdot p_{j}^{t} \cdot m_{j}^{t} \quad \text { Since we set } \boldsymbol{p}_{j}^{t}=\boldsymbol{w}_{j}^{t} / \boldsymbol{\Phi}^{t}\end{aligned}$

Theorem: Suppose $\varepsilon \in(0,1]$ and for $t \in[T]$, then Hedge returns a probability distribution where for any expert $i \in[N]$,

$$
\sum_{t \in[T]}\left\langle\overrightarrow{\boldsymbol{p}}^{t}, \vec{m}^{t}\right\rangle \leq \sum_{t \in[T]} m_{i}^{t}+\frac{\ln (\boldsymbol{N})}{\varepsilon}+\varepsilon T
$$

Proof

$$
\begin{aligned}
& \Phi^{t+1} \leq \Phi^{t}\left(1+\varepsilon^{2}\right)-\varepsilon \cdot \sum_{j \in[N]} \Phi^{t} \cdot p_{j}^{t} \cdot m_{j}^{t} \\
& \quad=\Phi^{t} \cdot\left(\left(1+\varepsilon^{2}\right)-\varepsilon \cdot\left\langle\vec{p}^{t}, \vec{m}^{t}\right\rangle\right) \quad \text { Dot Product }
\end{aligned}
$$

Theorem: Suppose $\varepsilon \in(0,1]$ and for $t \in[T]$, then Hedge returns a probability distribution where for any expert $i \in[N]$,

$$
\sum_{t \in[T]}\left\langle\vec{p}^{t}, \vec{m}^{t}\right\rangle \leq \sum_{t \in[T]} m_{i}^{t}+\frac{\ln (N)}{\varepsilon}+\varepsilon T
$$

Proof:

$$
\begin{aligned}
\Phi^{t+1} & \leq \Phi^{t}\left(1+\varepsilon^{2}\right)-\varepsilon \cdot \sum_{j \in[N]} \Phi^{t} \cdot p_{j}^{t} \cdot m_{j}^{t} \\
& =\Phi^{t} \cdot\left(\left(1+\varepsilon^{2}\right)-\varepsilon \cdot\left\langle\vec{p}^{t}, \vec{m}^{t}\right\rangle\right) \\
& \leq \Phi^{t} \cdot \exp \left(\varepsilon^{2}-\varepsilon \cdot\left\langle\vec{p}^{t}, \vec{m}^{t}\right\rangle\right) \quad \text { Since } \mathbf{1}+\boldsymbol{x} \leq \boldsymbol{e}^{x}
\end{aligned}
$$

Theorem: Suppose $\varepsilon \in(0,1]$ and for $t \in[T]$, then Hedge returns a probability distribution where for any expert $i \in[N]$,

$$
\sum_{t \in[T]}\left\langle\vec{p}^{t}, \vec{m}^{t}\right\rangle \leq \sum_{t \in[T]} m_{i}^{t}+\frac{\ln (N)}{\varepsilon}+\varepsilon T
$$

Proof:

$$
\begin{aligned}
\Phi^{t+1} & \leq \Phi^{t}\left(1+\varepsilon^{2}\right)-\varepsilon \cdot \sum_{j \in[N]} \Phi^{t} \cdot p_{j}^{t} \cdot m_{j}^{t} \\
\quad & =\Phi^{t} \cdot\left(\left(1+\varepsilon^{2}\right)-\varepsilon \cdot\left\langle\vec{p}^{t}, \vec{m}^{t}\right\rangle\right) \\
& \leq \Phi^{t} \cdot \exp \left(\varepsilon^{2}-\varepsilon \cdot\left\langle\vec{p}^{t}, \vec{m}^{t}\right\rangle\right) \\
\leq & \Phi^{1} \cdot \exp \left(\varepsilon^{2} \cdot T-\varepsilon \sum_{t^{\prime} \leq t}\left\langle\vec{p}^{t}, \vec{m}^{t}\right\rangle\right) \quad \begin{array}{l}
\text { Substituting } \\
\text { recursively }
\end{array}
\end{aligned}
$$

Theorem: Suppose $\varepsilon \in(0,1]$ and for $t \in[T]$, then Hedge returns a probability distribution where for any expert $i \in[N]$,

$$
\sum_{t \in[T]}\left\langle\overrightarrow{\boldsymbol{p}}^{t}, \vec{m}^{t}\right\rangle \leq \sum_{t \in[T]} m_{i}^{t}+\frac{\ln (N)}{\varepsilon}+\varepsilon T
$$

