CPSC 768: Scalable and Private Graph Algorithms

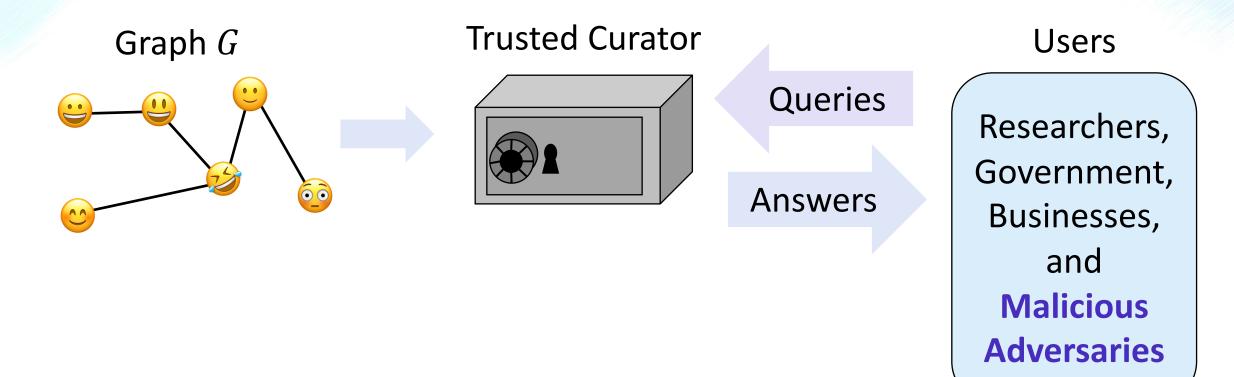
Lecture 11 and 12: Differential Privacy Tools and Graphs

Quanquan C. Liu quanquan.liu@yale.edu

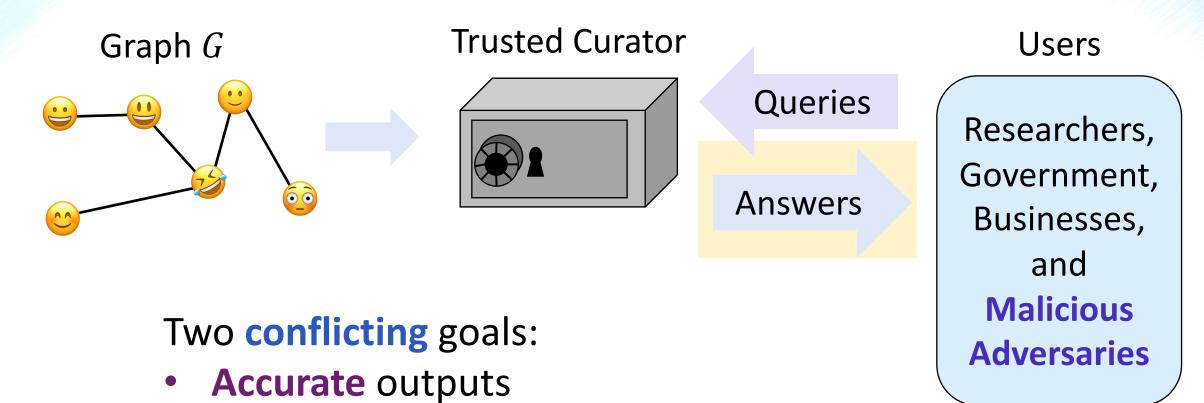
Announcements

- Check the latest announcement on Canvas:
 - Scheduling Lectures survey: due Feb. 26
 - Final Project Proposal: due Feb. 29, one page
 - Final Project Examples
- Open problem sessions:
 - Link for joining CPSC 768 Slack
 - Open Problem Session food orders

Private Analysis of Graph Data

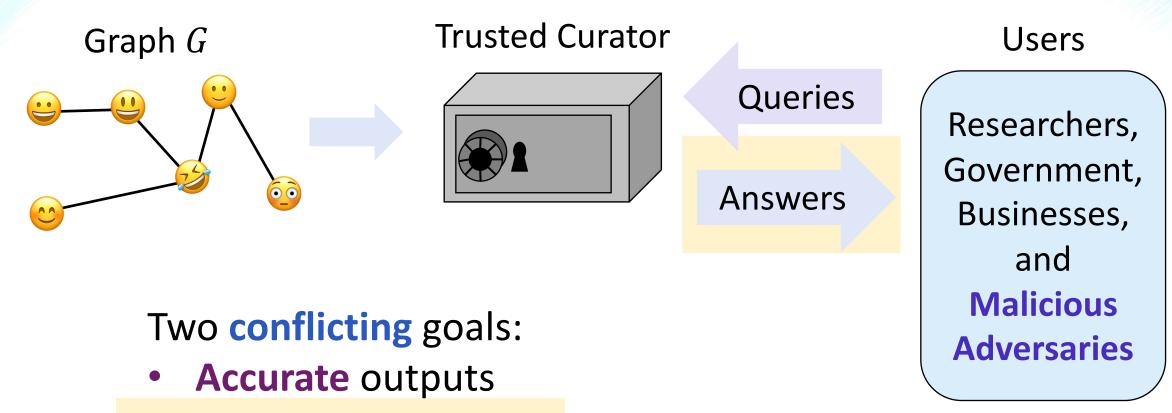


Private Analysis of Graph Data



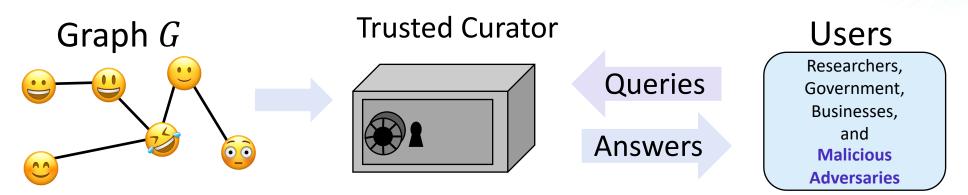
• Data privacy

Private Analysis of Graph Data



CPSC 768

• Data privacy



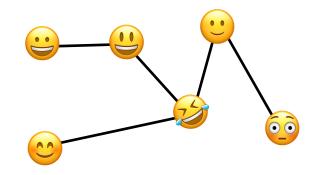
• Neighboring inputs differ in some information we'd like to hide

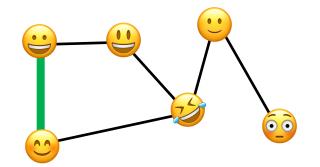
Differential Privacy [Dwork-McSherry-Nissim-Smith '06]

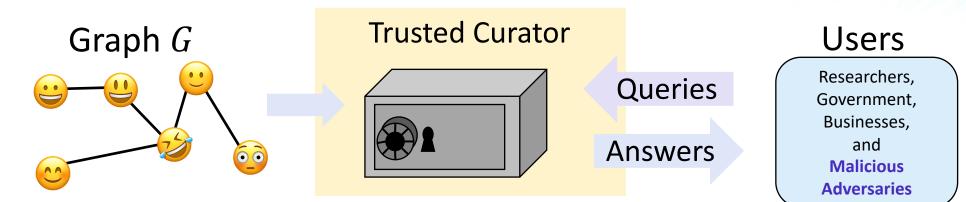
An algorithm \mathcal{A} is ε -differentially private if for all pairs of neighbors Gand G' and all sets of possible outputs S: $\Pr[\mathcal{A}(G) \in S] \leq e^{\varepsilon} \cdot \Pr[\mathcal{A}(G') \in S].$

Edge-Neighboring Graphs

• Edge-neighboring graphs: differ in one edge



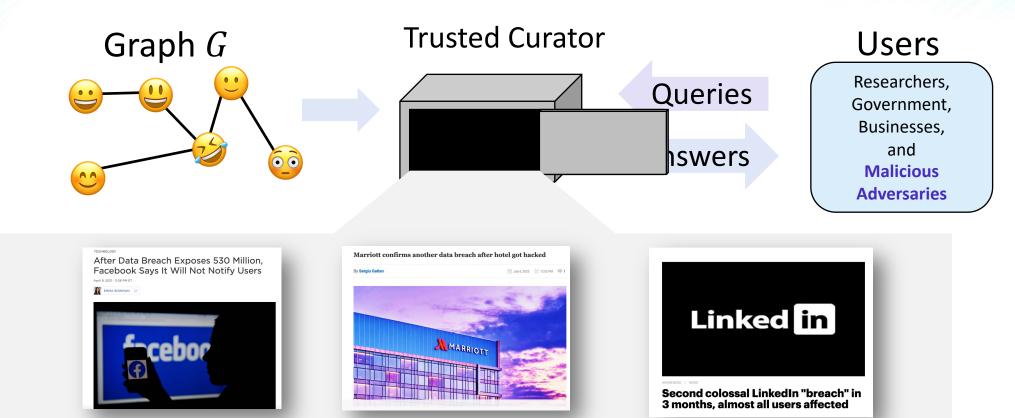




Edge-neighboring graphs: differ in one edge

Differential Privacy [Dwork-McSherry-Nissim-Smith '06]

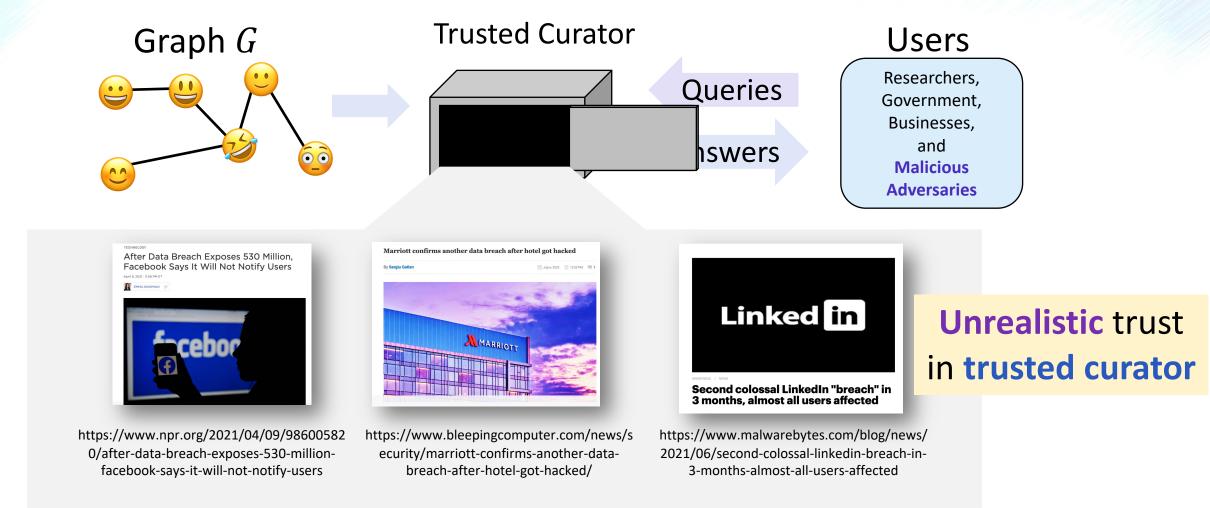
An algorithm \mathcal{A} is ε -differentially private if for all pairs of neighbors Gand G' and all sets of possible outputs S: $\Pr[\mathcal{A}(G) \in S] \leq e^{\varepsilon} \cdot \Pr[\mathcal{A}(G') \in S].$

