CPSC 768:
Scalable and Private Graph Algorithms

Lecture 16, 17, 18: Multiplicative Weight Updates

Quanquan C. Liu
gquangquan.liu@yale.edu

CPSC 768

Announcements

* Progress reports (2-3 pages) for final project: Due April 5th.

 The final project as well as the 30 min presentation is due on
the last day of class: April 24th.

* Class notes and schedule for the lectures for the rest of the
semester have been posted on the course page

 Check the Course Slack for OPS announcements!

CPSC 768

https://quanquancliu.com/cpsc768.html

Last Time

* Weighted majority algorithm for predicting stock market
« Take the majority opinion from sum of weights of N experts
* Decrease weight of experts who were wrong

CPSC 768

Last Time

* Weighted majority algorithm for predicting stock market
« Take the majority opinion from sum of weights of N experts
* Decrease weight of experts who were wrong

Theorem: # weighted majority mistakes <
2(1 + €) - best expert’s # of mistakes + O (log(’v))

&

CPSC 768

Another Stock Market Game

« Each day, more complicated interaction with stock, loss vector
in [—1,1]

CPSC 768

Another Stock Market Game

« Each day, more complicated interaction with stock, loss vector
in [—1,1]

N experts have losses m; fori € [N|onday t € [T]in [—1,1]
which means you gain money for negative values and lose
money for positive values

CPSC 768

Another Stock Market Game

« Each day, more complicated interaction with stock, loss vector
in [—1,1]
N experts have losses m; fori € [N|onday t € [T]in [—1,1]

which means you gain money for negative values and lose
money for positive values

- We come up with a probability distribution p* = [p5, ..., p}/]
where with probability p; we pick expert i’s opinion to output

CPSC 768

Another Stock Market Game

« Each day, more complicated interaction with stock, loss vector
in [—1,1]
N experts have losses m; fori € [N|onday t € [T]in [—1,1]

which means you gain money for negative values and lose
money for positive values

- We come up with a probability distribution p* = [p5, ..., p}/]
where with probability p; we pick expert i’s opinion to output

Loss on day t: (m?, p*)

CPSC 768

Another Stock Market Game

« Each day, more complicated interaction with stock, loss vector

in [—1,1]

N experts have losses m; fori € [N|onday t € [T]in [—1,1]
which means you gain money for negative values and lose

money for positive values

» We come up with a probability distribution p* = [p}, ..., p4]

where with probability p; we pick expert i’s opinion

Loss on day t: (m!, pt)

CPSC 768

Expected
Loss

Hedge Algorithm

1. Initialize each w}' « 1 for each i € [N]

CPSC 768

Hedge Algorithm

1. Initialize each w}' « 1 for each i € [N]
2. Foreacht € [T]:

CPSC 768

Hedge Algorithm

1. Initialize each w}' « 1 for each i € [N]
2. Foreacht € [T]:

t
Wi

a) Setp! «

t
2je[N) Vj

CPSC 768

Hedge Algorithm

1. Initialize each w}' « 1 for each i € [N]
2. Foreacht € [T]:

wl

l
% jen1 W
b) Observe the loss vector m*

a) Setp! «

CPSC 768

Hedge Algorithm

1. Initialize each w}' « 1 for each i € [N]
2. Foreacht € [T]:

w{

t
2je[N] V]
b) Observe the loss vector m*

c) Foreachi € |N]:

a) Setp! «

CPSC 768

Hedge Algorithm

1. Initialize each w}' « 1 for each i € [N]
2. Foreacht € [T]:

wl

% jen1 W
b) Observe the loss vector m*
c) Foreachi € |N]:

.. Setw/*! « wf-exp(—e-m})

a) Setp! «

CPSC 768

Hedge Algorithm

1. Initialize each w}' « 1 for each i € [N]
2. Foreacht € [T]:

t

a) Setp! « —
) Setp % jen1 W
b) Observe the loss vector m*
c) Foreachi € [N]: m; > 0, decrease i’s
.. Setw/*! « wf-exp(—e-m}) weight; otherwise

increase i’'s weight

CPSC 768

Show the Expected Loss is Bounded

Theorem: Suppose ¢ € (0,1] and for t € [T], then Hedge returns
a probability distribution where for any experti € [N],

L In(N)
Z(pt,mt)s Zm§+ . + €T
te(T] te(T]

CPSC 768

Theorem: Suppose € € (0,1] and for t € [T], then Hedge returns
a probability distribution where for any experti € [N],