Proof: Combining upper and lower bounds on Φ^{t+1}

$$
\begin{aligned}
& \exp \left(-\varepsilon \cdot \sum_{t^{\prime} \leq t} m_{i}^{t}\right) \leq \Phi^{t+1} \leq \Phi^{1} \cdot \exp \left(\varepsilon^{2} \cdot T-\varepsilon \sum_{t^{\prime} \leq t}\left\langle\vec{p}^{t}, \vec{m}^{t}\right\rangle\right) \\
&-\varepsilon \cdot \sum_{t^{\prime} \leq t} m_{i}^{t} \leq \ln (N)+\varepsilon^{2} \cdot T-\varepsilon \sum_{t^{\prime} \leq t}\left\langle\vec{p}^{t}, \vec{m}^{t}\right\rangle \begin{array}{c}
\text { Take In of both } \\
\text { sides }
\end{array}
\end{aligned}
$$

Theorem: Suppose $\varepsilon \in(0,1]$ and for $t \in[T]$, then Hedge returns a probability distribution where for any expert $i \in[N]$,

$$
\sum_{t \in[T]}\left\langle\overrightarrow{\boldsymbol{p}}^{t}, \overrightarrow{\boldsymbol{m}}^{t}\right\rangle \leq \sum_{t \in[\boldsymbol{T}]} m_{i}^{t}+\frac{\ln (N)}{\varepsilon}+\varepsilon T
$$

Proof: Combining upper and lower bounds on Φ^{t+1}

$$
\begin{gathered}
\exp \left(-\varepsilon \cdot \sum_{t^{\prime} \leq t} m_{i}^{t}\right) \leq \Phi^{t+1} \leq \Phi^{1} \cdot \exp \left(\varepsilon^{2} \cdot T-\varepsilon \sum_{t^{\prime} \leq t}\left\langle\vec{p}^{t}, \vec{m}^{t}\right\rangle\right) \\
-\varepsilon \cdot \sum_{t^{\prime} \leq t} m_{i}^{t} \leq \ln (N)+\varepsilon^{2} \cdot T-\varepsilon \sum_{t^{\prime} \leq t}\left\langle\vec{p}^{t}, \vec{m}^{t}\right\rangle \\
\sum_{t^{\prime} \leq t}\left\langle\vec{p}^{t}, \vec{m}^{t}\right\rangle \leq \frac{\ln (N)}{\varepsilon}+\varepsilon \cdot T+\sum_{t^{\prime} \leq t} m_{i}^{t} \quad \text { Rearrange }
\end{gathered}
$$

Theorem: Suppose $\varepsilon \in(0,1]$ and for $t \in[T]$, then Hedge returns a probability distribution where for any expert $i \in[N]$,

$$
\sum_{t \in[T]}\left\langle\overrightarrow{\boldsymbol{p}}^{t}, \overrightarrow{\boldsymbol{m}}^{t}\right\rangle \leq \sum_{t \in[T]} m_{i}^{t}+\frac{\ln (N)}{\varepsilon}+\varepsilon T
$$

Corollary (Average cost): $\varepsilon \in(0,1], t \in[T], T \geq \frac{4 \ln (N)}{\varepsilon^{2}}$, then Hedge returns a probability distribution where for any expert $i \in[N]$,

$$
\frac{1}{\boldsymbol{T}} \cdot \sum_{t \in[T]}\left\langle\left\langle_{\boldsymbol{p}}, \vec{m}^{t}\right\rangle \leq \frac{1}{T} \cdot \sum_{t \in[T]} m_{i}^{t}+2 \varepsilon\right.
$$

Theorem: Suppose $\varepsilon \in(0,1]$ and for $t \in[T]$, then Hedge returns a probability distribution where for any expert $i \in[N]$,

$$
\sum_{t \in[T]}\left\langle\vec{p}^{t}, \vec{m}^{t}\right\rangle \leq \sum_{t \in[T]} m_{i}^{t}+\frac{\ln (N)}{\varepsilon}+\varepsilon T
$$

Corollary (Average cost): $\varepsilon \in(0,1], t \in[T], T \geq \frac{4 \ln (N)}{\varepsilon^{2}}$, then Hedge returns a probability distribution where for any expert $i \in[N]$,

$$
\frac{1}{T} \cdot \sum_{t \in[T]}\left\langle\vec{p}^{t}, \vec{m}^{t}\right\rangle \leq \frac{1}{T} \cdot \sum_{t \in[T]} m_{i}^{t}+2 \varepsilon
$$

Multiply by $\frac{1}{T}$ on both sides and set large enough T to

$$
\text { simplify } \frac{\ln (N)}{\varepsilon} \text { term }
$$

Corollary (Average cost): $\varepsilon \in(0,1], t \in[T], T \geq \frac{4 \rho^{2} \ln (N)}{\varepsilon^{2}}, \boldsymbol{m}_{i}^{t} \in[-\boldsymbol{\rho}, \boldsymbol{\rho}]$, then Hedge returns a probability distribution where for any expert $i \in[N]$,

$$
\frac{1}{T} \cdot \sum_{t \in[T]}\left\langle\vec{p}^{t}, \vec{m}^{t}\right\rangle \leq \frac{1}{T} \cdot \sum_{t \in[T]} m_{i}^{t}+2 \varepsilon
$$

