
CPSC 768

CPSC 768:
Scalable and Private Graph Algorithms

Quanquan C. Liu
quanquan.liu@yale.edu

Lecture 16, 17, 18: Multiplicative Weight Updates

CPSC 768

Announcements

• Progress reports (2-3 pages) for final project: Due April 5th.
• The final project as well as the 30 min presentation is due on

the last day of class: April 24th.
• Class notes and schedule for the lectures for the rest of the

semester have been posted on the course page
• Check the Course Slack for OPS announcements!

https://quanquancliu.com/cpsc768.html

CPSC 768

Last Time

• Weighted majority algorithm for predicting stock market
• Take the majority opinion from sum of weights of 𝑁	experts
• Decrease weight of experts who were wrong

CPSC 768

Last Time

• Weighted majority algorithm for predicting stock market
• Take the majority opinion from sum of weights of 𝑁 experts
• Decrease weight of experts who were wrong

Theorem: # weighted majority mistakes ≤
2 1 + 𝜀 ⋅ best expert’s # of mistakes + 𝑂 !"# $

%

CPSC 768

Another Stock Market Game

• Each day, more complicated interaction with stock, loss vector
in [−1, 1]

CPSC 768

Another Stock Market Game

• Each day, more complicated interaction with stock, loss vector
in [−1, 1]

• 𝑁 experts have losses 𝒎𝒊
𝒕 for 𝒊 ∈ 𝑵 on day 𝒕 ∈ [𝑻] in [−𝟏, 𝟏]

which means you gain money for negative values and lose
money for positive values

CPSC 768

Another Stock Market Game

• Each day, more complicated interaction with stock, loss vector
in [−1, 1]

• 𝑁 experts have losses 𝒎𝒊
𝒕 for 𝒊 ∈ 𝑵 on day 𝒕 ∈ [𝑻] in [−𝟏, 𝟏]

which means you gain money for negative values and lose
money for positive values

• We come up with a probability distribution 𝒑𝒕 = [𝒑𝟏𝒕 , … , 𝒑𝑵𝒕]
where with probability 𝑝%& we pick expert 𝑖’s opinion to output

CPSC 768

Another Stock Market Game

• Each day, more complicated interaction with stock, loss vector
in [−1, 1]

• 𝑁 experts have losses 𝒎𝒊
𝒕 for 𝒊 ∈ 𝑵 on day 𝒕 ∈ [𝑻] in [−𝟏, 𝟏]

which means you gain money for negative values and lose
money for positive values

• We come up with a probability distribution 𝒑𝒕 = [𝒑𝟏𝒕 , … , 𝒑𝑵𝒕]
where with probability 𝑝%& we pick expert 𝑖’s opinion to output

Loss on day 𝒕: ⟨𝒎𝒕, 𝒑𝒕⟩

CPSC 768

Another Stock Market Game

• Each day, more complicated interaction with stock, loss vector
in [−1, 1]

• 𝑁 experts have losses 𝒎𝒊
𝒕 for 𝒊 ∈ 𝑵 on day 𝒕 ∈ [𝑻] in [−𝟏, 𝟏]

which means you gain money for negative values and lose
money for positive values

• We come up with a probability distribution 𝒑𝒕 = [𝒑𝟏𝒕 , … , 𝒑𝑵𝒕]
where with probability 𝑝%& we pick expert 𝑖’s opinion to output

Expected
LossLoss on day 𝒕: ⟨𝒎𝒕, 𝒑𝒕⟩

CPSC 768

Hedge Algorithm

1. Initialize each 𝑤%' ← 1 for each 𝑖 ∈ [𝑁]

CPSC 768

Hedge Algorithm

1. Initialize each 𝑤%' ← 1 for each 𝑖 ∈ [𝑁]
2. For each 𝑡 ∈ [𝑇]:

CPSC 768

Hedge Algorithm

1. Initialize each 𝑤%' ← 1 for each 𝑖 ∈ [𝑁]
2. For each 𝑡 ∈ [𝑇]:

a) Set 𝑝%& ←
(!
"

∑#∈ % (#
"

CPSC 768

Hedge Algorithm

1. Initialize each 𝑤%' ← 1 for each 𝑖 ∈ [𝑁]
2. For each 𝑡 ∈ [𝑇]:

a) Set 𝑝%& ←
(!
"

∑#∈ % (#
"

b) Observe the loss vector 𝑚&

CPSC 768

Hedge Algorithm

1. Initialize each 𝑤%' ← 1 for each 𝑖 ∈ [𝑁]
2. For each 𝑡 ∈ [𝑇]:

a) Set 𝑝%& ←
(!
"

∑#∈ % (#
"

b) Observe the loss vector 𝑚&

c) For each 𝑖 ∈ 𝑁 :

CPSC 768

Hedge Algorithm

1. Initialize each 𝑤%' ← 1 for each 𝑖 ∈ [𝑁]
2. For each 𝑡 ∈ [𝑇]:

a) Set 𝑝%& ←
(!
"

∑#∈ % (#
"

b) Observe the loss vector 𝑚&

c) For each 𝑖 ∈ 𝑁 :
i. Set 𝑤%&*' ← 𝑤%& ⋅ exp −𝜀 ⋅ 𝑚%

&

CPSC 768

Hedge Algorithm

1. Initialize each 𝑤%' ← 1 for each 𝑖 ∈ [𝑁]
2. For each 𝑡 ∈ [𝑇]:

a) Set 𝑝%& ←
(!
"

∑#∈ % (#
"

b) Observe the loss vector 𝑚&

c) For each 𝑖 ∈ 𝑁 :
i. Set 𝑤%&*' ← 𝑤%& ⋅ exp −𝜀 ⋅ 𝑚%

&
𝑚%
& > 0, decrease 𝑖’s

weight; otherwise
increase 𝑖’s weight

CPSC 768

Show the Expected Loss is Bounded

Theorem: Suppose 𝜀 ∈ 0, 1 and for 𝑡 ∈ [𝑇], then Hedge returns
a probability distribution where for any expert 𝑖 ∈ [𝑁],

A
𝒕∈ 𝑻

⟨𝒑𝒕,𝒎𝒕⟩ ≤ A
𝒕∈ 𝑻

𝒎𝒊
𝒕 +

ln 𝑵
𝜺

+ 𝜺𝑻

CPSC 768

Theorem: Suppose 𝜀 ∈ 0, 1 and for 𝑡 ∈ [𝑇], then Hedge returns
a probability distribution where for any expert 𝑖 ∈ [𝑁],