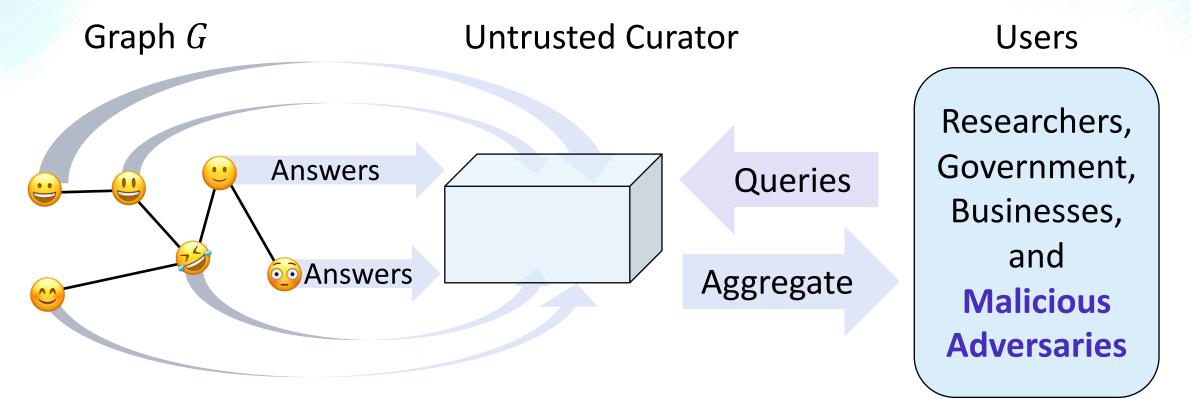


https://www.npr.org/2021/04/09/98600582 0/after-data-breach-exposes-530-millionfacebook-says-it-will-not-notify-users

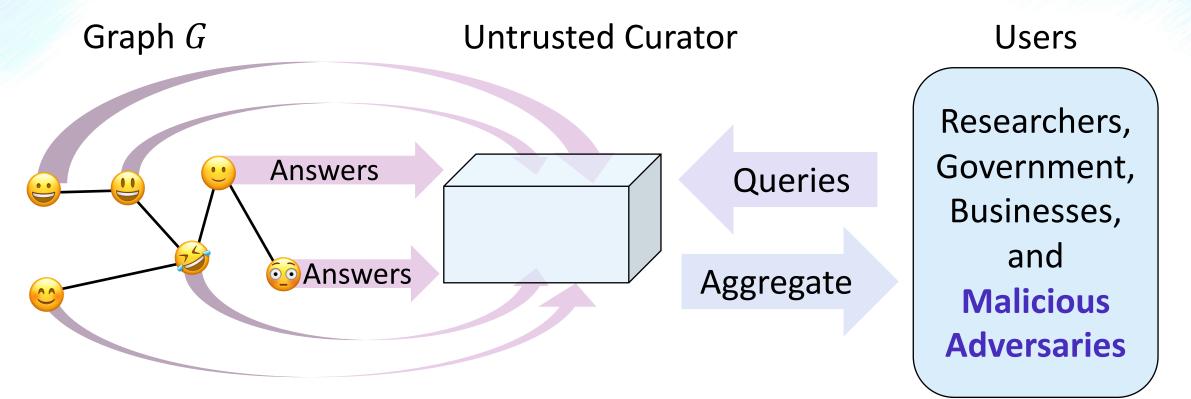
https://www.bleepingcomputer.com/news/s ecurity/marriott-confirms-another-databreach-after-hotel-got-hacked/

https://www.malwarebytes.com/blog/news/ 2021/06/second-colossal-linkedin-breach-in-3-months-almost-all-users-affected

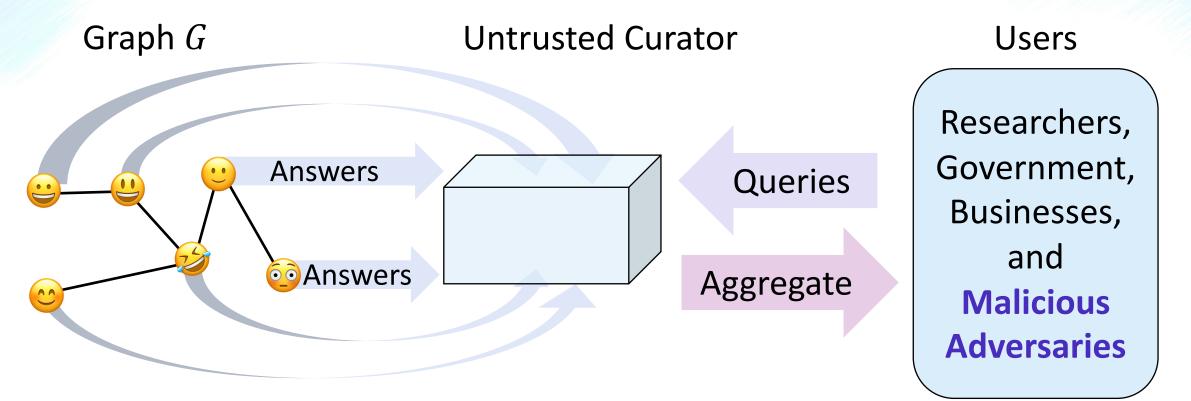




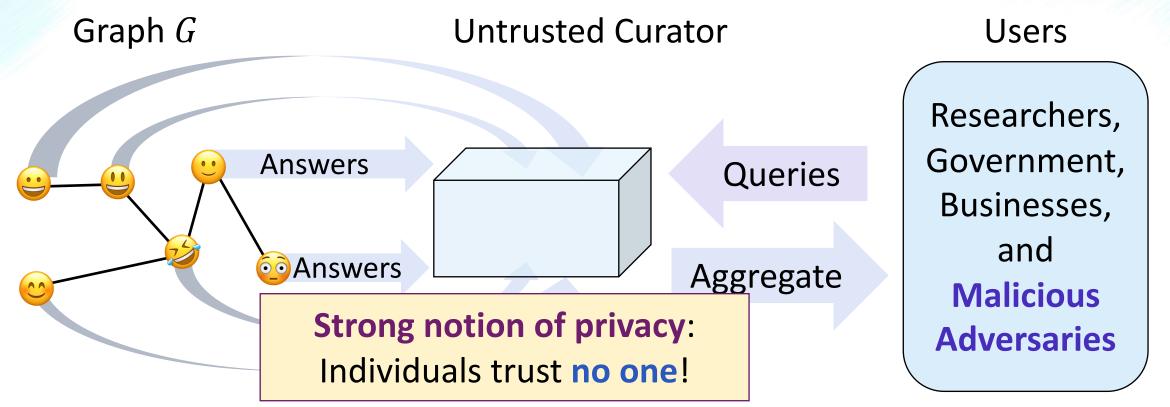
- Each node publishes privatized output
- Curator computes aggregated statistics using outputs



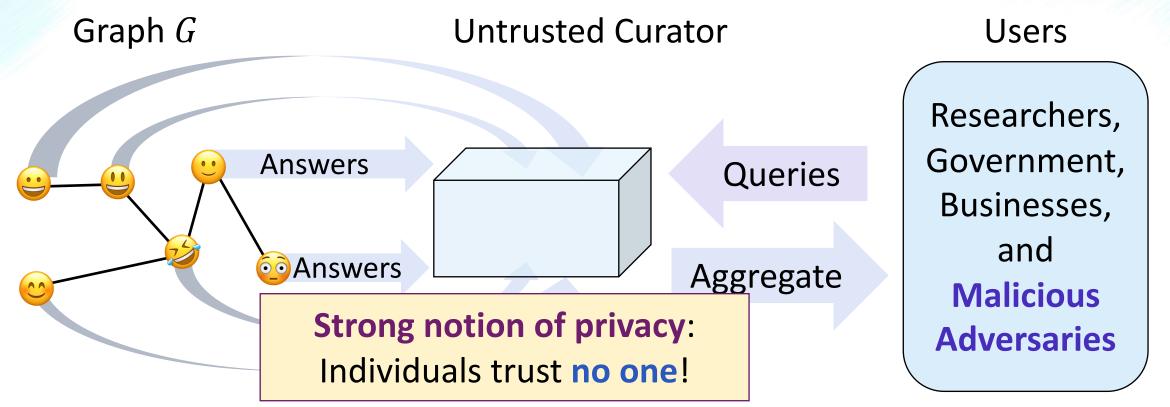
- Each node publishes privatized output
- Curator computes aggregated statistics using outputs



- Each node publishes privatized output
- Curator computes aggregated statistics using outputs



- Each node publishes privatized output
- Curator computes aggregated statistics using outputs

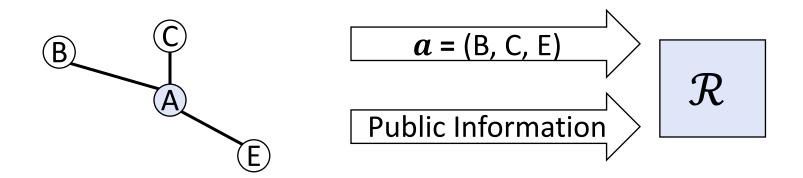


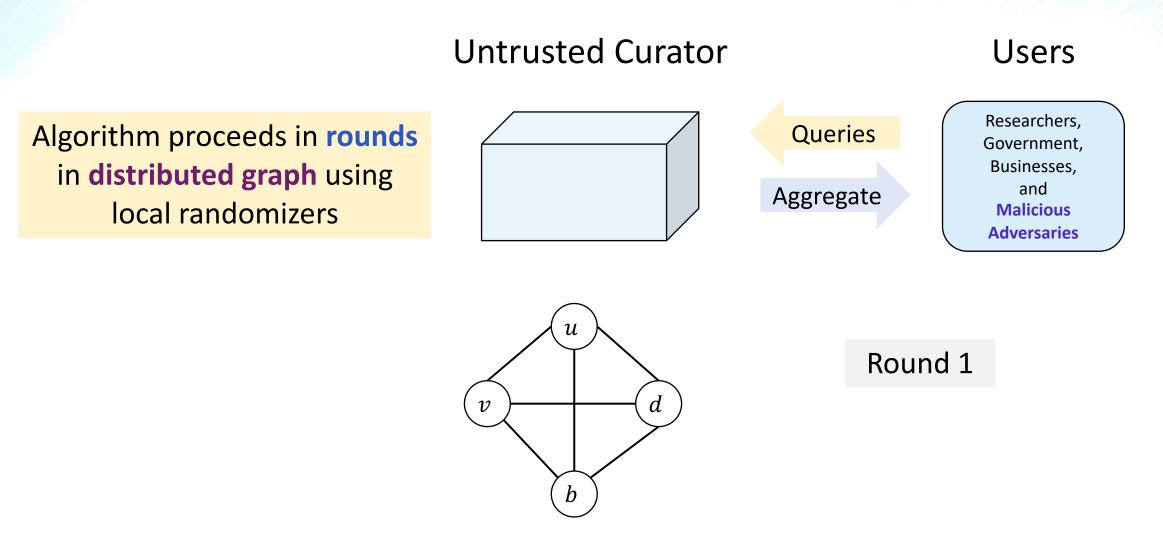
- Each node publishes privatized output
- Curator computes aggregated statistics using outputs