ρ^{2} comes from Taylor expansion

Corollary (Average cost): $\varepsilon \in(0,1], t \in[T], T \geq \frac{4 \ln (N)}{\varepsilon^{2}}$, then Hedge returns a probability distribution where for any expert $i \in[N]$,

$$
\frac{1}{T} \cdot \sum_{t \in[T]}\left\langle\vec{p}^{t}, \vec{m}^{t}\right\rangle \leq \frac{1}{T} \cdot \sum_{t \in[T]} m_{i}^{t}+2 \varepsilon
$$

Solving LPs (Approximately) using MWU

- LPs with m constraints of the form

$$
\begin{gathered}
\min c^{\mathrm{T}} x \\
\text { s. t. } A x \geq b \\
x \geq 0
\end{gathered}
$$

Solving LPs (Approximately) using MWU

- LPs with m constraints of the form

$$
\begin{gathered}
\min c^{\mathrm{T}} x \\
\text { s. t. } A x \geq b \\
x \geq 0
\end{gathered}
$$

- Suppose we know $c^{\mathrm{T}} x^{*}=$ OPT using binary search, find an ε approximate solution \tilde{x} s.t.

$$
\begin{gathered}
c^{\mathrm{T}} \tilde{x}=\mathrm{OPT} \\
A \tilde{x} \geq b-\varepsilon \mathbf{1} \\
\tilde{x} \geq 0
\end{gathered}
$$

or output infeasible

Solving LPs (Approximately) using MWU

- Suppose we know $c^{\mathrm{T}} x^{*}=$ OPT using binary search, find an ε approximate solution \tilde{x} s.t.

$$
\begin{gathered}
c^{\mathrm{T}} \tilde{x}=\mathrm{OPT} \\
A \tilde{x} \geq b-\varepsilon \mathbf{1} \\
\tilde{x} \geq 0
\end{gathered}
$$

or output infeasible

- Runtime is $\boldsymbol{O}\left(\frac{\rho^{2} \log m}{\varepsilon^{2}}\right)$ where ρ is the width

Solving LPs (Approximately) using MWU

- Suppose we know $c^{\mathrm{T}} x^{*}=$ OPT using binary search, find an ε approximate solution \tilde{x} s.t.

$$
\begin{gathered}
c^{\mathrm{T}} \tilde{x}=\mathrm{OPT} \\
A \tilde{x} \underset{\sim}{\geq}-\varepsilon \mathbf{1} \\
\tilde{x} \geq 0
\end{gathered}
$$

or output infeasible

- Runtime is $\boldsymbol{O}\left(\frac{\rho^{2} \log m}{\varepsilon^{2}}\right)$ where ρ is the width
- Simple convex region: $K=\left\{x \in \mathbb{R}^{n} \mid x \geq 0, c^{\mathrm{T}} x=O P T\right\}$

Solving LPs (Approximately) using MWU

- Suppose we know $c^{\mathrm{T}} x^{*}=$ OPT using binary search, find an ε approximate solution \tilde{x} s.t.

$$
\begin{gathered}
c^{\mathrm{T}} \tilde{x}=\mathrm{OPT} \\
A \tilde{x} \geq b-\varepsilon \mathbf{1} \\
\tilde{x} \geq 0
\end{gathered}
$$

or output infeasible

- Runtime is $\boldsymbol{O}\left(\frac{\rho^{2} \log m}{\varepsilon^{2}}\right)$ where ρ is the width
- Simple convex region: $K=\left\{x \in \mathbb{R}^{n} \mid x \geq 0, c^{\mathrm{T}} x=O P T\right\}$
- Need to check for feasibility of $\boldsymbol{A} \boldsymbol{x} \geq \boldsymbol{b}$ in K

Solving LPs (Approximately) using MWU

- Simple convex region: $K=\left\{x \in \mathbb{R}^{n} \mid x \geq 0, c^{\mathrm{T}} x=O P T\right\}$
- Need to check for feasibility of $\boldsymbol{A} \boldsymbol{x} \geq \boldsymbol{b}$ in K

Solving LPs (Approximately) using MWU

- Simple convex region: $K=\left\{x \in \mathbb{R}^{n} \mid x \geq 0, c^{\mathrm{T}} x=O P T\right\}$
- Need to check for feasibility of $\boldsymbol{A} x \geq \boldsymbol{b}$ in K
- Assume we have an oracle returns $x \in K$ satisfying following:

Solving LPs (Approximately) using MWU

- Simple convex region: $K=\left\{x \in \mathbb{R}^{n} \mid x \geq 0, c^{\mathrm{T}} x=O P T\right\}$
- Need to check for feasibility of $\boldsymbol{A} \boldsymbol{x} \geq \boldsymbol{b}$ in K
- Assume we have an oracle returns $x \in K$ satisfying following:
- Either $\boldsymbol{w}^{\boldsymbol{t}} \cdot \boldsymbol{A} \boldsymbol{x} \geq \boldsymbol{w}^{\boldsymbol{t}} \cdot \boldsymbol{b}$ for convex combination of constraints using vector \boldsymbol{w}