Z(pt,mt) < z m! + . + T
te|T] te(|T]
t

Proof: Define potential function as before ®* = ¥,y w;

CPSC 768

Theorem: Suppose € € (0,1] and for t € [T], then Hedge returns
a probability distribution where for any experti € [N],

Z(pt,mt) < z m! + . + T
te|T] te(|T]
t

Proof: Define potential function as before ®* = ¥,y w;

l

First note: ®! = N and ®**! > w;/™" = exp (—e : Zt,stmf’)

CPSC 768

Theorem: Suppose € € (0,1] and for t € [T], then Hedge returns
a probability distribution where for any experti € [N],

Z(pt,mt) < z m! + . + T
te|T] te(|T]
t

Proof: Define potential function as before ®* = ¥,y w;

l
First note: ®! = N and ®**! > w;/™" = exp (—e : Zt,stmf’)

Then, @1 =3 ywj " = X e wj - exp(—e - mj)

CPSC 768

Theorem: Suppose € € (0,1] and for t € [T], then Hedge returns
a probability distribution where for any experti € [N],

Z(pt,mt) < z m! + . + T
te|T] te(|T]
t

Proof: Define potential function as before ®* = ¥,y w;

First note: ®! = N and ®**! > w;/™" = exp (—e : Zt,stmf’)

Then, @1 =3 ywj " = X e wj - exp(—e - mj)

Since by the Taylor series e* <1 + x + x° for x € [—1, 1],

CPSC 768

Theorem: Suppose € € (0,1] and for t € [T], then Hedge returns
a probability distribution where for any experti € [N],

Z(pt,mt) < z m! + . + T
te|T] te(|T]
t

Proof: Define potential function as before ®* = ¥,y w;

First note: ®! = N and ®**! > w;/™" = exp (—e : Zt,stmf’)

Then, @1 =3 ywj " = X e wj - exp(—e - mj)

Since by the Taylor series e* <1 + x + x° for x € [—1, 1],

it < z th : (1 — € m]’-: + ez(m]?)z)
JEIN]

Theorem: Suppose € € (0,1] and for t € [T], then Hedge returns
a probability distribution where for any experti € [N],

Z(pt,mt)s Zm§+ . + T
te|T] te(|T]

Proof: P+l < Y e th . (1 o m]’? + gZ(m]?)Z)

CPSC 768

Theorem: Suppose € € (0,1] and for t € [T], then Hedge returns
a probability distribution where for any experti € [N],

z (pt,m') < z m! +ln(N) + €T

Proof: L A (1 —&-m; + ez(m’?)z)

z wi - (1—¢e-mj + €?) since (m!)” <1
JEIN]

CPSC 768

Theorem: Suppose € € (0,1] and for t € [T], then Hedge returns
a probability distribution where for any experti € [N],

z (pt,m') < z m! +ln(N) + €T

Proof: P+l < Y e th . (1 = m]’? + gZ(m]?)Z)
Z wi - (1—¢e-mj + €?)
JE[N]

Z W (1 + &%) — z W ? Splitting the

CPSC 768

Theorem: Suppose € € (0,1] and for t € [T], then Hedge returns
a probability distribution where for any experti € [N],

Z @t mt) < z m! +ln(N) + T

2
Proof: (Dt+1 < Z]E[N] th . (1 — & m]t -+ gZ(mf))
Z wi - (1—¢e-mj + €?)
JE[N]
Z W (1 + &%) — z W
jEIN] JEIN]

< PH(1+e%)—¢- Z L pj 'mj Sincewesetp; = W;/q)t
JEIN]

CPSC 768

Theorem: Suppose € € (0,1] and for t € [T], then Hedge returns
a probability distribution where for any experti € [N],

Z(pt,mt)s Zm§+ . + T
te|T] te(|T]

Proof: O < PI(1+e2) — g X @F M)
= Pt . ((1 +e%)—¢- (Pt,mt» Dot Product

CPSC 768

Theorem: Suppose € € (0,1] and for t € [T], then Hedge returns
a probability distribution where for any experti € [N],

Z (p',m") < Z m! +ln(N) + €T

Proof: O < @1 +6%) — e Xy @F - pj - My
= &t - ((1+€2) — e - (pt, m"))
< ®t - exp(e? — ¢ - (pt, mt)) Since 1 + x < e*

CPSC 768

Theorem: Suppose € € (0,1] and for t € [T], then Hedge returns
a probability distribution where for any experti € [N],