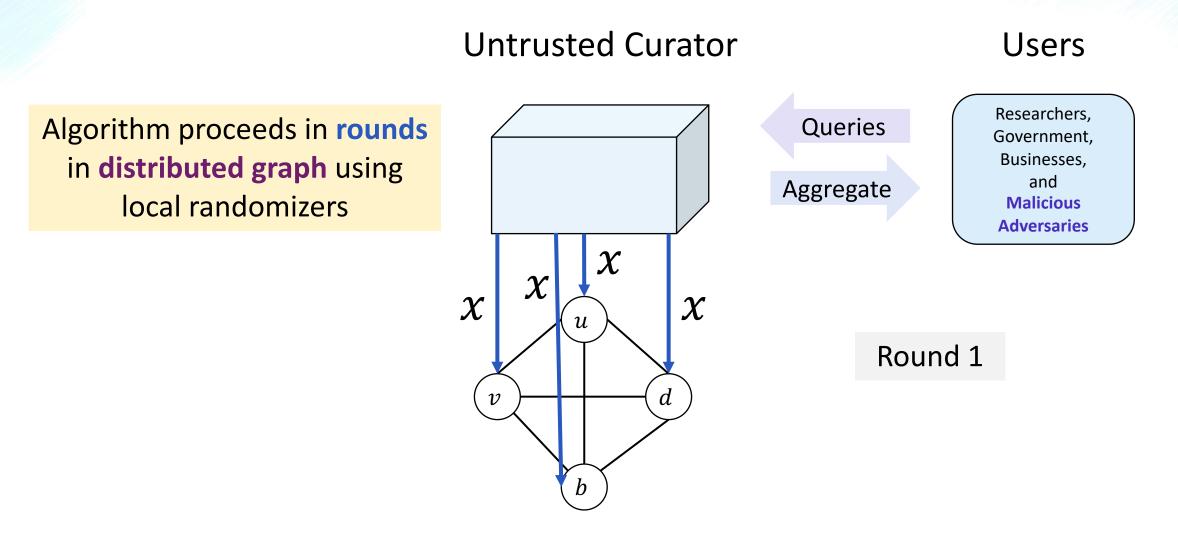
Local Randomizer

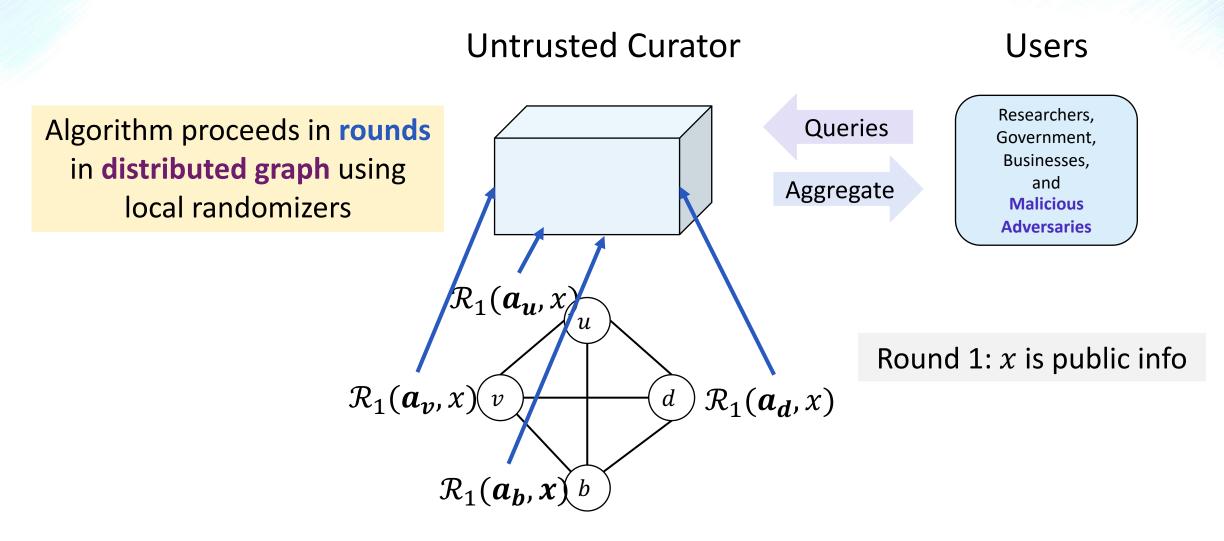
[Adapted from Kasiviswanathan-Lee-Nissim-Raskhodnikova-Smith '11]

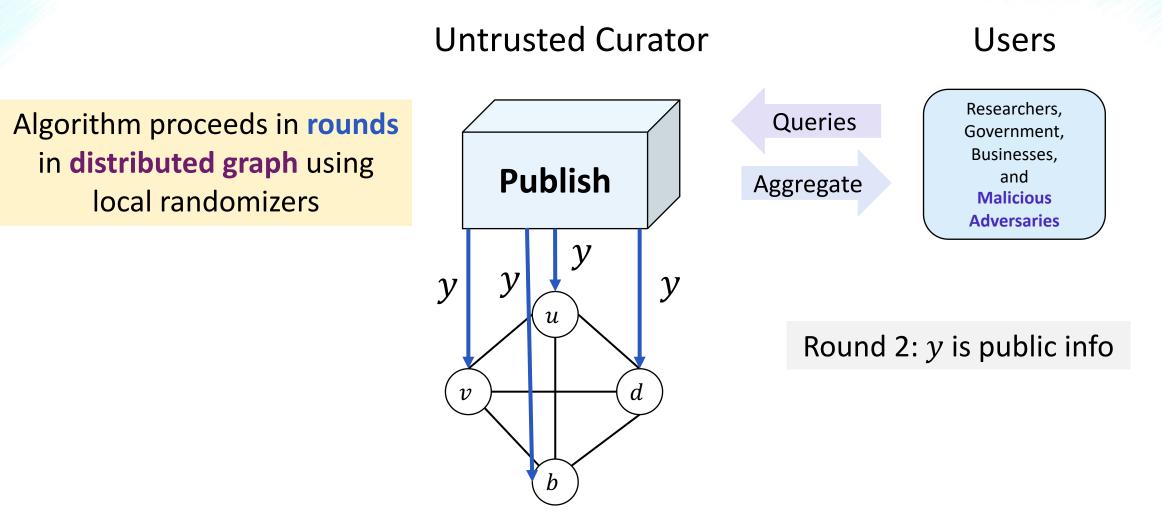
An ε -local randomizer \mathcal{R} is an ε -differentially private algorithm that takes as input an adjacency list a and public information.