A
𝒕∈ 𝑻

⟨𝒑𝒕,𝒎𝒕⟩ ≤ A
𝒕∈ 𝑻

𝒎𝒊
𝒕 +

ln 𝑵
𝜺

+ 𝜺𝑻

Proof: Define potential function as before Φ& = ∑%∈ - 𝑤%&

CPSC 768

Theorem: Suppose 𝜀 ∈ 0, 1 and for 𝑡 ∈ [𝑇], then Hedge returns
a probability distribution where for any expert 𝑖 ∈ [𝑁],

A
𝒕∈ 𝑻

⟨𝒑𝒕,𝒎𝒕⟩ ≤ A
𝒕∈ 𝑻

𝒎𝒊
𝒕 +

ln 𝑵
𝜺

+ 𝜺𝑻

Proof: Define potential function as before Φ& = ∑%∈ - 𝑤%&

First note: Φ' = 𝑁 and Φ&*' ≥ 𝑤%&*' = 	exp −𝜀 ⋅ ∑&&.&𝑚%
&&

CPSC 768

Theorem: Suppose 𝜀 ∈ 0, 1 and for 𝑡 ∈ [𝑇], then Hedge returns
a probability distribution where for any expert 𝑖 ∈ [𝑁],

A
𝒕∈ 𝑻

⟨𝒑𝒕,𝒎𝒕⟩ ≤ A
𝒕∈ 𝑻

𝒎𝒊
𝒕 +

ln 𝑵
𝜺

+ 𝜺𝑻

Proof: Define potential function as before Φ& = ∑%∈ - 𝑤%&

First note: Φ' = 𝑁 and Φ&*' ≥ 𝑤%&*' = 	exp −𝜀 ⋅ ∑&&.&𝑚%
&&

Then, Φ&*' = ∑/∈ - 𝑤/&*' = ∑/∈ - 𝑤/& ⋅ exp −𝜀 ⋅ 𝑚/&

CPSC 768

Theorem: Suppose 𝜀 ∈ 0, 1 and for 𝑡 ∈ [𝑇], then Hedge returns
a probability distribution where for any expert 𝑖 ∈ [𝑁],

A
𝒕∈ 𝑻

⟨𝒑𝒕,𝒎𝒕⟩ ≤ A
𝒕∈ 𝑻

𝒎𝒊
𝒕 +

ln 𝑵
𝜺

+ 𝜺𝑻

Proof: Define potential function as before Φ& = ∑%∈ - 𝑤%&

First note: Φ' = 𝑁 and Φ&*' ≥ 𝑤%&*' = 	exp −𝜀 ⋅ ∑&&.&𝑚%
&&

Then, Φ&*' = ∑/∈ - 𝑤/&*' = ∑/∈ - 𝑤/& ⋅ exp −𝜀 ⋅ 𝑚/&

Since by the Taylor series 𝑒0 ≤ 1 + 𝑥 + 𝑥1 for 𝑥 ∈ −1, 1 ,

CPSC 768

Theorem: Suppose 𝜀 ∈ 0, 1 and for 𝑡 ∈ [𝑇], then Hedge returns
a probability distribution where for any expert 𝑖 ∈ [𝑁],

A
𝒕∈ 𝑻

⟨𝒑𝒕,𝒎𝒕⟩ ≤ A
𝒕∈ 𝑻

𝒎𝒊
𝒕 +

ln 𝑵
𝜺

+ 𝜺𝑻

Proof: Define potential function as before Φ& = ∑%∈ - 𝑤%&

First note: Φ' = 𝑁 and Φ&*' ≥ 𝑤%&*' = 	exp −𝜀 ⋅ ∑&&.&𝑚%
&&

Then, Φ&*' = ∑/∈ - 𝑤/&*' = ∑/∈ - 𝑤/& ⋅ exp −𝜀 ⋅ 𝑚/&

Since by the Taylor series 𝑒0 ≤ 1 + 𝑥 + 𝑥1 for 𝑥 ∈ −1, 1 ,

Φ&*' ≤ A
/∈ -

𝑤/& ⋅ 1 − 𝜀 ⋅ 𝑚/& + 𝜀1 𝑚/&
1

CPSC 768

Theorem: Suppose 𝜀 ∈ 0, 1 and for 𝑡 ∈ [𝑇], then Hedge returns
a probability distribution where for any expert 𝑖 ∈ [𝑁],

A
𝒕∈ 𝑻

⟨𝒑𝒕,𝒎𝒕⟩ ≤ A
𝒕∈ 𝑻

𝒎𝒊
𝒕 +

ln 𝑵
𝜺

+ 𝜺𝑻

Proof: Φ!"# ≤ ∑$∈ & 𝑤$! ⋅ 1 − 𝜀 ⋅ 𝑚$! + 𝜀' 𝑚$!
'

≤ ,
$∈ &

𝑤$! ⋅ 1 − 𝜀 ⋅ 𝑚$! + 𝜀'

≤ ,
$∈ &

𝑤$! ⋅ 1 + 𝜀' − ,
$∈ &

𝑤$! ⋅ 𝜀 ⋅ 𝑚$!

≤ Φ! 1 + 𝜀' − ,
$∈ &

Φ! ⋅ 𝑝$! ⋅ 𝑚$!

CPSC 768

Theorem: Suppose 𝜀 ∈ 0, 1 and for 𝑡 ∈ [𝑇], then Hedge returns
a probability distribution where for any expert 𝑖 ∈ [𝑁],

A
𝒕∈ 𝑻

⟨𝒑𝒕,𝒎𝒕⟩ ≤ A
𝒕∈ 𝑻

𝒎𝒊
𝒕 +

ln 𝑵
𝜺

+ 𝜺𝑻

Proof: Φ!"# ≤ ∑$∈ & 𝑤$! ⋅ 1 − 𝜀 ⋅ 𝑚$! + 𝜀' 𝑚$!
'

≤ ,
$∈ &

𝑤$! ⋅ 1 − 𝜀 ⋅ 𝑚$! + 𝜀'

≤ ,
$∈ &

𝑤$! ⋅ 1 + 𝜀' − ,
$∈ &

𝑤$! ⋅ 𝜀 ⋅ 𝑚$!

≤ Φ! 1 + 𝜀' − ,
$∈ &

Φ! ⋅ 𝑝$! ⋅ 𝑚$!