Solving LPs (Approximately) using MWU

- Simple convex region: $K=\left\{x \in \mathbb{R}^{n} \mid x \geq 0, c^{\mathrm{T}} x=O P T\right\}$
- Need to check for feasibility of $\boldsymbol{A} \boldsymbol{x} \geq \boldsymbol{b}$ in K
- Assume we have an oracle returns $x \in K$ satisfying following:
- Either $\boldsymbol{w}^{\boldsymbol{t}} \cdot \boldsymbol{A} \boldsymbol{x} \geq \boldsymbol{w}^{\boldsymbol{t}} \cdot \boldsymbol{b}$ for convex combination of constraints using vector \boldsymbol{w}
- Or infeasible (no such \boldsymbol{x})

Solving LPs (Approximately) using MWU

- Simple convex region: $K=\left\{x \in \mathbb{R}^{n} \mid x \geq 0, c^{\mathrm{T}} x=O P T\right\}$
- Need to check for feasibility of $\boldsymbol{A} x \geq \boldsymbol{b}$ in K
- Assume we have an oracle returns $x \in K$ satisfying following:
- Either $\boldsymbol{w}^{\boldsymbol{t}} \cdot \boldsymbol{A} \boldsymbol{x} \geq \boldsymbol{w}^{\boldsymbol{t}} \cdot \boldsymbol{b}$ for convex combination of constraints using vector \boldsymbol{w}
- Or infeasible (no such x)
- Using oracle and MWU show:
- For a particular "guess" of OPT using binary search, the solution is feasible or infeasible (and take the smallest feasible "guess")

Solving LPs (Approximately) using MWU

- Each constraint $\alpha^{\mathrm{T}} x \geq \beta$ is an expert
- Total of m experts

Solving LPs (Approximately) using MWU

- Each constraint $\alpha^{\mathrm{T}} x \geq \beta$ is an expert
- Total of m experts
- Another way to look at it:

Solving LPs (Approximately) using MWU

- Each constraint $\alpha^{\mathrm{T}} x \geq \beta$ is an expert
- Total of m experts
- Another way to look at it use oracle, find x using oracle using old weights, then find new weights w :

Solving LPs (Approximately) using MWU

- Each constraint $\alpha^{\mathrm{T}} x \geq \beta$ is an expert
- Total of m experts
- Another way to look at it use oracle, find x using oracle using old weights, then find new weights w :

Theorem: If there were a solution to
$A x \geq b, x \in K$, then there is a solution
to $w^{t} \cdot A x \geq w^{t} \cdot b$. Contrapositive gives infeasibility.

Solving LPs (Approximately) using MWU

- Each constraint $\alpha^{\mathrm{T}} x \geq \beta$ is an expert
- Total of m experts
- Another way to look at it use oracle, find x using oracle using old weights, then find new weights w :

Theorem: If there were a solution to
$A x \geq b, x \in K$, then there is a solution
to $w^{t} \cdot A x \geq w^{t} \cdot b$. Contrapositive gives infeasibility.

Finds a set of non-negative weights certifying infeasibility

Finds an approximate solution certifying

$$
a_{j} \cdot x-b_{j} \geq-\varepsilon
$$

Solving LPs (Approximately) using MWU

$$
\begin{gathered}
c^{\mathrm{T}} \tilde{x}=\mathrm{OPT} \\
A \tilde{x} \geq b-\varepsilon \mathbf{1} \\
\tilde{x} \geq 0
\end{gathered}
$$

- Either:
- Finds a set of non-negative weights certifying infeasibility
- Finds an approximate solution certifying $a_{j} \cdot x-b_{j} \geq-\varepsilon$
- Conditions are not necessarily disjoint

Solving LPs (Approximately) using MWU

$$
\begin{gathered}
c^{\mathrm{T}} \tilde{x}=\mathrm{OPT} \\
A \tilde{x} \geq b-\varepsilon \mathbf{1} \\
\tilde{x} \geq 0
\end{gathered}
$$

- m experts, one per row

Solving LPs (Approximately) using MWU

$$
\begin{gathered}
c^{\mathrm{T}} \tilde{x}=\mathrm{OPT} \\
A \tilde{x} \geq b-\varepsilon \mathbf{1} \\
\tilde{x} \geq 0
\end{gathered}
$$

- m experts, one per row
- weight w_{j}^{t} denotes weight of expert at time $t \in[T]$
- At time $t=1$, all weights are 1

Solving LPs (Approximately) using MWU

$$
\begin{gathered}
c^{\mathrm{T}} \tilde{x}=\mathrm{OPT} \\
A \tilde{x} \geq b-\varepsilon \mathbf{1} \\
\tilde{x} \geq 0
\end{gathered}
$$