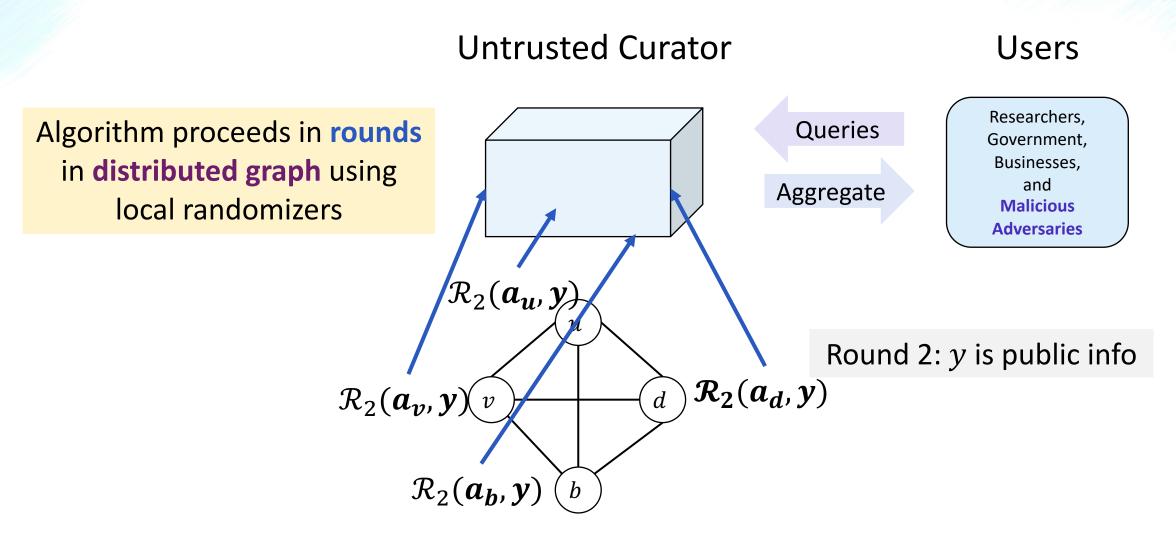


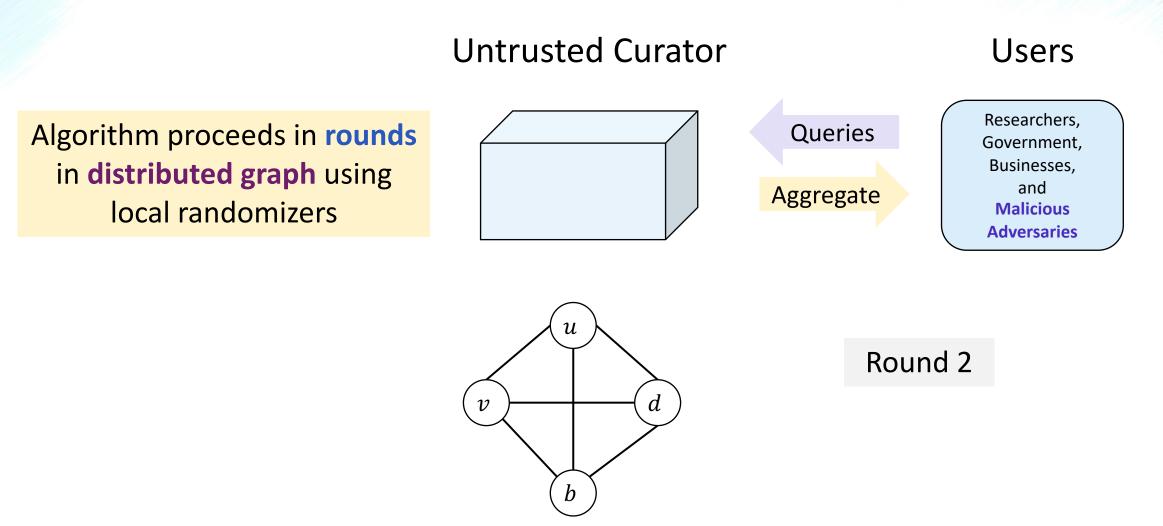


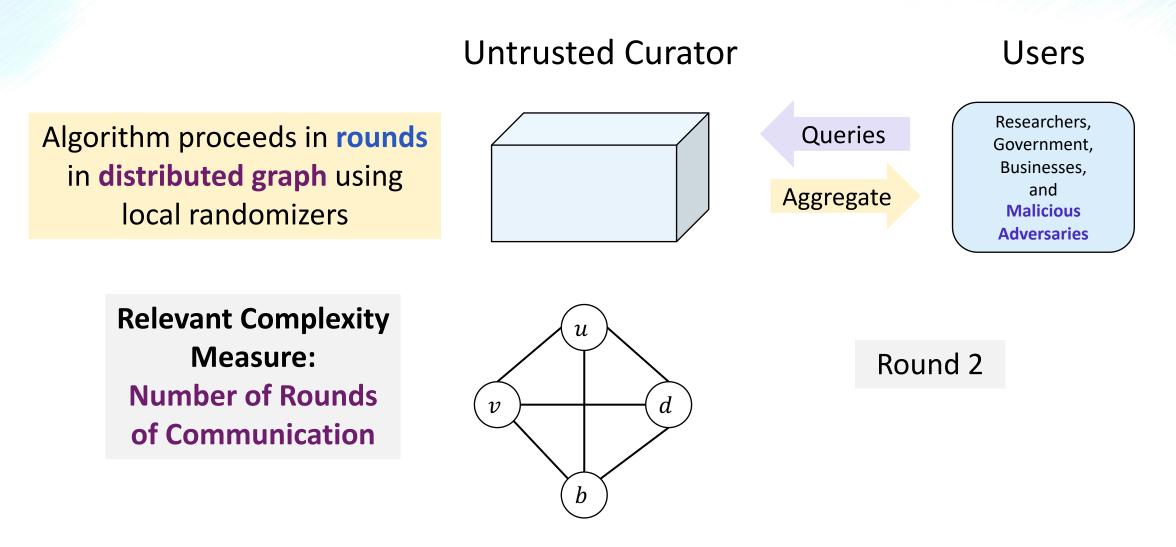










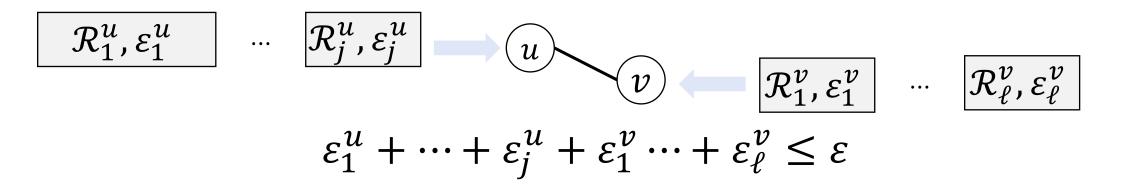


Local Edge Differential Privacy

[DLRSSY '22 Adapted from Kasiviswanathan-Lee-Nissim-Raskhodnikova-Smith '11]

Let algorithm \mathcal{A} use (potentially different) local randomizers $\mathcal{R}_1^u, \ldots, \mathcal{R}_j^u$ and $\mathcal{R}_1^v, \ldots, \mathcal{R}_\ell^v$ on nodes u, v with privacy parameters $\varepsilon_1^u, \ldots, \varepsilon_j^u$ and $\varepsilon_1^v, \ldots, \varepsilon_\ell^v$.

 \mathcal{A} is ε -local edge differentially private (ε -LEDP) if for every edge {u, v}, $\varepsilon_1^u + \dots + \varepsilon_j^u + \varepsilon_1^v \dots + \varepsilon_\ell^v \leq \varepsilon$.



Related Work

- Local edge differentially private algorithms:
 - Relatively new direction
 - *k*-Core Decomposition, Densest Subgraphs, Low Out-degree Ordering: [Dhulipala-Liu-Raskhodnikova-Shi-Shun-Yu '22, Dinitz-Kale-Lattanzi-Vassilvitskii '23, Dhulipala-Li-Liu '23]
 - Triangle and other subgraph counting: [Imola-Murakami-Chaudhuri '21, '22; Eden-Liu-Raskhodnikova-Smith '23]
 - Other graph problems in empirical settings in "decentralized" privacy models [Sun-Xiao-Khalil-Yang-Qin-Wang-Yu '19; Qin-Yu-Yang-Khalil-Xiao-Ren '17; Gao-Li-Chen-Zou '18; Ye-Hu-Au-Meng-Xiao '20]

• Given an input set of bits $X_1, ..., X_n \in \{0, 1\}$ for each individual (i.e. has COVID)

- Given an input set of bits $X_1, ..., X_n \in \{0, 1\}$ for each individual (i.e. has COVID)
- Randomly report the same bit or flipped bit:

•
$$Y_i = \begin{cases} X_i & \text{w. p. } \frac{1}{2} + \varepsilon \\ 1 - X_i & \text{w. p. } \frac{1}{2} - \varepsilon \end{cases}$$

- Given an input set of bits $X_1, ..., X_n \in \{0, 1\}$ for each individual (i.e. has COVID)
- Randomly report the same bit or flipped bit:

•
$$Y_i = \begin{cases} X_i & \text{w.p. } \frac{1}{2} + \varepsilon \\ 1 - X_i & \text{w.p. } \frac{1}{2} - \varepsilon \end{cases}$$

• Sum of Y_i bits: $O\left(\frac{\sqrt{n}}{\varepsilon}\right)$ error but locally private

- Given an input set of bits $X_1, ..., X_n \in \{0, 1\}$ for each individual (i.e. has COVID)
- Randomly report the same bit or flipped bit:

•
$$Y_i = \begin{cases} X_i & \text{w.p. }\frac{1}{2} + \varepsilon \\ 1 - X_i & \text{w.p. }\frac{1}{2} - \varepsilon \end{cases}$$

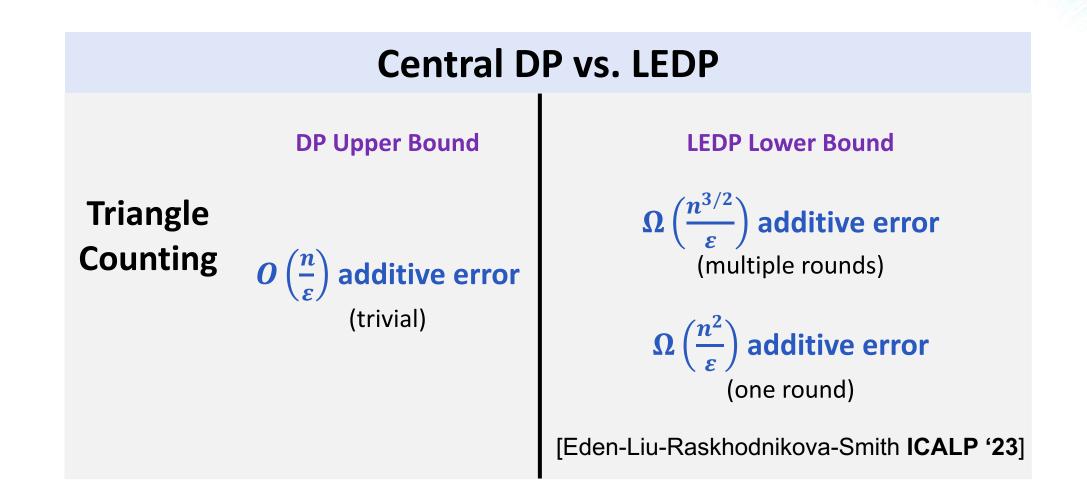
- Sum of Y_i bits: $O\left(\frac{\sqrt{n}}{\varepsilon}\right)$ error but locally private
- Geometric mechanism: $O\left(\frac{1}{\varepsilon}\right)$ error but not locally private

Locally Private Triangle Counting

Locally Private Triangle Counting

Central DP vs. LEDP

Locally Private Triangle Counting



• Input: Graph G = ([n], E) represented by $n \times n$ adjacency matrix A with entries $a_{ij}, \varepsilon > 0$

• Input: Graph G = ([n], E) represented by $n \times n$ adjacency matrix A with entries $a_{ij}, \varepsilon > 0$

Each node holds their own adjacency list as private info

- Input: Graph G = ([n], E) represented by $n \times n$ adjacency matrix A with entries $a_{ij}, \varepsilon > 0$
- Output: Approximate number of triangles in G

- Input: Graph G = ([n], E) represented by $n \times n$ adjacency matrix A with entries $a_{ij}, \varepsilon > 0$
- Output: Approximate number of triangles in *G*
 - for i = 1, ..., n:
 - Release $(X_{i,i+1}, ..., X_{i,n})$ where $X_{i,j} = 1 a_{i,j}$ with probability $\frac{1}{e^{\varepsilon}+1}$ and $a_{i,j}$ otherwise

- Input: Graph G = ([n], E) represented by $n \times n$ adjacency matrix A with entries $a_{ij}, \varepsilon > 0$
- Output: Approximate number of triangles in G
 - for i = 1, ..., n:
 - Release $(X_{i,i+1}, ..., X_{i,n})$ where $X_{i,j} = 1 a_{i,j}$ with probability $\frac{1}{e^{\varepsilon}+1}$ and $a_{i,j}$ otherwise Releasing noisy upper triangular matrix
 - 1 0 1 0 1 0 0 0 1

- Input: Graph G = ([n], E) represented by $n \times n$ adjacency matrix A with entries $a_{ij}, \varepsilon > 0$
- Output: Approximate number of triangles in G
 - for i = 1, ..., n:
 - Release $(X_{i,i+1}, ..., X_{i,n})$ where $X_{i,j} = 1 a_{i,j}$ with probability $\frac{1}{e^{\varepsilon}+1}$ and $a_{i,j}$ otherwise • For all $\{i, j\} \in {[n] \choose 2}$, set $Y_{i,j} \leftarrow \frac{(X_{i,j} \cdot (e^{\varepsilon}+1)-1)}{e^{\varepsilon}-1}$

- Input: Graph G = ([n], E) represented by $n \times n$ adjacency matrix A with entries $a_{ij}, \varepsilon > 0$
- Output: Approximate number of triangles in G
 - for i = 1, ..., n:
 - Release $(X_{i,i+1}, ..., X_{i,n})$ where $X_{i,j} = 1 a_{i,j}$ with probability $\frac{1}{e^{\varepsilon}+1}$ and $a_{i,j}$ otherwise • For all $\{i, j\} \in {[n] \choose 2}$, set $Y_{i,j} \leftarrow \frac{(X_{i,j} \cdot (e^{\varepsilon}+1)-1)}{e^{\varepsilon}-1}$ that

CPSC 768

- For all $\{i, j, k\} \in {\binom{[n]}{3}}$, set $Z_{i,j,k} \leftarrow Y_{i,j} \cdot Y_{j,k} \cdot Y_{i,k}$
- Normalized $Y_{i,j}$ so that $E[Z_{i,j,k}] = 1$ if triangle exists and 0 otherwise

- Input: Graph G = ([n], E) represented by $n \times n$ adjacency matrix A with entries $a_{ij}, \varepsilon > 0$
- Output: Approximate number of triangles in G
 - for i = 1, ..., n:
 - Release $(X_{i,i+1}, ..., X_{i,n})$ where $X_{i,j} = 1 a_{i,j}$ with probability $\frac{1}{e^{\varepsilon}+1}$ and $a_{i,j}$ otherwise
 - For all $\{i, j\} \in {\binom{[n]}{2}}$, set $Y_{i,j} \leftarrow \frac{(X_{i,j} \cdot (e^{\varepsilon} + 1) 1)}{e^{\varepsilon} 1}$
 - For all $\{i, j, k\} \in {\binom{[n]}{3}}$, set $Z_{i,j,k} \leftarrow Y_{i,j} \cdot Y_{j,k} \cdot Y_{i,k}$

• Return
$$\widehat{T} \leftarrow \sum_{\{i,j,k\} \in \binom{[n]}{3}} Z_{i,j,k}$$

- Input: Graph G = ([n], E) represented by $n \times n$ adjacency matrix A with entries $a_{ij}, \varepsilon > 0$
- Output: Approximate number of triangles in G
 - for i = 1, ..., n:
 - Release $(X_{i,i+1}, ..., X_{i,n})$ where $X_{i,j} = 1 a_{i,j}$ with probability $\frac{1}{e^{\varepsilon}+1}$ and $a_{i,j}$ otherwise
 - For all $\{i, j\} \in {\binom{[n]}{2}}$, set $Y_{i,j} \leftarrow \frac{(X_{i,j} \cdot (e^{\varepsilon} + 1) 1)}{e^{\varepsilon} 1}$
 - For all $\{i, j, k\} \in {\binom{[n]}{3}}$, set $Z_{i,j,k} \leftarrow Y_{i,j} \cdot Y_{j,k} \cdot Y_{i,k}$

Therefore,
$$E[\widehat{T}] = T$$

• Lemma: Returns an unbiased estimate of the number of triangles in the input graph

- Lemma: Returns an unbiased estimate of the number of triangles in the input graph
- Proof:
 - $X_{i,j}$ is indicator variable for presence of noisy edge $\{i, j\}$

- Lemma: Returns an unbiased estimate of the number of triangles in the input graph
- Proof:
 - $X_{i,j}$ is indicator variable for presence of noisy edge $\{i, j\}$
 - If $\{i, j\} \in E$, then $E[X_{i,j}] = \frac{e^{\varepsilon}}{e^{\varepsilon}+1}$; otherwise $E[X_{i,j}] = \frac{1}{e^{\varepsilon}+1}$, why?