Z(pt,mt)s Zm§+ . + T
te|T] te(|T]

Proof: O < PI(1+e2) — g X @F M)
= ¢t . ((1 + &%) —¢- (ﬁt,ﬁit»
< (I)t . exp(gz — & (ﬁt; 77{1:))

S CI)l . exp (82 . T — & z<ﬁt’ T?lt>> SUbStltUtlng

recursivel
t'<t y

CPSC 768

Theorem: Suppose € € (0,1] and for t € [T], then Hedge returns
a probability distribution where for any experti € [N],

In(N
N @ < mi4 D g ey
te(T] te[T]
Proof: Combining upper and lower bounds on ¢t**

exp (—e : z mf) < Pt < ot -exp (82 -T—¢ Z(ﬁt,ﬁit))

t'<t t'<t

—c . z mlt < ln(N) +e2.T—¢ z@w,mt) Take In of both

sides

t'st t'<t

CPSC 768

Theorem: Suppose € € (0,1] and for t € [T], then Hedge returns
a probability distribution where for any experti € [N],

In(N
N @ < mi4 D g ey
te(T] te[T]
Proof: Combining upper and lower bounds on ¢t**

exp (—e : z mf) < Pt < ot -exp (82 -T—¢ Z(ﬁt,ﬁit))

t'<t t'<t

—c - z m! <In(N)+¢&%-T — eZ(ﬁt,ﬁit)

t'<t t'<t

In(N)
I3

Y {pt,mt) < +e-T+ Qg m! Rearrange

CPSC 768

Theorem: Suppose € € (0,1] and for t € [T], then Hedge returns
a probability distribution where for any experti € [N],

z (pt,m') < z m! +ln(N) + €T

Corollary (Average cost): ¢ € (0,1],t € [T, T = 4 In(v)

returns a probability distribution where for any expert i € [N],

= Z(_’t _’t)<— Z m! + 2¢
te|T]

, then Hedge

CPSC 768

Theorem: Suppose € € (0,1] and for t € [T], then Hedge returns
a probability distribution where for any experti € [N],

z (pt,m') < z m! +ln(N) + €T

Corollary (Average cost): ¢ € (0,1],t € [T, T = 4 In(v)

returns a probability distribution where for any expert i € [N],

= Z(_’t_’t)<— Zm + 2¢

Multiply by on both sides

, then Hedge

and set Iarge enough T to
ln(N)

simplify term

CPSC 768

4 p%*In(N)
f——,mj € [-p, p], then

Hedge returns a probability distribution where for any expert i € [N],

Z(_’t_’t)<— Zm + 2¢

te[T] p* comes from
Taylor expansion

Corollary (Average cost): e € (0,1],t € [T], T =

Corollary (Average cost): ¢ € (0,1],t € [T],T = 4 In(v)

returns a probability distribution where for any expert i € [N],

, then Hedge

CPSC 768

Solving LPs (Approximately) using MWU

* LPs with m constraints of the form

min ¢’ x

Ss.t. Ax > b
x =0

CPSC 768

Solving LPs (Approximately) using MWU

* LPs with m constraints of the form

min ¢’ x

Ss.t. Ax > b
x =0

« Suppose we know ¢ x* = OPT using binary search, find an &-
approximate solution ¥ s.t.

or output infeasible

CPSC 768

Solving LPs (Approximately) using MWU

« Suppose we know ¢ x* = OPT using binary search, find an -
approximate solution ¥ s.t.

or output infeasible

logm

2
» Runtime is 0 (p >

) where p is the width

CPSC 768

Solving LPs (Approximately) using MWU

« Suppose we know ¢ x* = OPT using binary search, find an -
approximate solution ¥ s.t.

or output infeasible

logm
2

2

- Runtime is O (p

» Simple convex region: K = {x e R" | x > 0,c'x = OPT?}

) where p is the width

CPSC 768

Solving LPs (Approximately) using MWU

« Suppose we know ¢ x* = OPT using binary search, find an -
approximate solution ¥ s.t.

or output infeasible

logm
2

2

- Runtime is O (p

» Simple convex region: K = {x e R" | x > 0,c'x = OPT?}
* Need to check for feasibility of Ax = b in K

) where p is the width

CPSC 768

Solving LPs (Approximately) using MWU

» Simple convex region: K = {x e R" | x > 0,c'x = OPT}
* Need to check for feasibility of Ax > b in K