- m experts, one per row
- weight w_{j}^{t} denotes weight of expert at time $t \in[T]$
- At time $t=1$, all weights are 1
- Use oracle to solve $w^{t} \cdot \boldsymbol{A} x \geq w^{t} \cdot \boldsymbol{b}$ at each time t

Solving LPs (Approximately) using MWU

$$
\begin{gathered}
c^{\mathrm{T}} \tilde{x}=\mathrm{OPT} \\
A \tilde{x} \geq b-\varepsilon \mathbf{1} \\
\tilde{x} \geq 0
\end{gathered}
$$

- m experts, one per row
- weight w_{j}^{t} denotes weight of expert at time $t \in[T]$
- At time $t=1$, all weights are 1
- Use oracle to solve $w^{t} \cdot A x \geq w^{t} \cdot \boldsymbol{b}$ at each time t
- If no solution, halt and output infeasible

Solving LPs (Approximately) using MWU

$$
\begin{gathered}
c^{\mathrm{T}} \tilde{x}=\mathrm{OPT} \\
A \tilde{x} \geq b-\varepsilon \mathbf{1} \\
\tilde{x} \geq 0
\end{gathered}
$$

- m experts, one per row
- weight w_{j}^{t} denotes weight of expert at time $t \in[T]$
- At time $t=1$, all weights are 1
- Use oracle to solve $\boldsymbol{w}^{t} \cdot \boldsymbol{A} x \geq \boldsymbol{w}^{t} \cdot \boldsymbol{b}$ at each time t
- If no solution, halt and output infeasible
- Otherwise, take solution x^{t} to impose cost $m_{j}^{t}=a_{i} \cdot x^{t}-b_{j}$

Solving LPs (Approximately) using MWU

$$
\begin{gathered}
c^{\mathrm{T}} \tilde{x}=\text { OPT } \\
A \tilde{x} \geq b-\varepsilon \mathbf{1} \\
\tilde{x} \geq 0
\end{gathered}
$$

- Use oracle or solve system at each time t
- If no solution, halt and output infeasible
- Otherwise, take solution x^{t} to impose cost $m_{j}^{t}=a_{i} \cdot x^{t}-b_{j}$
- Why use this cost?

Solving LPs (Approximately) using MWU

$$
\begin{gathered}
c^{\mathrm{T}} \tilde{x}=\text { OPT } \\
A \tilde{x} \geq b-\varepsilon \mathbf{1} \\
\tilde{x} \geq 0
\end{gathered}
$$

- Use oracle or solve system at each time t
- If no solution, halt and output infeasible
- Otherwise, take solution x^{t} to impose cost $m_{j}^{t}=a_{i} \cdot x^{t}-b_{j}$
- Why use this cost?
- Whenever $a_{i} \cdot x^{t}-b_{j}>0$, we have "oversatisfied" the constraint

Solving LPs (Approximately) using MWU

$$
\begin{gathered}
c^{\mathrm{T}} \tilde{x}=\text { OPT } \\
A \tilde{x} \geq b-\varepsilon \mathbf{1} \\
\tilde{x} \geq 0
\end{gathered}
$$

- Use oracle or solve system at each time t
- If no solution, halt and output infeasible
- Otherwise, take solution x^{t} to impose cost $m_{j}^{t}=a_{i} \cdot x^{t}-b_{j}$
- Why use this cost?
- Whenever $a_{i} \cdot x^{t}-b_{j}>0$, we have "oversatisfied" the constraint
- Reduce weight of constraint next round

Solving LPs (Approximately) using MWU

$$
\begin{gathered}
c^{\mathrm{T}} \tilde{x}=\mathrm{OPT} \\
A \tilde{x} \geq b-\varepsilon \mathbf{1} \\
\tilde{x} \geq 0
\end{gathered}
$$

- Use oracle or solve system at each time t
- If no solution, halt and output infeasible
- Otherwise, take solution x^{t} to impose cost $m_{j}^{t}=a_{i} \cdot x^{t}-b_{j}$
- Why use this cost?
- Whenever $a_{i} \cdot x^{t}-b_{j}>0$, we have "oversatisfied" the constraint
- Reduce weight of constraint next round; otherwise, increase

Solving LPs (Approximately) using MWU

$$
\begin{gathered}
c^{\mathrm{T}} \tilde{x}=\mathrm{OPT} \\
A \tilde{x} \geq b-\varepsilon \mathbf{1} \\
\tilde{x} \geq 0
\end{gathered}
$$

- Use oracle or solve system at each time t
- If no solution, halt and output infeasible
- Otherwise, take solution x^{t} to impose cost $m_{j}^{t}=a_{i} \cdot x^{t}-b_{j}$
- Why use this cost?
- Whenever $a_{i} \cdot x^{t}-b_{j}>0$, we have "oversatisfied" the constraint
- Reduce weight of constraint next round; otherwise, increase