Since 𝒎𝒋
𝒕 𝟐

≤ 𝟏

CPSC 768

Theorem: Suppose 𝜀 ∈ 0, 1 and for 𝑡 ∈ [𝑇], then Hedge returns
a probability distribution where for any expert 𝑖 ∈ [𝑁],

A
𝒕∈ 𝑻

⟨𝒑𝒕,𝒎𝒕⟩ ≤ A
𝒕∈ 𝑻

𝒎𝒊
𝒕 +

ln 𝑵
𝜺

+ 𝜺𝑻

Proof: Φ!"# ≤ ∑$∈ & 𝑤$! ⋅ 1 − 𝜀 ⋅ 𝑚$! + 𝜀' 𝑚$!
'

≤ ,
$∈ &

𝑤$! ⋅ 1 − 𝜀 ⋅ 𝑚$! + 𝜀'

≤ ,
$∈ &

𝑤$! ⋅ 1 + 𝜀' − ,
$∈ &

𝑤$! ⋅ 𝜀 ⋅ 𝑚$!

≤ Φ! 1 + 𝜀' − ,
$∈ &

Φ! ⋅ 𝑝$! ⋅ 𝑚$!

Splitting the
equation

CPSC 768

Theorem: Suppose 𝜀 ∈ 0, 1 and for 𝑡 ∈ [𝑇], then Hedge returns
a probability distribution where for any expert 𝑖 ∈ [𝑁],

A
𝒕∈ 𝑻

⟨𝒑𝒕,𝒎𝒕⟩ ≤ A
𝒕∈ 𝑻

𝒎𝒊
𝒕 +

ln 𝑵
𝜺

+ 𝜺𝑻

Proof: Φ!"# ≤ ∑$∈ & 𝑤$! ⋅ 1 − 𝜀 ⋅ 𝑚$! + 𝜀' 𝑚$!
'

≤ ,
$∈ &

𝑤$! ⋅ 1 − 𝜀 ⋅ 𝑚$! + 𝜀'

≤ ,
$∈ &

𝑤$! ⋅ 1 + 𝜀' − ,
$∈ &

𝑤$! ⋅ 𝜀 ⋅ 𝑚$!

≤ Φ! 1 + 𝜀' − 𝜀 ⋅ ,
$∈ &

Φ! ⋅ 𝑝$! ⋅ 𝑚$! Since we set 𝒑𝒋𝒕 = 𝒘𝒋
𝒕/𝚽𝒕

CPSC 768

Theorem: Suppose 𝜀 ∈ 0, 1 and for 𝑡 ∈ [𝑇], then Hedge returns
a probability distribution where for any expert 𝑖 ∈ [𝑁],

A
𝒕∈ 𝑻

⟨𝒑𝒕,𝒎𝒕⟩ ≤ A
𝒕∈ 𝑻

𝒎𝒊
𝒕 +

ln 𝑵
𝜺

+ 𝜺𝑻

Proof: Φ&*' ≤ Φ& 1 + 𝜀1 − 𝜀 ⋅ ∑/∈ - Φ& ⋅ 𝑝/& ⋅ 𝑚/&

= Φ& ⋅ 1 + 𝜀1 − 𝜀 ⋅ �⃗�& , 𝑚&

≤ Φ& ⋅ exp 𝜀1 − 𝜀 ⋅ �⃗�& , 𝑚&
Dot Product

CPSC 768

Theorem: Suppose 𝜀 ∈ 0, 1 and for 𝑡 ∈ [𝑇], then Hedge returns
a probability distribution where for any expert 𝑖 ∈ [𝑁],

A
𝒕∈ 𝑻

⟨𝒑𝒕,𝒎𝒕⟩ ≤ A
𝒕∈ 𝑻

𝒎𝒊
𝒕 +

ln 𝑵
𝜺

+ 𝜺𝑻

Proof: Φ&*' ≤ Φ& 1 + 𝜀1 − 𝜀 ⋅ ∑/∈ - Φ& ⋅ 𝑝/& ⋅ 𝑚/&

= Φ& ⋅ 1 + 𝜀1 − 𝜀 ⋅ �⃗�& , 𝑚&

≤ Φ& ⋅ exp 𝜀1 − 𝜀 ⋅ �⃗�& , 𝑚&

≤ Φ' ⋅ exp 𝜀1 ⋅ 𝑇 − 𝜀A
&&.&

�⃗�& , 𝑚&

Since 𝟏 + 𝒙 ≤ 𝒆𝒙

CPSC 768

Theorem: Suppose 𝜀 ∈ 0, 1 and for 𝑡 ∈ [𝑇], then Hedge returns
a probability distribution where for any expert 𝑖 ∈ [𝑁],

A
𝒕∈ 𝑻

⟨𝒑𝒕,𝒎𝒕⟩ ≤ A
𝒕∈ 𝑻

𝒎𝒊
𝒕 +

ln 𝑵
𝜺

+ 𝜺𝑻

Proof: Φ&*' ≤ Φ& 1 + 𝜀1 − 𝜀 ⋅ ∑/∈ - Φ& ⋅ 𝑝/& ⋅ 𝑚/&

= Φ& ⋅ 1 + 𝜀1 − 𝜀 ⋅ �⃗�& , 𝑚&

≤ Φ& ⋅ exp 𝜀1 − 𝜀 ⋅ �⃗�& , 𝑚&

≤ Φ' ⋅ exp 𝜀1 ⋅ 𝑇 − 𝜀A
&&.&

�⃗�& , 𝑚&

Substituting
recursively

CPSC 768

Theorem: Suppose 𝜀 ∈ 0, 1 and for 𝑡 ∈ [𝑇], then Hedge returns
a probability distribution where for any expert 𝑖 ∈ [𝑁],

A
𝒕∈ 𝑻

⟨𝒑𝒕,𝒎𝒕⟩ ≤ A
𝒕∈ 𝑻

𝒎𝒊
𝒕 +

ln 𝑵
𝜺

+ 𝜺𝑻

Proof: Combining upper and lower bounds on Φ&*'

exp −𝜀 ⋅ A
&&.&

𝑚%
& ≤ Φ&*' ≤ Φ' ⋅ exp 𝜀1 ⋅ 𝑇 − 𝜀A

&&.&

�⃗�& , 𝑚&

−𝜀 ⋅ A
&&.&

𝑚%
& ≤ ln 𝑁 + 𝜀1 ⋅ 𝑇 − 𝜀A

&&.&

�⃗�& , 𝑚&

Take ln of both
sides

CPSC 768

Theorem: Suppose 𝜀 ∈ 0, 1 and for 𝑡 ∈ [𝑇], then Hedge returns
a probability distribution where for any expert 𝑖 ∈ [𝑁],