- Lemma: Returns an unbiased estimate of the number of triangles in the input graph
- Proof:
 - $X_{i,j}$ is indicator variable for presence of noisy edge $\{i, j\}$
 - If $\{i, j\} \in E$, then $E[X_{i,j}] = \frac{e^{\varepsilon}}{e^{\varepsilon}+1}$; otherwise $E[X_{i,j}] = \frac{1}{e^{\varepsilon}+1}$, why?
 - If $\{i, j\} \in E$, probability doesn't flip is $\frac{e^{\varepsilon}}{e^{\varepsilon}+1}$; otherwise, probability flips is $\frac{1}{e^{\varepsilon}+1}$

- Lemma: Returns an unbiased estimate of the number of triangles in the input graph
- Proof:
 - $X_{i,j}$ is indicator variable for presence of noisy edge $\{i, j\}$
 - If $\{i, j\} \in E$, then $E[X_{i,j}] = \frac{e^{\varepsilon}}{e^{\varepsilon}+1}$; otherwise $E[X_{i,j}] = \frac{1}{e^{\varepsilon}+1}$, why?
 - If $\{i, j\} \in E$, probability doesn't flip is $\frac{e^{\varepsilon}}{e^{\varepsilon}+1}$; otherwise, probability flips is $\frac{1}{e^{\varepsilon}+1}$ $\Gamma(v \dots (e^{\varepsilon}+1)-1)$ $(E[X_{i,i}] \cdot (e^{\varepsilon}+1)-1)$

• Then,
$$E[Y_{i,j}] = E\left[\frac{(X_{i,j} \cdot (e^{\varepsilon}+1)-1)}{e^{\varepsilon}-1}\right] = \frac{(E[X_{i,j}] \cdot (e^{\varepsilon}+1)-1)}{e^{\varepsilon}-1}$$

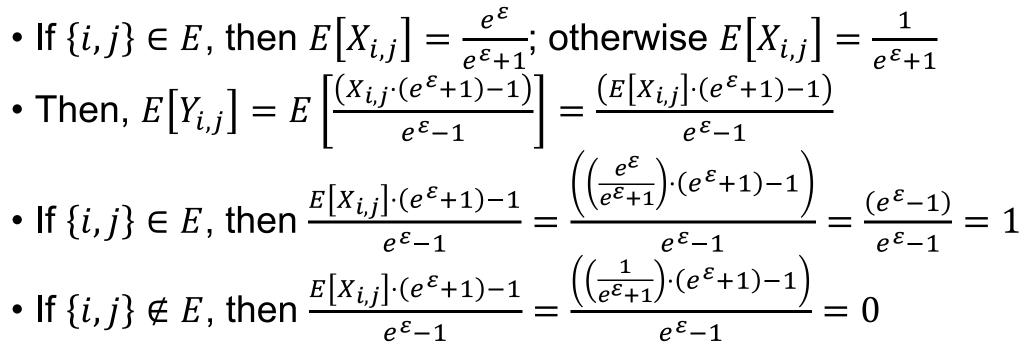
• Proof:

• If
$$\{i, j\} \in E$$
, then $E[X_{i,j}] = \frac{e^{\varepsilon}}{e^{\varepsilon}+1}$; otherwise $E[X_{i,j}] = \frac{1}{e^{\varepsilon}+1}$
• Then, $E[Y_{i,j}] = E\left[\frac{(X_{i,j} \cdot (e^{\varepsilon}+1)-1)}{e^{\varepsilon}-1}\right] = \frac{(E[X_{i,j}] \cdot (e^{\varepsilon}+1)-1)}{e^{\varepsilon}-1}$

• Proof:

• If
$$\{i, j\} \in E$$
, then $E[X_{i,j}] = \frac{e^{\varepsilon}}{e^{\varepsilon}+1}$; otherwise $E[X_{i,j}] = \frac{1}{e^{\varepsilon}+1}$
• Then, $E[Y_{i,j}] = E\left[\frac{(X_{i,j} \cdot (e^{\varepsilon}+1)-1)}{e^{\varepsilon}-1}\right] = \frac{(E[X_{i,j}] \cdot (e^{\varepsilon}+1)-1)}{e^{\varepsilon}-1}$
• If $\{i, j\} \in E$, then $\frac{E[X_{i,j}] \cdot (e^{\varepsilon}+1)-1}{e^{\varepsilon}-1} = \frac{\left(\left(\frac{e^{\varepsilon}}{e^{\varepsilon}+1}\right) \cdot (e^{\varepsilon}+1)-1\right)}{e^{\varepsilon}-1} = \frac{e^{\varepsilon}-1}{e^{\varepsilon}-1} = 1$

• Proof:



• Proof:

• If $\{i, j\} \in E$, then $E[X_{i,j}] = \frac{e^{\varepsilon}}{e^{\varepsilon}+1}$; otherwise $E[X_{i,j}] = \frac{1}{e^{\varepsilon}+1}$ • Then, $E[Y_{i,j}] = E\left[\frac{(X_{i,j} \cdot (e^{\varepsilon}+1)-1)}{e^{\varepsilon}-1}\right] = \frac{(E[X_{i,j}] \cdot (e^{\varepsilon}+1)-1)}{e^{\varepsilon}-1}$ • If $\{i, j\} \in E$, then $\frac{E[X_{i,j}] \cdot (e^{\varepsilon} + 1) - 1}{e^{\varepsilon} - 1} = \frac{\left(\left(\frac{e^{\varepsilon}}{e^{\varepsilon} + 1}\right) \cdot (e^{\varepsilon} + 1) - 1\right)}{e^{\varepsilon} - 1} = \frac{(e^{\varepsilon} - 1)}{e^{\varepsilon} - 1} = 1$ • If $\{i, j\} \notin E$, then $\frac{E[X_{i,j}] \cdot (e^{\varepsilon} + 1) - 1}{e^{\varepsilon} - 1} = \frac{\left(\left(\frac{1}{e^{\varepsilon} + 1}\right) \cdot (e^{\varepsilon} + 1) - 1\right)}{e^{\varepsilon} - 1} = 0$ • Finally, $E[Z_{i,i,k}] = E[Y_{i,i} \cdot Y_{i,k} \cdot Y_{i,k}] = E[Y_{i,i}] \cdot E[Y_{i,k}] \cdot E[Y_{i,k}] = 1_{i,i,k}$

- Proof:
 - If $\{i, j\} \in E$, then $E[X_{i,j}] = \frac{e^{\varepsilon}}{e^{\varepsilon}+1}$; otherwise $E[X_{i,j}] = \frac{1}{e^{\varepsilon}+1}$ • Then, $E[Y_{i,j}] = E\left[\frac{(X_{i,j} \cdot (e^{\varepsilon} + 1) - 1)}{e^{\varepsilon} - 1}\right] = \frac{(E[X_{i,j}] \cdot (e^{\varepsilon} + 1) - 1)}{e^{\varepsilon} - 1}$ • If $\{i, j\} \in E$, then $\frac{E[X_{i,j}] \cdot (e^{\varepsilon} + 1) - 1}{e^{\varepsilon} - 1} = \frac{\left(\left(\frac{e^{\varepsilon}}{e^{\varepsilon} + 1}\right) \cdot (e^{\varepsilon} + 1) - 1\right)}{e^{\varepsilon} - 1} = \frac{(e^{\varepsilon} - 1)}{e^{\varepsilon} - 1} = 1$ • If $\{i, j\} \notin E$, then $\frac{E[X_{i,j}] \cdot (e^{\varepsilon} + 1) - 1}{e^{\varepsilon} - 1} = \frac{\left(\left(\frac{1}{e^{\varepsilon} + 1}\right) \cdot (e^{\varepsilon} + 1) - 1\right)}{e^{\varepsilon} - 1} = 0$ • Finally, $E[Z_{i,i,k}] = E[Y_{i,i} \cdot Y_{i,k} \cdot Y_{i,k}] = E[Y_{i,i}] \cdot E[Y_{i,k}] \cdot E[Y_{i,k}] = 1_{i,i,k}$ • Linearity of expectations gives $E[\hat{T}] = E[\sum_{i \mid k \in [n]^3} Z_{i,j,k}] = T$

- Lemma: Returns an approximate \widehat{T} where $Var[\widehat{T}] = \Theta\left(\frac{C_4}{c^2} + \frac{n^3}{c^6}\right)$
- Proof:
 - Var $[X_{i,j}]$?

- Lemma: Returns an approximate \widehat{T} where $Var[\widehat{T}] = \Theta\left(\frac{C_4}{\epsilon^2} + \frac{n^3}{\epsilon^6}\right)$
- Proof:

• Var
$$[X_{i,j}] = p(1-p) = \frac{e^{\varepsilon}}{e^{\varepsilon}+1} \cdot \frac{1}{e^{\varepsilon}+1} = \frac{e^{\varepsilon}}{(e^{\varepsilon}+1)^2}$$
 Bernoulli variable

- Lemma: Returns an approximate \widehat{T} where $Var[\widehat{T}] = \Theta\left(\frac{C_4}{\epsilon^2} + \frac{n^3}{\epsilon^6}\right)$
- Proof:

•
$$\operatorname{Var}[X_{i,j}] = p(1-p) = \frac{e^{\varepsilon}}{e^{\varepsilon}+1} \cdot \frac{1}{e^{\varepsilon}+1} = \frac{e^{\varepsilon}}{(e^{\varepsilon}+1)^2}$$

• $\operatorname{Var}[Y_{i,j}] = \operatorname{Var}\left[\frac{(X_{i,j} \cdot (e^{\varepsilon}+1)-1)}{e^{\varepsilon}-1}\right]$?