Recall Hedge Algorithm

1. Initialize each $w_{i}^{1} \leftarrow 1$ for each $i \in[N]$
2. For each $t \in[T]$:
a) Set $p_{i}^{t} \leftarrow \frac{w_{i}^{t}}{\sum_{j \in[N]} w_{j}^{t}}$
b) Observe the loss vector \vec{m}^{t}
c) For each $i \in[N]$:
i. Set $w_{i}^{t+1} \leftarrow w_{i}^{t} \cdot \exp \left(-\varepsilon \cdot m_{i}^{t}\right)$
$m_{i}^{t}>0$, decrease i^{\prime} s weight; otherwise increase i 's weight

Solving LPs (Approximately) using MWU

$$
\begin{gathered}
c^{\mathrm{T}} \tilde{x}=\text { OPT } \\
A \tilde{x} \geq b-\varepsilon \mathbf{1} \\
\tilde{x} \geq 0
\end{gathered}
$$

- Use oracle or solve system at each time t
- If no solution, halt and output infeasible
- Otherwise, take solution x^{t} to impose cost $m_{j}^{t}=a_{i} \cdot x^{t}-b_{j}$
- Update weights using Hedge algorithm

Solving LPs (Approximately) using MWU

$$
\begin{gathered}
c^{\mathrm{T}} \tilde{x}=\text { OPT } \\
A \tilde{x} \geq b-\varepsilon \mathbf{1} \\
\tilde{x} \geq 0
\end{gathered}
$$

- Use oracle or solve system at each time t
- If no solution, halt and output infeasible
- Otherwise, take solution x^{t} to impose cost $m_{j}^{t}=a_{i} \cdot x^{t}-b_{j}$
- Update weights using Hedge algorithm
- If after T rounds (we'll define T), the solution is non-negative, then return $\bar{x}=\frac{1}{T} \cdot \sum_{t \in[T]} x^{t}$

Solving LPs (Approximately) using MWU

- Runtime and cost?

Solving LPs (Approximately) using MWU

- Runtime and cost?

Corollary (Average cost): $\varepsilon \in(0,1], t \in[T], T \geq \frac{4 \rho^{2} \ln (N)}{\varepsilon^{2}}, m_{i}^{t} \in[-\rho, \rho]$, then Hedge returns a probability distribution where for any expert $i \in[N]$,

$$
\frac{1}{\boldsymbol{T}} \cdot \sum_{t \in[T]}\left\langle\overrightarrow{\boldsymbol{p}}^{t}, \overrightarrow{\boldsymbol{m}}^{t}\right\rangle \leq \frac{1}{\boldsymbol{T}} \cdot \sum_{t \in[\boldsymbol{T}]} \boldsymbol{m}_{i}^{t}+2 \varepsilon
$$

Solving LPs (Approximately) using MWU

- Runtime and cost?

Corollary (Average cost): $\varepsilon \in(0,1], t \in[T], T \geq \frac{4 \rho^{2} \ln (N)}{\varepsilon^{2}}, m_{i}^{t} \in[-\rho, \rho]$, then Hedge returns a probability distribution where for any expert $i \in[N]$,

$$
\frac{1}{\boldsymbol{T}} \cdot \sum_{t \in[T]}\left\langle\overrightarrow{\boldsymbol{p}}^{t}, \overrightarrow{\boldsymbol{m}}^{t}\right\rangle \leq \frac{1}{\boldsymbol{T}} \cdot \sum_{t \in[\boldsymbol{T}]} m_{i}^{t}+2 \varepsilon
$$

- Determine $\rho=\max _{j, x, t}\left\{1,\left|a_{j} \cdot x^{t}-b_{j}\right|\right\}$ (maximum cost at any round)
- Get , $T \geq \frac{4 \rho^{2} \ln (N)}{\varepsilon^{2}}$ using corollary and substitute \vec{w} for \vec{p}

Solving LPs (Approximately) using MWU

- Runtime and cost?

Corollary (Average cost): $\varepsilon \in(0,1], t \in[T], T \geq \frac{4 \rho^{2} \ln (N)}{\varepsilon^{2}}, m_{i}^{t} \in[-\rho, \rho]$, then Hedge returns a probability distribution where for any expert $i \in[N]$,

$$
\frac{1}{T} \cdot \sum_{t \in[T]}\left\langle\vec{p}^{t}, \vec{m}^{t}\right\rangle \leq \frac{1}{T} \cdot \sum_{t \in[T]} m_{i}^{t}+2 \varepsilon
$$

- Get , $T \geq \frac{4 \rho^{2} \ln (N)}{\varepsilon^{2}}$ using corollary and substitute \vec{w} for \vec{p}
$\cdot \frac{1}{T} \cdot \sum_{t \in T} m_{i}^{t}+2 \varepsilon=\frac{1}{T} \cdot \sum_{t \in T}\left(a_{j} \cdot x^{t}-b_{j}\right)+2 \varepsilon=a_{j} \cdot \bar{x}-b_{j}+2 \varepsilon$

Solving LPs (Approximately) using MWU

- Runtime and cost?