CPSC 768

Solving LPs (Approximately) using MWU

» Simple convex region: K = {x e R" | x > 0,c'x = OPT}
* Need to check for feasibility of Ax = b in K
* Assume we have an oracle returns x € K satisfying following:

CPSC 768

Solving LPs (Approximately) using MWU

» Simple convex region: K = {x e R" | x > 0,c'x = OPT}
* Need to check for feasibility of Ax > b in K

* Assume we have an oracle returns x € K satisfying following:

« Either w! - Ax > w! - b for convex combination of constraints
using vector w

CPSC 768

Solving LPs (Approximately) using MWU

» Simple convex region: K = {x e R" | x > 0,c'x = OPT}
* Need to check for feasibility of Ax > b in K

* Assume we have an oracle returns x € K satisfying following:

« Either w! - Ax > w! - b for convex combination of constraints
using vector w

 Or infeasible (no such x)

CPSC 768

Solving LPs (Approximately) using MWU

» Simple convex region: K = {x € R" | x > 0,c'x = OPT}
* Need to check for feasibility of Ax > b in K

* Assume we have an oracle returns x € K satisfying following:

« Either wt - Ax > w! - b for convex combination of constraints
using vector w

 Or infeasible (no such x)

* Using oracle and MWU show:

* For a particular "guess”™ of OPT using binary search, the
solution is feasible or infeasible (and take the smallest
feasible ~'guess’)

CPSC 768

Solving LPs (Approximately) using MWU

 Each constraint a’x > g is an expert
 Total of m experts

CPSC 768

Solving LPs (Approximately) using MWU

 Each constraint a’x > g is an expert
 Total of m experts
* Another way to look at it:

CPSC 768

Solving LPs (Approximately) using MWU

 Each constraint a’x > g is an expert

 Total of m experts

« Another way to look at it use oracle, find x using oracle using
old weights, then find new weights w:

CPSC 768

Solving LPs (Approximately) using MWU

 Each constraint a’x > g is an expert

 Total of m experts

« Another way to look at it use oracle, find x using oracle using
old weights, then find new weights w:

Theorem: If there were a solution to
Ax = b, x € K, then there is a solution
to wt - Ax > w' - b. Contrapositive gives
infeasibility.

CPSC 768

Solving LPs (Approximately) using MWU

 Each constraint a’x > g is an expert
 Total of m experts

« Another way to look at it use oracle, find x using oracle using

old weights, then find new weights w:

Theorem: If there were a solution to
Ax = b, x € K, then there is a solution
to wt - Ax > w' - b. Contrapositive gives
infeasibility.

CPSC 768

Finds a set of non-negative
weights certifying
infeasibility

Finds an approximate
solution certifying

a; - x —bjz—s

Solving LPs (Approximately) using MWU

¢t ¥ = OPT
Ax =2 b — ¢l
Xx=0
* Either:
* Finds a set of non-negative weights certifying
infeasibility

* Finds an approximate solution certifying a; - x —b; = —¢

« Conditions are not necessarily disjoint

CPSC 768

Solving LPs (Approximately) using MWU

* m experts, one per row

CPSC 768

Solving LPs (Approximately) using MWU

* m experts, one per row

* weight th denotes weight of expert at time t € [T]
 Attime t = 1, all weights are 1

CPSC 768

Solving LPs (Approximately) using MWU

* m experts, one per row

* weight th denotes weight of expert at time t € [T]
 Attime t = 1, all weights are 1

« Use oracle to solve wt - Ax > w' - b at each time t

CPSC 768

Solving LPs (Approximately) using MWU

* m experts, one per row

* weight th denotes weight of expert at time t € [T]
 Attime t = 1, all weights are 1

« Use oracle to solve wt - Ax > w! - b at each time t
* [f no solution, halt and output infeasible

CPSC 768

Solving LPs (Approximately) using MWU

* m experts, one per row
* weight th denotes weight of expert at time t € [T]
 Attime t = 1, all weights are 1

« Use oracle to solve w' - Ax > w' - b at each time ¢
* [f no solution, halt and output infeasible
» Otherwise, take solution x* to impose cost m; = a; - x* — b;

CPSC 768

Solving LPs (Approximately) using MWU

» Use oracle or solve system at each time ¢t
* [f no solution, halt and output infeasible

» Otherwise, take solution x* to impose cost m; = a; - x* — b;

 Why use this cost?