- Lemma: Returns an approximate \widehat{T} where $Var[\widehat{T}] = \Theta\left(\frac{C_4}{\epsilon^2} + \frac{n^3}{\epsilon^6}\right)$
- Proof:

•
$$\operatorname{Var}[X_{i,j}] = p(1-p) = \frac{e^{\varepsilon}}{e^{\varepsilon}+1} \cdot \frac{1}{e^{\varepsilon}+1} = \frac{e^{\varepsilon}}{(e^{\varepsilon}+1)^2}$$

•
$$\operatorname{Var}[Y_{i,j}] = \operatorname{Var}\left[\frac{(X_{i,j} \cdot (e^{\varepsilon}+1)-1)}{e^{\varepsilon}-1}\right] = \frac{1}{(e^{\varepsilon}-1)^2} \cdot \operatorname{Var}[X_{i,j} \cdot (e^{\varepsilon}+1)-1] = \frac{(e^{\varepsilon}+1)^2}{(e^{\varepsilon}-1)^2} \cdot \operatorname{Var}[X_{i,j}] = \frac{e^{\varepsilon}}{(e^{\varepsilon}-1)^2}$$

- Lemma: Returns an approximate \widehat{T} where $Var[\widehat{T}] = \Theta\left(\frac{C_4}{\epsilon^2} + \frac{n^3}{\epsilon^6}\right)$
- Proof:

•
$$\operatorname{Var}[X_{i,j}] = p(1-p) = \frac{e^{\varepsilon}}{e^{\varepsilon}+1} \cdot \frac{1}{e^{\varepsilon}+1} = \frac{e^{\varepsilon}}{(e^{\varepsilon}+1)^2}$$

• $\operatorname{Var}[Y_{i,j}] = \operatorname{Var}\left[\frac{(X_{i,j} \cdot (e^{\varepsilon}+1)-1)}{e^{\varepsilon}-1}\right] = \frac{1}{(e^{\varepsilon}-1)^2} \cdot \operatorname{Var}[X_{i,j} \cdot (e^{\varepsilon}+1)-1] = \frac{(e^{\varepsilon}+1)^2}{(e^{\varepsilon}-1)^2} \cdot \operatorname{Var}[X_{i,j}] = \frac{e^{\varepsilon}}{(e^{\varepsilon}-1)^2}$
• $\operatorname{Var}[Z_{i,j,k}] = E[Z_{i,j,k}^2] - E[Z_{i,j,k}]^2 = E[Y_{i,j}^2] \cdot E[Y_{j,k}^2] \cdot E[Y_{i,k}^2] - 1_{i,j,k}^2$

- Lemma: Returns an approximate \widehat{T} where $Var[\widehat{T}] = \Theta\left(\frac{C_4}{c^2} + \frac{n^3}{c^6}\right)$
- Proof:
 - $\operatorname{Var}[X_{i,j}] = \frac{e^{\varepsilon}}{(e^{\varepsilon}+1)^2}$; $\operatorname{Var}[Y_{i,j}] = \frac{e^{\varepsilon}}{(e^{\varepsilon}-1)^2}$ • $\operatorname{Var}[Z_{i,j,k}] = E[Z_{i,j,k}^2] - E[Z_{i,j,k}]^2 = E[Y_{i,j}^2] \cdot E[Y_{j,k}^2] \cdot E[Y_{i,k}^2] - 1_{i,j,k}^2$ • $E[Y_{i,j}^2] = \operatorname{Var}[Y_{i,j}] + E[Y_{i,j}]^2 = \frac{e^{\varepsilon}}{(e^{\varepsilon}-1)^2} = \Theta\left(\frac{1}{\varepsilon^2}\right)$ $e^{\varepsilon} \in [1,3)$ for $\varepsilon \in (0,1)$

- Lemma: Returns an approximate \widehat{T} where $Var[\widehat{T}] = \Theta\left(\frac{C_4}{\epsilon^2} + \frac{n^3}{\epsilon^6}\right)$
- Proof:
 - $\operatorname{Var}[X_{i,j}] = \frac{e^{\varepsilon}}{(e^{\varepsilon}+1)^{2}}; \operatorname{Var}[Y_{i,j}] = \frac{e^{\varepsilon}}{(e^{\varepsilon}-1)^{2}}$ • $\operatorname{Var}[Z_{i,j,k}] = E[Z_{i,j,k}^{2}] - E[Z_{i,j,k}]^{2} = E[Y_{i,j}^{2}] \cdot E[Y_{j,k}^{2}] \cdot E[Y_{i,k}^{2}] - 1_{i,j,k}^{2}$ • $E[Y_{i,j}^{2}] = \operatorname{Var}[Y_{i,j}] + E[Y_{i,j}]^{2} = \frac{e^{\varepsilon}}{(e^{\varepsilon}-1)^{2}} = \Theta\left(\frac{1}{\varepsilon^{2}}\right)$ • $E[Y_{i,j}^{2}] \cdot E[Y_{j,k}^{2}] \cdot E[Y_{i,k}^{2}] - 1_{i,j,k}^{2} = \Theta\left(\frac{1}{\varepsilon^{6}}\right)$

- Lemma: Returns an approximate \widehat{T} where $Var[\widehat{T}] = \Theta\left(\frac{C_4}{\epsilon^2} + \frac{n^3}{\epsilon^6}\right)$
- Proof:

•
$$\operatorname{Var}[X_{i,j}] = \frac{e^{\varepsilon}}{(e^{\varepsilon}+1)^2}$$
; $\operatorname{Var}[Y_{i,j}] = \frac{e^{\varepsilon}}{(e^{\varepsilon}-1)^2}$; $\operatorname{Var}[Z_{i,j,k}] = \Theta\left(\frac{1}{\varepsilon^6}\right)$

- Lemma: Returns an approximate \widehat{T} where $Var[\widehat{T}] = \Theta\left(\frac{C_4}{\epsilon^2} + \frac{n^3}{\epsilon^6}\right)$
- Proof:
 - $\operatorname{Var}[X_{i,j}] = \frac{e^{\varepsilon}}{(e^{\varepsilon}+1)^2}$; $\operatorname{Var}[Y_{i,j}] = \frac{e^{\varepsilon}}{(e^{\varepsilon}-1)^2}$; $\operatorname{Var}[Z_{i,j,k}] = \Theta\left(\frac{1}{\varepsilon^6}\right)$ • $\operatorname{Var}[\widehat{T}] = \sum_{\{i,j,k\} \in \binom{[n]}{3}} \operatorname{Var}[Z_{i,j,k}]$

- Lemma: Returns an approximate \widehat{T} where $Var[\widehat{T}] = \Theta\left(\frac{C_4}{\varepsilon^2} + \frac{n^3}{\varepsilon^6}\right)$
- Proof:
 - $\operatorname{Var}[X_{i,j}] = \frac{e^{\varepsilon}}{(e^{\varepsilon}+1)^2}$; $\operatorname{Var}[Y_{i,j}] = \frac{e^{\varepsilon}}{(e^{\varepsilon}-1)^2}$; $\operatorname{Var}[Z_{i,j,k}] = \Theta\left(\frac{1}{\varepsilon^6}\right)$ • $\operatorname{Var}[\widehat{T}] = \operatorname{Var}\left[\sum_{\{i,j,k\}\in \binom{[n]}{3}} Z_{i,j,k}\right]$ • Are we done?

- Lemma: Returns an approximate \widehat{T} where $Var[\widehat{T}] = \Theta\left(\frac{C_4}{\epsilon^2} + \frac{n^3}{\epsilon^6}\right)$
- Proof:
 - $\operatorname{Var}[X_{i,j}] = \frac{e^{\varepsilon}}{(e^{\varepsilon}+1)^2}$; $\operatorname{Var}[Y_{i,j}] = \frac{e^{\varepsilon}}{(e^{\varepsilon}-1)^2}$; $\operatorname{Var}[Z_{i,j,k}] = \Theta\left(\frac{1}{\varepsilon^6}\right)$ • $\operatorname{Var}[\widehat{T}] = \operatorname{Var}\left[\sum_{\{i,j,k\}\in \binom{[n]}{3}} Z_{i,j,k}\right]$ • Are we done?

Not true Var
$$\left[\sum_{\{i,j,k\}\in \binom{[n]}{3}} Z_{i,j,k}\right] = \sum_{\{i,j,k\}\in \binom{[n]}{3}} \operatorname{Var}\left[Z_{i,j,k}\right]$$
, why?

- Lemma: Returns an approximate \widehat{T} where $Var[\widehat{T}] = \Theta\left(\frac{C_4}{c^2} + \frac{n^3}{c^6}\right)$
- Proof:
 - $\operatorname{Var}[X_{i,j}] = \frac{e^{\varepsilon}}{(e^{\varepsilon}+1)^2}$; $\operatorname{Var}[Y_{i,j}] = \frac{e^{\varepsilon}}{(e^{\varepsilon}-1)^2}$; $\operatorname{Var}[Z_{i,j,k}] = \Theta\left(\frac{1}{\varepsilon^6}\right)$ • $\operatorname{Var}[\widehat{T}] = \operatorname{Var}\left[\sum_{\{i,j,k\}\in \binom{[n]}{3}} Z_{i,j,k}\right]$ • Are we done? Share $Y_{i,j}$ variables; triangles share edges!

Not true Var
$$\left[\sum_{\{i,j,k\}\in \binom{[n]}{3}} Z_{i,j,k}\right] = \sum_{\{i,j,k\}\in \binom{[n]}{3}} \operatorname{Var}\left[Z_{i,j,k}\right]$$
, why?

CPSC 768

- Lemma: Returns an approximate \widehat{T} where $Var[\widehat{T}] = \Theta\left(\frac{C_4}{c^2} + \frac{n^3}{c^6}\right)$
- Proof:
 - $\operatorname{Var}[X_{i,j}] = \frac{e^{\varepsilon}}{(e^{\varepsilon}+1)^2}$; $\operatorname{Var}[Y_{i,j}] = \frac{e^{\varepsilon}}{(e^{\varepsilon}-1)^2}$; $\operatorname{Var}[Z_{i,j,k}] = \Theta\left(\frac{1}{\varepsilon^6}\right)$ • $\operatorname{Var}[\widehat{T}] = \operatorname{Var}\left[\sum_{\{i,j,k\}\in \binom{[n]}{3}} Z_{i,j,k}\right]$ • Are we done? Share $Y_{i,j}$ variables; triangles share edges!

Not true Var
$$\left[\sum_{\{i,j,k\}\in \binom{[n]}{3}} Z_{i,j,k}\right] = \sum_{\{i,j,k\}\in \binom{[n]}{3}} \operatorname{Var}\left[Z_{i,j,k}\right]$$
, why?