A
𝒕∈ 𝑻

⟨𝒑𝒕,𝒎𝒕⟩ ≤ A
𝒕∈ 𝑻

𝒎𝒊
𝒕 +

ln 𝑵
𝜺

+ 𝜺𝑻

Proof: Combining upper and lower bounds on Φ&*'

exp −𝜀 ⋅ A
&&.&

𝑚%
& ≤ Φ&*' ≤ Φ' ⋅ exp 𝜀1 ⋅ 𝑇 − 𝜀A

&&.&

�⃗�& , 𝑚&

−𝜀 ⋅ A
&&.&

𝑚%
& ≤ ln 𝑁 + 𝜀1 ⋅ 𝑇 − 𝜀A

&&.&

�⃗�& , 𝑚&

 ∑&&.& �⃗�& , 𝑚& ≤ 23 -
4

+ 𝜀 ⋅ 𝑇 + ∑&&.&𝑚%
& Rearrange

CPSC 768

Theorem: Suppose 𝜀 ∈ 0, 1 and for 𝑡 ∈ [𝑇], then Hedge returns
a probability distribution where for any expert 𝑖 ∈ [𝑁],

A
𝒕∈ 𝑻

⟨𝒑𝒕,𝒎𝒕⟩ ≤ A
𝒕∈ 𝑻

𝒎𝒊
𝒕 +

ln 𝑵
𝜺

+ 𝜺𝑻

Corollary (Average cost): 𝜀 ∈ 0, 1 , 𝑡 ∈ 𝑇 , 𝑇 ≥ (*+ &
,!

, then Hedge
returns a probability distribution where for any expert 𝑖 ∈ [𝑁],

1
𝑻
⋅ ,
𝒕∈ 𝑻

⟨𝒑𝒕,𝒎𝒕⟩ ≤
𝟏
𝑻
⋅ ,
𝒕∈ 𝑻

𝒎𝒊
𝒕 + 𝟐𝜺

CPSC 768

Theorem: Suppose 𝜀 ∈ 0, 1 and for 𝑡 ∈ [𝑇], then Hedge returns
a probability distribution where for any expert 𝑖 ∈ [𝑁],

A
𝒕∈ 𝑻

⟨𝒑𝒕,𝒎𝒕⟩ ≤ A
𝒕∈ 𝑻

𝒎𝒊
𝒕 +

ln 𝑵
𝜺

+ 𝜺𝑻

Corollary (Average cost): 𝜀 ∈ 0, 1 , 𝑡 ∈ 𝑇 , 𝑇 ≥ (*+ &
,!

, then Hedge
returns a probability distribution where for any expert 𝑖 ∈ [𝑁],

1
𝑻
⋅ ,
𝒕∈ 𝑻

⟨𝒑𝒕,𝒎𝒕⟩ ≤
𝟏
𝑻
⋅ ,
𝒕∈ 𝑻

𝒎𝒊
𝒕 + 𝟐𝜺

Multiply by '
5

 on both sides
and set large enough 𝑇 to

simplify 23 -
4

 term

CPSC 768

Corollary (Average cost): 𝜀 ∈ 0, 1 , 𝑡 ∈ 𝑇 , 𝑇 ≥ (𝝆𝟐*+ &
,!

,𝒎𝒊
𝒕 ∈ [−𝝆, 𝝆], then

Hedge returns a probability distribution where for any expert 𝑖 ∈ [𝑁],
1
𝑻 ⋅ ,

𝒕∈ 𝑻

⟨𝒑𝒕,𝒎𝒕⟩ ≤
𝟏
𝑻 ⋅ ,

𝒕∈ 𝑻

𝒎𝒊
𝒕 + 𝟐𝜺

Corollary (Average cost): 𝜀 ∈ 0, 1 , 𝑡 ∈ 𝑇 , 𝑇 ≥ (*+ &
,!

, then Hedge
returns a probability distribution where for any expert 𝑖 ∈ [𝑁],

1
𝑻
⋅ ,
𝒕∈ 𝑻

⟨𝒑𝒕,𝒎𝒕⟩ ≤
𝟏
𝑻
⋅ ,
𝒕∈ 𝑻

𝒎𝒊
𝒕 + 𝟐𝜺

𝝆𝟐 comes from
Taylor expansion

CPSC 768

Solving LPs (Approximately) using MWU

• LPs with 𝑚 constraints of the form
min	𝑐7𝑥

s. t. 𝐴𝑥 ≥ 𝑏
𝑥 ≥ 0

CPSC 768

Solving LPs (Approximately) using MWU

• LPs with 𝑚 constraints of the form
min	𝑐7𝑥

s. t. 𝐴𝑥 ≥ 𝑏
𝑥 ≥ 0

• Suppose we know 𝑐7𝑥∗ = 	OPT using binary search, find an 𝜀-
approximate solution X𝑥 s.t.

	𝑐7	 X𝑥 = 	OPT
𝐴X𝑥 ≥ 𝑏	 − 𝜀𝟏

X𝑥 ≥ 0
or output infeasible

CPSC 768

Solving LPs (Approximately) using MWU

• Suppose we know 𝑐7𝑥∗ = 	OPT using binary search, find an 𝜀-
approximate solution X𝑥 s.t.

	𝑐7	 X𝑥 = 	OPT
𝐴X𝑥 ≥ 𝑏	 − 𝜀𝟏

X𝑥 ≥ 0
or output infeasible

• Runtime is 𝑶 𝝆𝟐	2;<	𝒎
𝜺𝟐

 where 𝜌 is the width

CPSC 768

Solving LPs (Approximately) using MWU

• Suppose we know 𝑐7𝑥∗ = 	OPT using binary search, find an 𝜀-
approximate solution X𝑥 s.t.