CPSC 768

Solving LPs (Approximately) using MWU

» Use oracle or solve system at each time ¢t
* [f no solution, halt and output infeasible

» Otherwise, take solution x* to impose cost m; = a; - x* — b;

 Why use this cost?

» Whenever q; - x* — b; > 0, we have ““oversatisfied” the
constraint

CPSC 768

Solving LPs (Approximately) using MWU

» Use oracle or solve system at each time ¢t
* [f no solution, halt and output infeasible

» Otherwise, take solution x* to impose cost m; = a; - x* — b;

 Why use this cost?

» Whenever q; - x* — b; > 0, we have ““oversatisfied” the
constraint

* Reduce weight of constraint next round

CPSC 768

Solving LPs (Approximately) using MWU

» Use oracle or solve system at each time ¢t
* [f no solution, halt and output infeasible

» Otherwise, take solution x* to impose cost m; = a; - x* — b;

 Why use this cost?

» Whenever q; - x* — b; > 0, we have ““oversatisfied” the
constraint

* Reduce weight of constraint next round; otherwise, increase

CPSC 768 : //

Solving LPs (Approximately) using MWU

» Use oracle or solve system at each time ¢t
* [f no solution, halt and output infeasible

» Otherwise, take solution x* to impose cost m; = a; - x* — b;

 Why use this cost?

» Whenever q; - x* — b; > 0, we have ““oversatisfied” the
constraint

* Reduce weight of constraint next round; otherwise, increase

CPSC 768 : //

Recall Hedge Algorithm

1. Initialize each w}' « 1 for each i € [N]
2. Foreacht € [T]:

t

a) Setp! « —
) Setp % jen1 W
b) Observe the loss vector m*
c) Foreachi € [N]: m; > 0, decrease i’s
.. Setw/*! « wf-exp(—e-m}) weight; otherwise

increase i’'s weight

CPSC 768

Solving LPs (Approximately) using MWU

» Use oracle or solve system at each time ¢t
* [f no solution, halt and output infeasible

» Otherwise, take solution x* to impose cost m; = a; - x* — b;

* Update weights using Hedge algorithm

CPSC 768

Solving LPs (Approximately) using MWU

» Use oracle or solve system at each time ¢t
* [f no solution, halt and output infeasible

» Otherwise, take solution x* to impose cost m; = a; - x* — b;

* Update weights using Hedge algorithm

o |f after T rounds (we’ll define T), the solution is non-negative,
then return x = —- Ve X°
T

CPSC 768

Solving LPs (Approximately) using MWU

 Runtime and cost?

CPSC 768

Solving LPs (Approximately) using MWU

* Runtime and cost?

4 p%In(N)
82

Hedge returns a probability distribution where for any expert i € [N],

1 Ep——— t
T Z(p,m)sf' Z m; + 2¢
te[T] te[T]

Corollary (Average cost): ¢ € (0,1],t € [T], T = ,m; € [—p, p], then

CPSC 768

Solving LPs (Approximately) using MWU

* Runtime and cost?

4 p%In(N)
82

Hedge returns a probability distribution where for any expert i € [N],

1 Ep——— t
T Z(p,m)sf' Z m; + 2¢
te[T] te[T]

Corollary (Average cost): ¢ € (0,1],t € [T], T = ,m; € [—p, p], then

» Determine p = maic{l, la; - x* — b;|} (maximum cost at any round)
.],x)

4 p?In(N)
* Get, T = .

using corollary and substitute w for p

E

CPSC 768 | S

Solving LPs (Approximately) using MWU

* Runtime and cost?

4 p%In(N)
82

Hedge returns a probability distribution where for any expert i € [N],

1 Ep——— t
T Z(p,m)sf' Z m; + 2¢
te[T] te[T]

Corollary (Average cost): ¢ € (0,1],t € [T], T = ,m; € [—p, p], then

p?In(N)
82

- Get,T == using corollary and substitute w for p

1 1 _
°;-ZtETmf+Ze=;-ZtET(aj~xt —bj)+2e=a;-X —b; + 2¢

CPSC 768

Solving LPs (Approximately) using MWU

* Runtime and cost?

4 p%In(N)
82

Hedge returns a probability distribution where for anv exnert i € [N1

1 s 1 . % — b,
Tz<pt’mt>sfsz+2 a] X b]+2€20
te[T] te[T] __means

Corollary (Average cost): ¢ € (0,1],t € [T], T = ,m; € [—p, p], then

p?In(N)
82

- Get,T == using corollary and substitute w for p

1 1 _
°;-ZtETmf+Ze=;-ZtET(aj~xt —bj)+2e=a;-X —b; + 2¢

CPSC 768

Last Time...