CPSC 768

- Lemma: Returns an approximate \widehat{T} where $Var[\widehat{T}] = \Theta\left(\frac{C_4}{\epsilon^2} + \frac{n^3}{\epsilon^6}\right)$
- Proof:
 - $\operatorname{Var}[X_{i,j}] = \frac{e^{\varepsilon}}{(e^{\varepsilon}+1)^2}$; $\operatorname{Var}[Y_{i,j}] = \frac{e^{\varepsilon}}{(e^{\varepsilon}-1)^2}$; $\operatorname{Var}[Z_{i,j,k}] = \Theta\left(\frac{1}{\varepsilon^6}\right)$
 - Var $\left[\widehat{T}\right]$ = Var $\left[\sum_{\{i,j,k\}\in \binom{[n]}{3}} Z_{i,j,k}\right]$

• Consider change of variables $U_{i,j,k} = Z_{i,j,k} - 1_{i,j,k}$

- Lemma: Returns an approximate \widehat{T} where $Var[\widehat{T}] = \Theta\left(\frac{C_4}{\epsilon^2} + \frac{n^3}{\epsilon^6}\right)$
- Proof:
 - $\operatorname{Var}[X_{i,j}] = \frac{e^{\varepsilon}}{(e^{\varepsilon}+1)^2}$; $\operatorname{Var}[Y_{i,j}] = \frac{e^{\varepsilon}}{(e^{\varepsilon}-1)^2}$; $\operatorname{Var}[Z_{i,j,k}] = \Theta\left(\frac{1}{\varepsilon^6}\right)$
 - $\operatorname{Var}[\widehat{T}] = \operatorname{Var}\left[\sum_{\{i,j,k\}\in \binom{[n]}{3}} Z_{i,j,k}\right]$ • Consider change of variables $U_{i,j,k} = Z_{i,j,k} - 1_{i,j,k}$

$$E[U_{i,j,k}] = 0 \text{ and } \operatorname{Var}[U_{i,j,k}] = \operatorname{Var}[Z_{i,j,k}]$$

- Lemma: Returns an approximate \widehat{T} where $Var[\widehat{T}] = \Theta\left(\frac{C_4}{c^2} + \frac{n^3}{c^6}\right)$
- Proof:
 - $\operatorname{Var}[X_{i,j}] = \frac{e^{\varepsilon}}{(e^{\varepsilon}+1)^2}$; $\operatorname{Var}[Y_{i,j}] = \frac{e^{\varepsilon}}{(e^{\varepsilon}-1)^2}$; $\operatorname{Var}[Z_{i,j,k}] = \Theta\left(\frac{1}{\varepsilon^6}\right)$ • $\operatorname{Var}[\widehat{T} - T] = \operatorname{Var}\left[\sum_{\{i,j,k\}\in \binom{[n]}{3}} (Z_{i,j,k} - 1_{i,j,k})\right] = \operatorname{Var}\left[\sum_{\{i,j,k\}\in \binom{[n]}{3}} U_{i,j,k}\right]$

- Lemma: Returns an approximate \widehat{T} where $Var[\widehat{T}] = \Theta\left(\frac{C_4}{\epsilon^2} + \frac{n^3}{\epsilon^6}\right)$
- Proof:
 - $\operatorname{Var}[X_{i,j}] = \frac{e^{\varepsilon}}{(e^{\varepsilon}+1)^2}$; $\operatorname{Var}[Y_{i,j}] = \frac{e^{\varepsilon}}{(e^{\varepsilon}-1)^2}$; $\operatorname{Var}[Z_{i,j,k}] = \Theta\left(\frac{1}{\varepsilon^6}\right)$ • $\operatorname{Var}[\widehat{T} - T] = \operatorname{Var}\left[\sum_{\{i,j,k\}\in \binom{[n]}{3}} (Z_{i,j,k} - 1_{i,j,k})\right] = \operatorname{Var}\left[\sum_{\{i,j,k\}\in \binom{[n]}{3}} U_{i,j,k}\right]$
 - How do we simplify, what do we observe?

- Lemma: Returns an approximate \widehat{T} where $Var[\widehat{T}] = \Theta\left(\frac{C_4}{\epsilon^2} + \frac{n^3}{\epsilon^6}\right)$
- Proof:
 - $\operatorname{Var}[X_{i,j}] = \frac{e^{\varepsilon}}{(e^{\varepsilon}+1)^2}$; $\operatorname{Var}[Y_{i,j}] = \frac{e^{\varepsilon}}{(e^{\varepsilon}-1)^2}$; $\operatorname{Var}[Z_{i,j,k}] = \Theta\left(\frac{1}{\varepsilon^6}\right)$ • $\operatorname{Var}[\widehat{T} - T] = \operatorname{Var}\left[\sum_{\{i,j,k\}\in \binom{[n]}{3}} (Z_{i,j,k} - 1_{i,j,k})\right] = \operatorname{Var}\left[\sum_{\{i,j,k\}\in \binom{[n]}{3}} U_{i,j,k}\right]$ • How do we simplify, what do we observe?

Covariance is 0 if share at most one vertex, no edges

- Lemma: Returns an approximate \widehat{T} where $Var[\widehat{T}] = \Theta\left(\frac{C_4}{\epsilon^2} + \frac{n^3}{\epsilon^6}\right)$
- Proof:
 - $\operatorname{Var}[X_{i,j}] = \frac{e^{\varepsilon}}{(e^{\varepsilon}+1)^2}$; $\operatorname{Var}[Y_{i,j}] = \frac{e^{\varepsilon}}{(e^{\varepsilon}-1)^2}$; $\operatorname{Var}[Z_{i,j,k}] = \Theta\left(\frac{1}{\varepsilon^6}\right)$
 - $\operatorname{Var}\left[\widehat{T} T\right] = \operatorname{Var}\left[\sum_{\{i,j,k\}\in \binom{[n]}{3}} (Z_{i,j,k} 1_{i,j,k})\right] = \operatorname{Var}\left[\sum_{\{i,j,k\}\in \binom{[n]}{3}} U_{i,j,k}\right]$ • How do we simplify, what do we observe?

Covariance is 0 if share at most one vertex, no edges Non-zero covariance: share an edge; how many?

- Lemma: Returns an approximate \widehat{T} where $Var[\widehat{T}] = \Theta\left(\frac{C_4}{c^2} + \frac{n^3}{c^6}\right)$
- Proof:
 - $\operatorname{Var}[X_{i,j}] = \frac{e^{\varepsilon}}{(e^{\varepsilon}+1)^2}$; $\operatorname{Var}[Y_{i,j}] = \frac{e^{\varepsilon}}{(e^{\varepsilon}-1)^2}$; $\operatorname{Var}[Z_{i,j,k}] = \Theta\left(\frac{1}{\varepsilon^6}\right)$ • $\operatorname{Var}\left[\widehat{T} - T\right] = \operatorname{Var}\left[\sum_{\{i,j,k\}\in \binom{[n]}{3}} (Z_{i,j,k} - 1_{i,j,k})\right] = \operatorname{Var}\left[\sum_{\{i,j,k\}\in \binom{[n]}{3}} U_{i,j,k}\right]$

• How do we simplify, what do we observe?

Covariance is 0 if share at most one vertex, no edges Non-zero covariance: share an edge; number of 4-cycles

- Lemma: Returns an approximate \widehat{T} where $Var[\widehat{T}] = \Theta\left(\frac{C_4}{c^2} + \frac{n^3}{c^6}\right)$
- Proof:
 - $\operatorname{Var}[X_{i,j}] = \frac{e^{\varepsilon}}{(e^{\varepsilon}+1)^2}$; $\operatorname{Var}[Y_{i,j}] = \frac{e^{\varepsilon}}{(e^{\varepsilon}-1)^2}$; $\operatorname{Var}[Z_{i,j,k}] = \Theta\left(\frac{1}{\varepsilon^6}\right)$ • $\operatorname{Var}[\widehat{T}] = \operatorname{Var}[\widehat{T} - T] = \operatorname{Var}\left[\sum_{\{i,j,k\}\in \binom{[n]}{3}} (Z_{i,j,k} - 1_{i,j,k})\right] =$ $\operatorname{Var}\left[\sum_{\{i,j,k\}\in \binom{[n]}{3}} U_{i,j,k}\right] \le \sum_{\{i,j,k\}\in \binom{[n]}{3}} \Theta\left(\frac{1}{\varepsilon^6}\right)$ $+ \sum_{\{i,j,k,l\}\in C_4} E\left[U_{i,j,k} \cdot U_{j,k,l}\right]$

Analysis of the Expectation and Variance

- Lemma: Returns an approximate \widehat{T} where $Var[\widehat{T}] = \Theta\left(\frac{C_4}{\epsilon^2} + \frac{n^3}{\epsilon^6}\right)$
- Proof:

•
$$\operatorname{Var}[X_{i,j}] = \frac{e^{\varepsilon}}{(e^{\varepsilon}+1)^{2}}; \operatorname{Var}[Y_{i,j}] = \frac{e^{\varepsilon}}{(e^{\varepsilon}-1)^{2}}; \operatorname{Var}[Z_{i,j,k}] = \Theta\left(\frac{1}{\varepsilon^{6}}\right)$$

•
$$\operatorname{Var}[\widehat{T}] = \operatorname{Var}[\widehat{T}-T] = \operatorname{Var}\left[\sum_{\{i,j,k\}\in\binom{[n]}{3}}(Z_{i,j,k}-1_{i,j,k})\right] =$$

$$\operatorname{Var}\left[\sum_{\{i,j,k\}\in\binom{[n]}{3}}U_{i,j,k}\right] \leq \sum_{\{i,j,k\}\in\binom{[n]}{3}}\Theta\left(\frac{1}{\varepsilon^{6}}\right) +$$

$$\sum_{\{i,j,k,l\}\in C_{4}}E\left[U_{i,j,k}\cdot U_{j,k,l}\right] \leq \sum_{\{i,j,k,l\}\in C_{4}}E\left[Y_{i,j}\cdot Y_{j,k}^{2}\cdot Y_{i,k}\cdot Y_{l,j}\cdot Y_{l,k}\right]$$

$$\leq \sum_{\{i,j,k,l\}\in C_{4}}E\left[Y_{j,k}^{2}\right]$$

Analysis of the Expectation and Variance

- Lemma: Returns an approximate \widehat{T} where $Var[\widehat{T}] = \Theta\left(\frac{C_4}{c^2} + \frac{n^3}{c^6}\right)$
- Proof:

 $\begin{aligned} &\cdot \operatorname{Var}[X_{i,j}] = \frac{e^{\varepsilon}}{(e^{\varepsilon}+1)^{2}}; \operatorname{Var}[Y_{i,j}] = \frac{e^{\varepsilon}}{(e^{\varepsilon}-1)^{2}}; \operatorname{Var}[Z_{i,j,k}] = \Theta\left(\frac{1}{\varepsilon^{6}}\right) \\ &\cdot \operatorname{Var}[\widehat{T}] = \operatorname{Var}[\widehat{T}-T] = \operatorname{Var}\left[\sum_{\{i,j,k\}\in\binom{[n]}{3}}(Z_{i,j,k}-1_{i,j,k})\right] = \\ &\operatorname{Var}\left[\sum_{\{i,j,k\}\in\binom{[n]}{3}}U_{i,j,k}\right] \leq \sum_{\{i,j,k\}\in\binom{[n]}{3}}\Theta\left(\frac{1}{\varepsilon^{6}}\right) \\ &+ \sum_{\{i,j,k,l\}\in C_{4}}E\left[U_{i,j,k}\cdot U_{j,k,l}\right] \leq \Theta\left(\frac{n^{3}}{\varepsilon^{6}}\right) + \sum_{\{i,j,k,l\}\in C_{4}}E\left[Y_{j,k}^{2}\right] = \Theta\left(\frac{n^{3}}{\varepsilon^{6}} + \frac{|C_{4}|}{\varepsilon^{2}}\right) \end{aligned}$

On Wednesday, more DP mechanisms!

- Laplace mechanism
- (Geometric mechanism—already discussed)
- Exponential mechanism
- Gaussian mechanism
- Privacy amplification via subsampling

CPSC 768: Scalable and Private Graph Algorithms

Lecture 12: Differential Privacy Mechanisms

Quanquan C. Liu quanquan.liu@yale.edu

Announcements

- Check the latest announcement on Canvas:
 - Scheduling Lectures survey: due Feb. 26
 - Final Project Proposal: due Feb. 29, one page (email to me)
 - Final Project Examples
- Open problem sessions:
 - Link for joining CPSC 768 Slack
 - Open Problem Session food orders

Global Sensitivity

 Intuition: Measure of how different the output of a function is on neighboring input

Global Sensitivity

 Intuition: Measure of how different the output of a function is on neighboring input

Definition (Global Sensitivity): The global sensitivity of a function: $f: G \to R$ is defined as: $\Delta_f = \max_{\{G \sim G'\}} (|f(G) - f(G')|)$ where G and G' are edge-neighboring graphs.