	𝑐7	 X𝑥 = 	OPT
𝐴X𝑥 ≥ 𝑏	 − 𝜀𝟏

X𝑥 ≥ 0
or output infeasible

• Runtime is 𝑶 𝝆𝟐	2;<	𝒎
𝜺𝟐

 where 𝜌 is the width
• Simple convex region: 𝐾 = 𝑥 ∈ ℝ?	 𝑥 ≥ 0, 𝑐7𝑥 = 𝑂𝑃𝑇}

CPSC 768

Solving LPs (Approximately) using MWU

• Suppose we know 𝑐7𝑥∗ = 	OPT using binary search, find an 𝜀-
approximate solution X𝑥 s.t.

	𝑐7	 X𝑥 = 	OPT
𝐴X𝑥 ≥ 𝑏	 − 𝜀𝟏

X𝑥 ≥ 0
or output infeasible

• Runtime is 𝑶 𝝆𝟐	2;<	𝒎
𝜺𝟐

 where 𝜌 is the width
• Simple convex region: 𝐾 = 𝑥 ∈ ℝ?	 𝑥 ≥ 0, 𝑐7𝑥 = 𝑂𝑃𝑇}
• Need to check for feasibility of 𝑨𝑥 ≥ 𝒃 in 𝐾

CPSC 768

Solving LPs (Approximately) using MWU

• Simple convex region: 𝐾 = 𝑥 ∈ ℝ?	 𝑥 ≥ 0, 𝑐7𝑥 = 𝑂𝑃𝑇}
• Need to check for feasibility of 𝑨𝑥 ≥ 𝒃 in 𝐾

CPSC 768

Solving LPs (Approximately) using MWU

• Simple convex region: 𝐾 = 𝑥 ∈ ℝ?	 𝑥 ≥ 0, 𝑐7𝑥 = 𝑂𝑃𝑇}
• Need to check for feasibility of 𝑨𝑥 ≥ 𝒃 in 𝐾
• Assume we have an oracle returns 𝒙 ∈ 𝑲 satisfying following:

CPSC 768

Solving LPs (Approximately) using MWU

• Simple convex region: 𝐾 = 𝑥 ∈ ℝ?	 𝑥 ≥ 0, 𝑐7𝑥 = 𝑂𝑃𝑇}
• Need to check for feasibility of 𝑨𝑥 ≥ 𝒃 in 𝐾
• Assume we have an oracle returns 𝒙 ∈ 𝑲 satisfying following:

• Either 𝒘𝒕 ⋅ 𝑨𝑥 ≥ 𝒘𝒕 ⋅ 𝒃 for convex combination of constraints
using vector 𝒘

CPSC 768

Solving LPs (Approximately) using MWU

• Simple convex region: 𝐾 = 𝑥 ∈ ℝ?	 𝑥 ≥ 0, 𝑐7𝑥 = 𝑂𝑃𝑇}
• Need to check for feasibility of 𝑨𝑥 ≥ 𝒃 in 𝐾
• Assume we have an oracle returns 𝒙 ∈ 𝑲 satisfying following:

• Either 𝒘𝒕 ⋅ 𝑨𝑥 ≥ 𝒘𝒕 ⋅ 𝒃 for convex combination of constraints
using vector 𝒘

• Or infeasible (no such 𝒙)

CPSC 768

Solving LPs (Approximately) using MWU
• Simple convex region: 𝐾 = 𝑥 ∈ ℝ?	 𝑥 ≥ 0, 𝑐7𝑥 = 𝑂𝑃𝑇}
• Need to check for feasibility of 𝑨𝑥 ≥ 𝒃 in 𝐾
• Assume we have an oracle returns 𝒙 ∈ 𝑲 satisfying following:

• Either 𝒘𝒕 ⋅ 𝑨𝑥 ≥ 𝒘𝒕 ⋅ 𝒃 for convex combination of constraints
using vector 𝒘

• Or infeasible (no such 𝒙)
• Using oracle and MWU show:

• For a particular ``guess” of OPT using binary search, the
solution is feasible or infeasible (and take the smallest
feasible ``guess’’)

CPSC 768

Solving LPs (Approximately) using MWU

• Each constraint 𝜶𝐓𝒙 ≥ 𝜷 is an expert
• Total of 𝒎 experts

CPSC 768

Solving LPs (Approximately) using MWU

• Each constraint 𝜶𝐓𝒙 ≥ 𝜷 is an expert
• Total of 𝒎 experts
• Another way to look at it:

CPSC 768

Solving LPs (Approximately) using MWU

• Each constraint 𝜶𝐓𝒙 ≥ 𝜷 is an expert
• Total of 𝒎 experts
• Another way to look at it use oracle, find 𝑥 using oracle using

old weights, then find new weights 𝒘:

CPSC 768

Solving LPs (Approximately) using MWU

• Each constraint 𝜶𝐓𝒙 ≥ 𝜷 is an expert
• Total of 𝒎 experts
• Another way to look at it use oracle, find 𝑥 using oracle using

old weights, then find new weights 𝒘:

Theorem: If there were a solution to
𝑨𝒙 ≥ 𝒃, 𝒙 ∈ 𝑲, then there is a solution

to 𝒘𝒕 ⋅ 𝑨𝑥 ≥ 𝒘𝒕 ⋅ 𝒃. Contrapositive gives
infeasibility.

CPSC 768

Solving LPs (Approximately) using MWU

• Each constraint 𝜶𝐓𝒙 ≥ 𝜷 is an expert
• Total of 𝒎 experts
• Another way to look at it use oracle, find 𝑥 using oracle using

old weights, then find new weights 𝒘:

Theorem: If there were a solution to
𝑨𝒙 ≥ 𝒃, 𝒙 ∈ 𝑲, then there is a solution

to 𝒘𝒕 ⋅ 𝑨𝑥 ≥ 𝒘𝒕 ⋅ 𝒃. Contrapositive gives
infeasibility.