Corollary (Average cost): $\varepsilon \in(0,1], t \in[T], T \geq \frac{4 \rho^{2} \ln (N)}{\varepsilon^{2}}, m_{i}^{t} \in[-\rho, \rho]$, then Hedge returns a probability distribution where for anv exnert $i \in[N]$.

$$
\frac{1}{\boldsymbol{T}} \cdot \sum_{t \in[T]}\left\langle\vec{p}^{t}, \vec{m}^{t}\right\rangle \leq \frac{1}{T} \cdot \sum_{t \in[T]} m_{i}^{t}+2
$$

$$
\begin{gathered}
a_{j} \cdot \bar{x}-b_{j}+2 \varepsilon \geq 0 \\
\text { means }
\end{gathered}
$$

$$
a_{j} \cdot \bar{x} \geq b_{j}-2 \varepsilon
$$

- Get , $T \geq \frac{4 \rho^{2} \ln (N)}{\varepsilon^{2}}$ using corollary and substitute \vec{w} for \vec{p}
$\cdot \frac{1}{T} \cdot \sum_{t \in T} m_{i}^{t}+2 \varepsilon=\frac{1}{T} \cdot \sum_{t \in T}\left(a_{j} \cdot x^{t}-b_{j}\right)+2 \varepsilon=a_{j} \cdot \bar{x}-b_{j}+2 \varepsilon$

Last Time...

Solving LPs (Approximately) using MWU

$\min c^{\mathrm{T}} x$
s. t. $A x \geq b$
$x \geq 0$

$$
\begin{gathered}
c^{\mathrm{T}} \tilde{x}=\mathrm{OPT} \\
A \tilde{x} \geq b-\varepsilon \mathbf{1} \\
\tilde{x} \geq 0
\end{gathered}
$$

Solving LPs (Approximately) using MWU

$$
\begin{gathered}
\min c^{\mathrm{T}} x \\
\text { s. t. } A x \geq b \\
\quad x \geq 0
\end{gathered}
$$

Binary Search
for OPT

$$
\begin{gathered}
c^{\mathrm{T}} \tilde{x}=\mathrm{OPT} \\
A \tilde{x} \geq b-\varepsilon \mathbf{1} \\
\tilde{x} \geq 0
\end{gathered}
$$

- Use oracle to solve convex combination $w^{T} A x \geq w^{T} \cdot b$ at each time t where w is weight vector, initially all $1 \&_{m}$

Solving LPs (Approximately) using MWU

$$
\begin{gathered}
\min c^{\mathrm{T}} x \\
\text { s. t. } A x \geq b \\
x \geq 0
\end{gathered}
$$

Binary Search
for OPT

$$
\begin{gathered}
c^{\mathrm{T}} \tilde{x}=\mathrm{OPT} \\
A \tilde{x} \geq b-\varepsilon \mathbf{1} \\
\tilde{x} \geq 0
\end{gathered}
$$

- Use oracle to solve convex combination $w^{\mathrm{T}} A x \geq w^{\mathrm{T}} b$ at each time t where w is weight vector, initially all 15 m

Theorem: If there were a solution to
$A x \geq b, x \in K$, then there is a solution
to $w^{t} \cdot A x \geq w^{t} \cdot b$. Contrapositive gives infeasibility.

Solving LPs (Approximately) using MWU

$$
\begin{array}{c|c|c}
\min c^{\mathrm{T}} x & & c^{\mathrm{T}} \tilde{x}=\text { OPT } \\
\text { s. t. } A x \geq b & \begin{array}{c}
\text { Binary Search } \\
\text { for OPT }
\end{array} & A \tilde{x} \geq b-\varepsilon \mathbf{1} \\
x \geq 0 & & \tilde{x} \geq 0
\end{array}
$$

- Use oracle to solve convex combinatio time t where w is weight vector, initia

Theorem: If there were a solution to
$A x \geq b, x \in K$, then there is a solution
to $w^{t} \cdot A x \geq w^{t} \cdot b$. Contrapositive gives infeasibility.

Finds a set of non-negative weights certifying infeasibility

Finds an approximate solution certifying

$$
a_{j} \cdot x-b_{j} \geq-\varepsilon
$$

Solving LPs (Approximately) using MWU

$$
\begin{gathered}
\min c^{\mathrm{T}} x \\
\text { s. t. } A x \geq b \\
x \geq 0
\end{gathered}
$$

Binary Search
for OPT

$$
\begin{gathered}
c^{\mathrm{T}} \tilde{x}=\mathrm{OPT} \\
A \tilde{x} \geq b-\varepsilon \mathbf{1} \\
\tilde{x} \geq 0
\end{gathered}
$$