Solving LPs (Approximately) using MWU

min ¢l x cl % = OPT
s.t. Ax > b sinary Search Ax > b — el
x =0 x =0

CPSC 768

Solving LPs (Approximately) using MWU

min ¢l x cl % = OPT
s.t. Ax > b sinary Search Ax > b — el
x =0 x =0

« Use oracle to solve convex combination w'4x > w' - b at each
time t where w is weight vector, initially all 1€

CPSC 768

Solving LPs (Approximately) using MWU

min ¢l x cl % = OPT
s.t. Ax > b sinary Search Ax > b — el
x =0 x =0

« Use oracle to solve convex combination w'4Ax > w'b at each
time ¢t where w is weight vector, initially all 45w

Theorem: If there were a solution to
Ax = b, x € K, then there is a solution
tow! - Ax > w' - b. Contrapositive gives
infeasibility.

CPSC 768

Solving LPs (Approximately) using MWU

min ¢l x cl ¥ = OPT
s.t. Ax > b sinary Search Ax > b — el
x =0 x =0

e Use oracle to solve convex combinatio

time t where w is weight vector, initia Pl & 0 el

weights certifying
Theorem: If there were a solution to infeasibility
Ax = b, x € K, then there is a solution Finds an approximate
tow! - Ax > w' - b. Contrapositive gives solution certifying
infeasibility. aj-x —bj=-¢

CPSC 768

Solving LPs (Approximately) using MWU

min ¢l x cl % = OPT
s.t. Ax > b sinary Search Ax > b — el
x =0 x =0

» Use oracle to solve convex combination w'4x > w'b at each
time t where w is weight vector, initially all 1s

* [f no solution, halt and output infeasible

» Otherwise, take solution x* to impose cost m; = a; - x* — b;

CPSC 768

Solving LPs (Approximately) using MWU

min ¢l x cl % = OPT
s.t. Ax > b sinary Search Ax > b — el
x =0 x =0

» Use oracle to solve convex combination w'4x > w'b at each
time t where w is weight vector, initially all 1s

* [f no solution, halt and output infeasible

» Otherwise, take solution x* to impose cost m; = a; - x* — b;

* Use Hedge algorithm to update

CPSC 768

Solving LPs (Approximately) using MWU

* Runtime and cost?

4 p%In(N)
82

Hedge returns a probability distribution where for any expert i € [N],

1 Ep——— t
T Z(p,m)sf' Z m; + 2¢
te[T] te[T]

Corollary (Average cost): ¢ € (0,1],t € [T], T = ,m; € [—p, p], then

p?In(N)
82

- GetT > = using corollary and substitute w for p

CPSC 768

Solving LPs (Approximately) using MWU

* Analysis:
¢ = Vyerr (P Y = (B, Axt — by =wTAx —w"-b =0
°%~Ztemmf+2£=%-2tg(aj -xt —bj)+2e=a;-X —b; + 2¢
* Putting it together:
*aj-x —bj+2e =0
» Satisfies:

CPSC 768

Packing and Covering LPs

* Covering LPs:
* |[f the constraint matrix A is all positive

CPSC 768

Packing and Covering LPs

* Covering LPs:
* |[f the constraint matrix A is all positive, i.e. Ax > 1
* Put enough weight on x to cover every constraint

CPSC 768

Packing and Covering LPs

* Covering LPs:
* |f for an all positive constraint matrix A: Ax = b
* Put enough weight on x to cover every constraint

* Packing LPs:
* |f for an all positive matrix constraint: Ax < b

* Packing as much into x as possible without violating any
constraint

CPSC 768

Packing and Covering LPs

* Covering LPs:
* |f for an all positive constraint matrix A: Ax = b
* Put enough weight on x to cover every constraint

* Packing LPs:
* |f for an all positive matrix constraint: Ax < b
* Packing as much into x as possible without violating any
constraint
« Packing LPs, just flip the feasibility constraint for the oracle:
«pTAx < p'h

CPSC 768

Example Applications: Densest Subgraph

* Problem Definition:

Densest Subgraph: Given a graph ¢ = (V, E), find a subset of

vertices that maximizes max (@) the density of the induced
scv \V(S)

subgraph on S.

CPSC 768