Finds a set of non-negative
weights certifying

infeasibility

Finds an approximate
solution certifying
 𝒂𝒋 ⋅ 𝒙	 − 𝒃𝒋 ≥ −𝜺

CPSC 768

Solving LPs (Approximately) using MWU

𝑐7	 X𝑥 = 	OPT
𝐴X𝑥 ≥ 𝑏	 − 𝜀𝟏

X𝑥 ≥ 0
• Either:

• Finds a set of non-negative weights certifying
infeasibility

• Finds an approximate solution certifying 𝒂𝒋 ⋅ 𝒙	 − 𝒃𝒋 ≥ −𝜺
• Conditions are not necessarily disjoint

CPSC 768

Solving LPs (Approximately) using MWU

𝑐7	 X𝑥 = 	OPT
𝐴X𝑥 ≥ 𝑏	 − 𝜀𝟏

X𝑥 ≥ 0
• 𝑚 experts, one per row

CPSC 768

Solving LPs (Approximately) using MWU

𝑐7	 X𝑥 = 	OPT
𝐴X𝑥 ≥ 𝑏	 − 𝜀𝟏

X𝑥 ≥ 0
• 𝑚 experts, one per row
• weight 𝑤/& denotes weight of expert at time 𝑡 ∈ [𝑇]

• At time 𝑡 = 1, all weights are 1

CPSC 768

Solving LPs (Approximately) using MWU

𝑐7	 X𝑥 = 	OPT
𝐴X𝑥 ≥ 𝑏	 − 𝜀𝟏

X𝑥 ≥ 0
• 𝑚 experts, one per row
• weight 𝑤/& denotes weight of expert at time 𝑡 ∈ [𝑇]

• At time 𝑡 = 1, all weights are 1
• Use oracle to solve 𝒘𝒕 ⋅ 𝑨𝑥 ≥ 𝒘𝒕 ⋅ 𝒃	at each time 𝑡

CPSC 768

Solving LPs (Approximately) using MWU

𝑐7	 X𝑥 = 	OPT
𝐴X𝑥 ≥ 𝑏	 − 𝜀𝟏

X𝑥 ≥ 0
• 𝑚 experts, one per row
• weight 𝑤/& denotes weight of expert at time 𝑡 ∈ [𝑇]

• At time 𝑡 = 1, all weights are 1
• Use oracle to solve 𝒘𝒕 ⋅ 𝑨𝑥 ≥ 𝒘𝒕 ⋅ 𝒃 at each time 𝑡

• If no solution, halt and output infeasible

CPSC 768

Solving LPs (Approximately) using MWU

𝑐7	 X𝑥 = 	OPT
𝐴X𝑥 ≥ 𝑏	 − 𝜀𝟏

X𝑥 ≥ 0
• 𝑚 experts, one per row
• weight 𝑤/& denotes weight of expert at time 𝑡 ∈ [𝑇]

• At time 𝑡 = 1, all weights are 1
• Use oracle to solve 𝒘𝒕 ⋅ 𝑨𝑥 ≥ 𝒘𝒕 ⋅ 𝒃 at each time 𝑡

• If no solution, halt and output infeasible
• Otherwise, take solution 𝑥& to impose cost 𝑚/& = 𝑎% ⋅ 𝑥& − 𝑏/

CPSC 768

Solving LPs (Approximately) using MWU

𝑐7	 X𝑥 = 	OPT
𝐴X𝑥 ≥ 𝑏	 − 𝜀𝟏

X𝑥 ≥ 0
• Use oracle or solve system at each time 𝑡

• If no solution, halt and output infeasible
• Otherwise, take solution 𝑥& to impose cost 𝑚/& = 𝑎% ⋅ 𝑥& − 𝑏/

• Why use this cost?

CPSC 768

Solving LPs (Approximately) using MWU

𝑐7	 X𝑥 = 	OPT
𝐴X𝑥 ≥ 𝑏	 − 𝜀𝟏

X𝑥 ≥ 0
• Use oracle or solve system at each time 𝑡

• If no solution, halt and output infeasible
• Otherwise, take solution 𝑥& to impose cost 𝑚/& = 𝑎% ⋅ 𝑥& − 𝑏/

• Why use this cost?
• Whenever 𝑎% ⋅ 𝑥& − 𝑏/ > 0, we have ``oversatisfied’’ the

constraint

CPSC 768

Solving LPs (Approximately) using MWU

𝑐7	 X𝑥 = 	OPT
𝐴X𝑥 ≥ 𝑏	 − 𝜀𝟏

X𝑥 ≥ 0
• Use oracle or solve system at each time 𝑡

• If no solution, halt and output infeasible
• Otherwise, take solution 𝑥& to impose cost 𝑚/& = 𝑎% ⋅ 𝑥& − 𝑏/

• Why use this cost?
• Whenever 𝑎% ⋅ 𝑥& − 𝑏/ > 0, we have ``oversatisfied’’ the

constraint
• Reduce weight of constraint next round

CPSC 768

Solving LPs (Approximately) using MWU

𝑐7	 X𝑥 = 	OPT
𝐴X𝑥 ≥ 𝑏	 − 𝜀𝟏

X𝑥 ≥ 0
• Use oracle or solve system at each time 𝑡

• If no solution, halt and output infeasible
• Otherwise, take solution 𝑥& to impose cost 𝑚/& = 𝑎% ⋅ 𝑥& − 𝑏/

• Why use this cost?
• Whenever 𝑎% ⋅ 𝑥& − 𝑏/ > 0, we have ``oversatisfied’’ the

constraint
• Reduce weight of constraint next round; otherwise, increase

CPSC 768

Solving LPs (Approximately) using MWU

𝑐7	 X𝑥 = 	OPT
𝐴X𝑥 ≥ 𝑏	 − 𝜀𝟏

X𝑥 ≥ 0
• Use oracle or solve system at each time 𝑡

• If no solution, halt and output infeasible
• Otherwise, take solution 𝑥& to impose cost 𝑚/& = 𝑎% ⋅ 𝑥& − 𝑏/

• Why use this cost?
• Whenever 𝑎% ⋅ 𝑥& − 𝑏/ > 0, we have ``oversatisfied’’ the

constraint
• Reduce weight of constraint next round; otherwise, increase

CPSC 768

Recall Hedge Algorithm

1. Initialize each 𝑤%' ← 1 for each 𝑖 ∈ [𝑁]
2. For each 𝑡 ∈ [𝑇]:

a) Set 𝑝%& ←
(!
"

∑#∈ % (#
"

b) Observe the loss vector 𝑚&

c) For each 𝑖 ∈ 𝑁 :
i. Set 𝑤%&*' ← 𝑤%& ⋅ exp −𝜀 ⋅ 𝑚%

&
𝑚%
& > 0, decrease 𝑖’s

weight; otherwise
increase 𝑖’s weight

CPSC 768

Solving LPs (Approximately) using MWU

𝑐7	 X𝑥 = 	OPT
𝐴X𝑥 ≥ 𝑏	 − 𝜀𝟏

X𝑥 ≥ 0
• Use oracle or solve system at each time 𝑡

• If no solution, halt and output infeasible
• Otherwise, take solution 𝑥& to impose cost 𝑚/& = 𝑎% ⋅ 𝑥& − 𝑏/

• Update weights using Hedge algorithm

CPSC 768

Solving LPs (Approximately) using MWU

𝑐7	 X𝑥 = 	OPT
𝐴X𝑥 ≥ 𝑏	 − 𝜀𝟏

X𝑥 ≥ 0
• Use oracle or solve system at each time 𝑡

• If no solution, halt and output infeasible
• Otherwise, take solution 𝑥& to impose cost 𝑚/& = 𝑎% ⋅ 𝑥& − 𝑏/

• Update weights using Hedge algorithm
• If after 𝑇 rounds (we’ll define 𝑇), the solution is non-negative,

then return 𝑥 = '
5
⋅ ∑&∈ 5 𝑥&

CPSC 768

Solving LPs (Approximately) using MWU

• Runtime and cost?