- Use oracle to solve convex combination $w^{\mathrm{T}} A x \geq w^{\mathrm{T}} b$ at each time t where w is weight vector, initially all 1s
- If no solution, halt and output infeasible
- Otherwise, take solution x^{t} to impose cost $m_{j}^{t}=a_{i} \cdot x^{t}-b_{j}$

Solving LPs (Approximately) using MWU

$$
\begin{gathered}
\min c^{\mathrm{T}} x \\
\text { s. t. } A x \geq b \\
x \geq 0
\end{gathered}
$$

Binary Search
for OPT

$$
\begin{gathered}
c^{\mathrm{T}} \tilde{x}=\mathrm{OPT} \\
A \tilde{x} \geq b-\varepsilon \mathbf{1} \\
\tilde{x} \geq 0
\end{gathered}
$$

- Use oracle to solve convex combination $w^{\mathrm{T}} A x \geq w^{\mathrm{T}} b$ at each time t where w is weight vector, initially all 1s
- If no solution, halt and output infeasible
- Otherwise, take solution x^{t} to impose cost $m_{j}^{t}=a_{i} \cdot x^{t}-b_{j}$
- Use Hedge algorithm to update

Solving LPs (Approximately) using MWU

- Runtime and cost?

Corollary (Average cost): $\varepsilon \in(0,1], t \in[T], T \geq \frac{4 \rho^{2} \ln (N)}{\varepsilon^{2}}, m_{i}^{t} \in[-\rho, \rho]$, then Hedge returns a probability distribution where for any expert $i \in[N]$,

$$
\frac{1}{\boldsymbol{T}} \cdot \sum_{t \in[T]}\left\langle\overrightarrow{\boldsymbol{p}}^{t}, \overrightarrow{\boldsymbol{m}}^{t}\right\rangle \leq \frac{1}{\boldsymbol{T}} \cdot \sum_{t \in[\boldsymbol{T}]} \boldsymbol{m}_{i}^{t}+2 \varepsilon
$$

- Get $T \geq \frac{4 \rho^{2} \ln (N)}{\varepsilon^{2}}$ using corollary and substitute \vec{w} for \vec{p}

Solving LPs (Approximately) using MWU

- Analysis:
$\cdot \frac{1}{\boldsymbol{T}} \cdot \sum_{\boldsymbol{t} \in[\boldsymbol{T}]}\left\langle\overrightarrow{\boldsymbol{p}}^{\boldsymbol{t}}, \overrightarrow{\boldsymbol{m}}^{\boldsymbol{t}}\right\rangle=\left\langle\overrightarrow{\boldsymbol{p}}^{\boldsymbol{t}}, \boldsymbol{A} \boldsymbol{x}^{\boldsymbol{t}}-\boldsymbol{b}\right\rangle=\boldsymbol{w}^{\mathrm{T}} \boldsymbol{A} x-\boldsymbol{w}^{\mathrm{T}} \cdot \boldsymbol{b} \geq \mathbf{0}$
$\cdot \frac{1}{T} \cdot \sum_{t \in[T]} \boldsymbol{m}_{i}^{t}+2 \boldsymbol{\varepsilon}=\frac{1}{T} \cdot \sum_{t \in T}\left(a_{j} \cdot x^{t}-b_{j}\right)+2 \varepsilon=a_{j} \cdot \bar{x}-b_{j}+2 \varepsilon$
- Putting it together:

$$
\cdot a_{j} \cdot \bar{x}-b_{j}+2 \varepsilon \geq 0
$$

- Satisfies:

$$
\begin{gathered}
c^{\mathrm{T}} \tilde{x}=\text { OPT } \\
A \tilde{x} \geq b-\varepsilon^{\prime} \mathbf{1} \\
\tilde{x} \geq 0
\end{gathered}
$$

Packing and Covering LPs

- Covering LPs:
- If the constraint matrix A is all positive

Packing and Covering LPs

- Covering LPs:
- If the constraint matrix A is all positive, i.e. $A x \geq 1$
- Put enough weight on x to cover every constraint

Packing and Covering LPs

- Covering LPs:
- If for an all positive constraint matrix $A: A x \geq b$
- Put enough weight on x to cover every constraint
- Packing LPs:
- If for an all positive matrix constraint: $A x \leq b$
- Packing as much into x as possible without violating any constraint

Packing and Covering LPs

- Covering LPs:
- If for an all positive constraint matrix $A: A x \geq b$
- Put enough weight on x to cover every constraint
- Packing LPs:
- If for an all positive matrix constraint: $A x \leq b$
- Packing as much into x as possible without violating any constraint
- Packing LPs, just flip the feasibility constraint for the oracle:
- $p^{T} A x \leq p^{T} b$

Example Applications: Densest Subgraph

- Problem Definition:

Densest Subgraph: Given a graph $G=(V, E)$, find a subset of vertices that maximizes $\max _{S \subseteq V}\left(\frac{E(S)}{V(S)}\right)$ the density of the induced subgraph on S.