CPSC 768

Solving LPs (Approximately) using MWU

• Runtime and cost?
Corollary (Average cost): 𝜀 ∈ 0, 1 , 𝑡 ∈ 𝑇 , 𝑇 ≥ (1!*+ &

,!
, 𝑚2

! ∈ [−𝜌, 𝜌], then
Hedge returns a probability distribution where for any expert 𝑖 ∈ [𝑁],

1
𝑻 ⋅ ,

𝒕∈ 𝑻

⟨𝒑𝒕,𝒎𝒕⟩ ≤
𝟏
𝑻 ⋅ ,

𝒕∈ 𝑻

𝒎𝒊
𝒕 + 𝟐𝜺

CPSC 768

Solving LPs (Approximately) using MWU

• Runtime and cost?

• Determine 𝜌 = max
/,0,&

1, 𝑎/ ⋅ 𝑥& 	− 𝑏/ (maximum cost at any round)

• Get , 𝑇 ≥ C	D(23 -
4(

 using corollary and substitute 𝑤 for �⃗�

Corollary (Average cost): 𝜀 ∈ 0, 1 , 𝑡 ∈ 𝑇 , 𝑇 ≥ (1!*+ &
,!

, 𝑚2
! ∈ [−𝜌, 𝜌], then

Hedge returns a probability distribution where for any expert 𝑖 ∈ [𝑁],
1
𝑻 ⋅ ,

𝒕∈ 𝑻

⟨𝒑𝒕,𝒎𝒕⟩ ≤
𝟏
𝑻 ⋅ ,

𝒕∈ 𝑻

𝒎𝒊
𝒕 + 𝟐𝜺

CPSC 768

Solving LPs (Approximately) using MWU

• Runtime and cost?

• Get , 𝑇 ≥ C	D(23 -
4(

 using corollary and substitute 𝑤 for �⃗�

• '
5
⋅ ∑&∈5𝑚%

& + 2𝜀 = '
5
⋅ ∑&∈5 𝑎/ ⋅ 𝑥& 	− 𝑏/ + 2𝜀 = 𝑎/ ⋅ 𝑥 	− 𝑏/ + 2𝜀

Corollary (Average cost): 𝜀 ∈ 0, 1 , 𝑡 ∈ 𝑇 , 𝑇 ≥ (1!*+ &
,!

, 𝑚2
! ∈ [−𝜌, 𝜌], then

Hedge returns a probability distribution where for any expert 𝑖 ∈ [𝑁],
1
𝑻 ⋅ ,

𝒕∈ 𝑻

⟨𝒑𝒕,𝒎𝒕⟩ ≤
𝟏
𝑻 ⋅ ,

𝒕∈ 𝑻

𝒎𝒊
𝒕 + 𝟐𝜺

CPSC 768

Solving LPs (Approximately) using MWU

• Runtime and cost?

• Get , 𝑇 ≥ C	D(23 -
4(

 using corollary and substitute 𝑤 for �⃗�

• '
5
⋅ ∑&∈5𝑚%

& + 2𝜀 = '
5
⋅ ∑&∈5 𝑎/ ⋅ 𝑥& 	− 𝑏/ + 2𝜀 = 𝑎/ ⋅ 𝑥 	− 𝑏/ + 2𝜀

Corollary (Average cost): 𝜀 ∈ 0, 1 , 𝑡 ∈ 𝑇 , 𝑇 ≥ (1!*+ &
,!

, 𝑚2
! ∈ [−𝜌, 𝜌], then

Hedge returns a probability distribution where for any expert 𝑖 ∈ [𝑁],
1
𝑻 ⋅ ,

𝒕∈ 𝑻

⟨𝒑𝒕,𝒎𝒕⟩ ≤
𝟏
𝑻 ⋅ ,

𝒕∈ 𝑻

𝒎𝒊
𝒕 + 𝟐𝜺 𝑎/ ⋅ 𝑥 	− 𝑏/ + 2𝜀 ≥ 0

means
𝑎' ⋅ 𝑥 	≥ 𝑏' − 2𝜀

CPSC 768

Last Time…

CPSC 768

Solving LPs (Approximately) using MWU
min	𝑐(𝑥

s. t. 𝐴𝑥 ≥ 𝑏
𝑥 ≥ 0

𝑐(;𝑥 = 	OPT
𝐴;𝑥 ≥ 𝑏	 − 𝜀𝟏

;𝑥 ≥ 0

Binary Search
for OPT

CPSC 768

Solving LPs (Approximately) using MWU

• Use oracle to solve convex combination 𝒘𝐓𝑨𝑥 ≥ 𝒘𝐓 ⋅ 𝒃 at each
time 𝑡 where 𝒘 is weight vector, initially all 1s

min	𝑐(𝑥
s. t. 𝐴𝑥 ≥ 𝑏
𝑥 ≥ 0

𝑐(;𝑥 = 	OPT
𝐴;𝑥 ≥ 𝑏	 − 𝜀𝟏

;𝑥 ≥ 0

Binary Search
for OPT

CPSC 768

Solving LPs (Approximately) using MWU

• Use oracle to solve convex combination 𝒘𝐓𝑨𝑥 ≥ 𝒘𝐓𝒃 at each
time 𝑡 where 𝒘 is weight vector, initially all 1s

min	𝑐(𝑥
s. t. 𝐴𝑥 ≥ 𝑏
𝑥 ≥ 0

𝑐(;𝑥 = 	OPT
𝐴;𝑥 ≥ 𝑏	 − 𝜀𝟏

;𝑥 ≥ 0

Binary Search
for OPT

Theorem: If there were a solution to
𝑨𝒙 ≥ 𝒃, 𝒙 ∈ 𝑲, then there is a solution

to 𝒘𝒕 ⋅ 𝑨𝑥 ≥ 𝒘𝒕 ⋅ 𝒃. Contrapositive gives
infeasibility.

CPSC 768

Solving LPs (Approximately) using MWU

• Use oracle to solve convex combination 𝒘𝐓𝑨𝑥 ≥ 𝒘𝐓 ⋅ 𝒃 at each
time 𝑡 where 𝒘 is weight vector, initially all 1s

min	𝑐(𝑥
s. t. 𝐴𝑥 ≥ 𝑏
𝑥 ≥ 0

𝑐(;𝑥 = 	OPT
𝐴;𝑥 ≥ 𝑏	 − 𝜀𝟏

;𝑥 ≥ 0

Binary Search
for OPT

Theorem: If there were a solution to
𝑨𝒙 ≥ 𝒃, 𝒙 ∈ 𝑲, then there is a solution

to 𝒘𝒕 ⋅ 𝑨𝑥 ≥ 𝒘𝒕 ⋅ 𝒃. Contrapositive gives
infeasibility.

Finds a set of non-negative
weights certifying

infeasibility

Finds an approximate
solution certifying
 𝒂𝒋 ⋅ 𝒙	 − 𝒃𝒋 ≥ −𝜺

CPSC 768

Solving LPs (Approximately) using MWU

• Use oracle to solve convex combination 𝒘𝐓𝑨𝑥 ≥ 𝒘𝐓𝒃 at each
time 𝑡 where 𝒘 is weight vector, initially all 1s

• If no solution, halt and output infeasible
• Otherwise, take solution 𝑥& to impose cost 𝑚/& = 𝑎% ⋅ 𝑥& − 𝑏/

min	𝑐(𝑥
s. t. 𝐴𝑥 ≥ 𝑏
𝑥 ≥ 0

𝑐(;𝑥 = 	OPT
𝐴;𝑥 ≥ 𝑏	 − 𝜀𝟏

;𝑥 ≥ 0

Binary Search
for OPT

CPSC 768

Solving LPs (Approximately) using MWU

• Use oracle to solve convex combination 𝒘𝐓𝑨𝑥 ≥ 𝒘𝐓𝒃 at each
time 𝑡 where 𝒘 is weight vector, initially all 1s

• If no solution, halt and output infeasible
• Otherwise, take solution 𝑥& to impose cost 𝑚/& = 𝑎% ⋅ 𝑥& − 𝑏/

• Use Hedge algorithm to update

min	𝑐(𝑥
s. t. 𝐴𝑥 ≥ 𝑏
𝑥 ≥ 0

𝑐(;𝑥 = 	OPT
𝐴;𝑥 ≥ 𝑏	 − 𝜀𝟏

;𝑥 ≥ 0

Binary Search
for OPT

CPSC 768

Solving LPs (Approximately) using MWU

• Runtime and cost?

• Get 𝑇 ≥ C	D(23 -
4(

 using corollary and substitute 𝑤 for �⃗�

Corollary (Average cost): 𝜀 ∈ 0, 1 , 𝑡 ∈ 𝑇 , 𝑇 ≥ (1!*+ &
,!

, 𝑚2
! ∈ [−𝜌, 𝜌], then

Hedge returns a probability distribution where for any expert 𝑖 ∈ [𝑁],
1
𝑻 ⋅ ,

𝒕∈ 𝑻

⟨𝒑𝒕,𝒎𝒕⟩ ≤
𝟏
𝑻 ⋅ ,

𝒕∈ 𝑻

𝒎𝒊
𝒕 + 𝟐𝜺

CPSC 768

Solving LPs (Approximately) using MWU

• Analysis:
• '
𝑻
⋅ ∑𝒕∈ 𝑻 ⟨𝒑𝒕,𝒎𝒕⟩ = ⟨𝒑𝒕, 𝑨𝒙𝒕 	− 𝒃⟩ = 𝒘𝐓𝑨𝑥 − 𝒘𝐓 ⋅ 𝒃 ≥ 𝟎

• 𝟏
𝑻
⋅ ∑𝒕∈ 𝑻 𝒎𝒊

𝒕 + 𝟐𝜺 = '
5
⋅ ∑&∈5 𝑎/ ⋅ 𝑥& 	− 𝑏/ + 2𝜀 = 𝑎/ ⋅ 𝑥 	− 𝑏/ + 2𝜀

• Putting it together:
• 𝑎/ ⋅ 𝑥 	− 𝑏/ + 2𝜀 ≥ 0

• Satisfies:
𝑐7	 X𝑥 = 	OPT
𝐴X𝑥 ≥ 𝑏	 − 𝜀E𝟏

X𝑥 ≥ 0

CPSC 768

Packing and Covering LPs

• Covering LPs:
• If the constraint matrix A is all positive

CPSC 768

Packing and Covering LPs

• Covering LPs:
• If the constraint matrix 𝐴 is all positive, i.e. 𝐴𝑥 ≥ 1
• Put enough weight on 𝑥 to cover every constraint

CPSC 768

Packing and Covering LPs

• Covering LPs:
• If for an all positive constraint matrix 𝐴: 𝐴𝑥 ≥ 𝑏
• Put enough weight on 𝑥 to cover every constraint

• Packing LPs:
• If for an all positive matrix constraint: 𝐴𝑥 ≤ 𝑏
• Packing as much into 𝑥 as possible without violating any

constraint

CPSC 768

Packing and Covering LPs

• Covering LPs:
• If for an all positive constraint matrix 𝐴: 𝐴𝑥 ≥ 𝑏
• Put enough weight on 𝑥 to cover every constraint

• Packing LPs:
• If for an all positive matrix constraint: 𝐴𝑥 ≤ 𝑏
• Packing as much into 𝑥 as possible without violating any

constraint
• Packing LPs, just flip the feasibility constraint for the oracle:

• 𝑝5𝐴𝑥 ≤ 𝑝5𝑏

CPSC 768

Example Applications: Densest Subgraph

• Problem Definition:

Densest Subgraph: Given a graph 𝐺 = 𝑉, 𝐸 , find a subset of
vertices that maximizes max

)⊆+

,)
+)

 the density of the induced

subgraph on 𝑆.