Global Sensitivity Examples

Definition (Global Sensitivity): The global sensitivity of a function: $f: G \to R$ is defined as: $\Delta_f = \max_{\{G \sim G'\}} (|f(G) - f(G')|)$ where G and G' are edge-neighboring graphs.

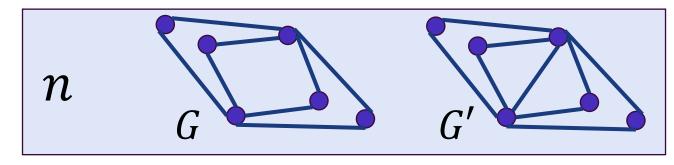
- What is the global sensitivity of the following problems (assuming for each we have a function that gives the exact solution):
 - Triangle counting
 - Maximum matching
 - Average Degree

Global Sensitivity Examples

Definition (Global Sensitivity): The global sensitivity of a function: $f: G \to R$ is defined as: $\Delta_f = \max_{\{G \sim G'\}} (|f(G) - f(G')|)$ where G and G' are edge-neighboring graphs.

• What is the global sensitivity of the following problems (assuming for each we have a function that gives the exact solution):

- Triangle counting
- Maximum matching
- Average Degree



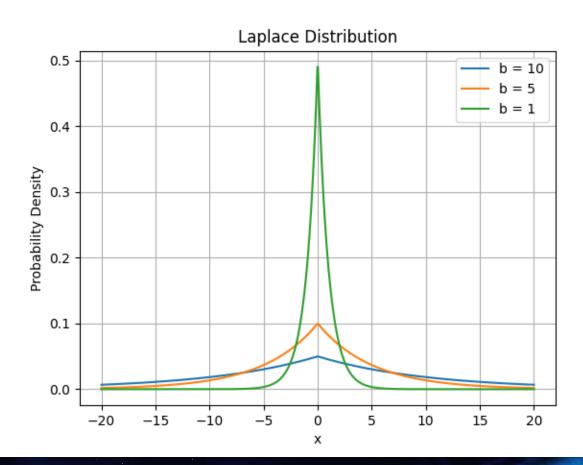
Global Sensitivity Examples

Definition (Global Sensitivity): The global sensitivity of a function: $f: G \to R$ is defined as: $\Delta_f = \max_{\{G \sim G'\}} (|f(G) - f(G')|)$ where G and G' are edge-neighboring graphs.

- What is the global sensitivity of the following problems (assuming for each we have a function that gives the exact solution):
 - Triangle counting: *n*
 - Maximum matching: 1
 - Average Degree: 2/n

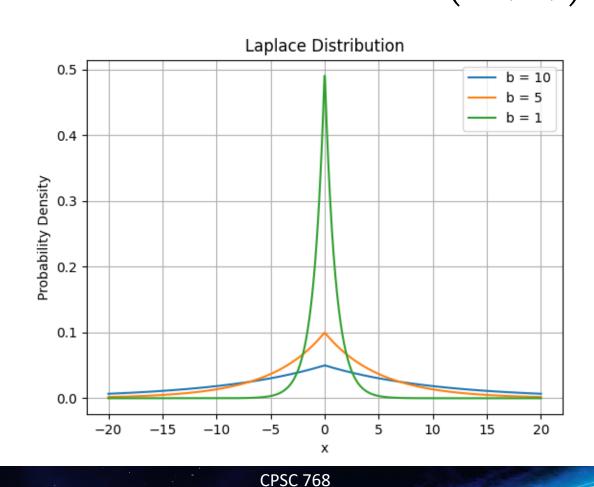
Laplace Distribution

• The PDF of $X \in R$ is: Lap $(b) = \frac{1}{2b} \cdot \exp\left(-\left(\frac{|X|}{b}\right)\right)$



Laplace Distribution

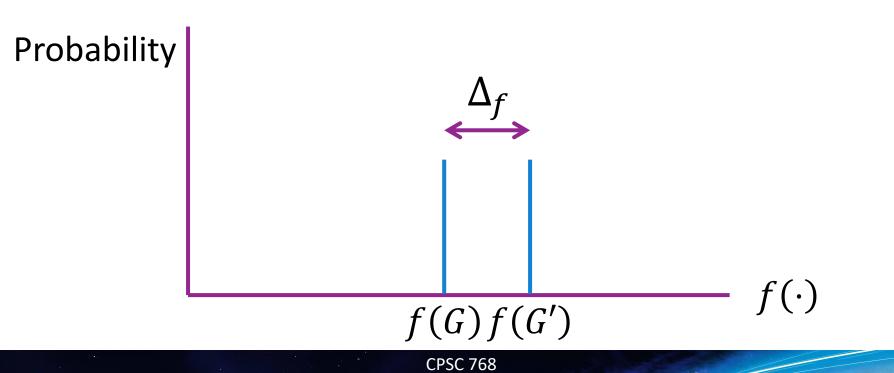
• The PDF of $X \in R$ is: Lap $(b) = \frac{1}{2b} \cdot \exp\left(-\left(\frac{|X|}{b}\right)\right)$



Larger *b* heavier tails

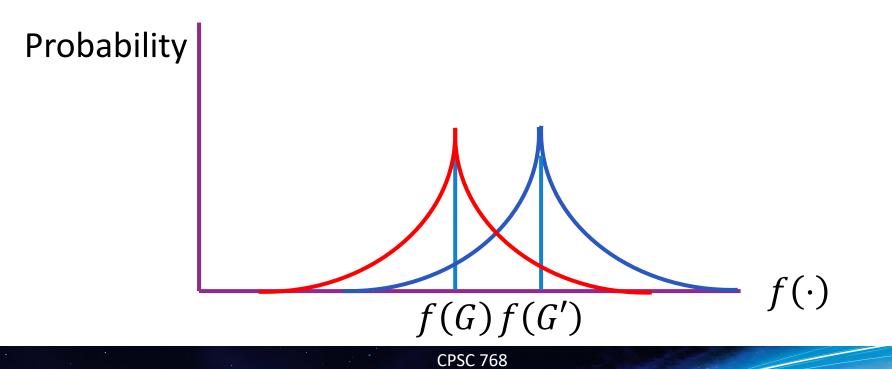
• Lemma: Given a function $f: G \to R$ with sensitivity Δ_f ,

 $f(G) + Lap\left(\frac{\Delta_f}{\varepsilon}\right)$ is ε -differentially private.



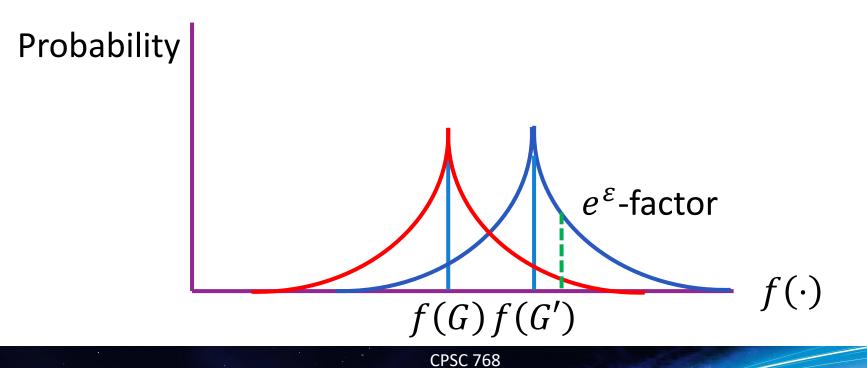
• Lemma: Given a function $f: G \to R$ with sensitivity Δ_f ,

 $f(G) + Lap\left(\frac{\Delta_f}{\varepsilon}\right)$ is ε -differentially private.



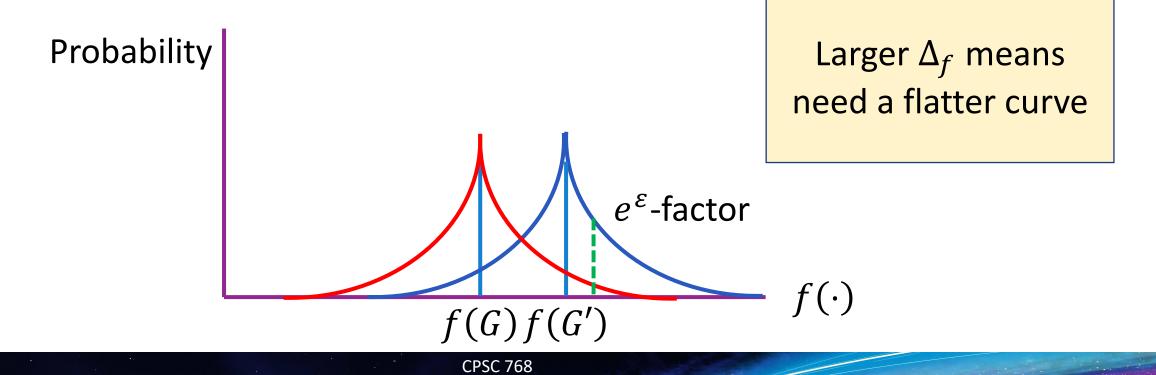
• Lemma: Given a function $f: G \to R$ with sensitivity Δ_f ,

 $f(G) + Lap\left(\frac{\Delta_f}{\epsilon}\right)$ is ϵ -differentially private.



• Lemma: Given a function $f: G \to R$ with sensitivity Δ_f ,

 $f(G) + Lap\left(\frac{\Delta_f}{\epsilon}\right)$ is ϵ -differentially private.



• Lemma: Given a function $f: G \to R$ with sensitivity Δ_f ,

 $f(G) + Lap\left(\frac{\Delta_f}{\varepsilon}\right)$ is ε -differentially private.

• <u>Proof</u>: Consider neighboring graphs *G* and *G'* and function $f: G \to R$. Let *p* and *p'* denote the probability density functions of $f(G) + Lap\left(\frac{\Delta f}{\varepsilon}\right)$ and $f(G') + Lap\left(\frac{\Delta f}{\varepsilon}\right)$, respectively. Then, for an arbitrary point $z \in R$:

$$\frac{p(z)}{p'(z)} = \frac{\exp\left(-\frac{\varepsilon |f(G) - z|}{\Delta_f}\right)}{\exp\left(-\frac{\varepsilon |f(G') - z|}{\Delta_f}\right)}$$

- Lemma: Given a function $f: G \to R$ with sensitivity Δ_f , $f(G) + Lap\left(\frac{\Delta_f}{\epsilon}\right)$ is ϵ -differentially private.
- <u>Proof</u>:

$$= \exp\left(-\frac{\varepsilon(|f(G') - z| - |f(G) - z|)}{\Delta_f}\right)$$

$$\leq \exp\left(-\frac{\varepsilon(|f(G') - f(G)|)}{\Delta_f}\right)$$

$$\leq \exp\left(-\frac{\varepsilon\Delta_f}{\Delta_f}\right) = \exp(\varepsilon)$$

By the triangle inequality

Laplace Mechanism Accuracy

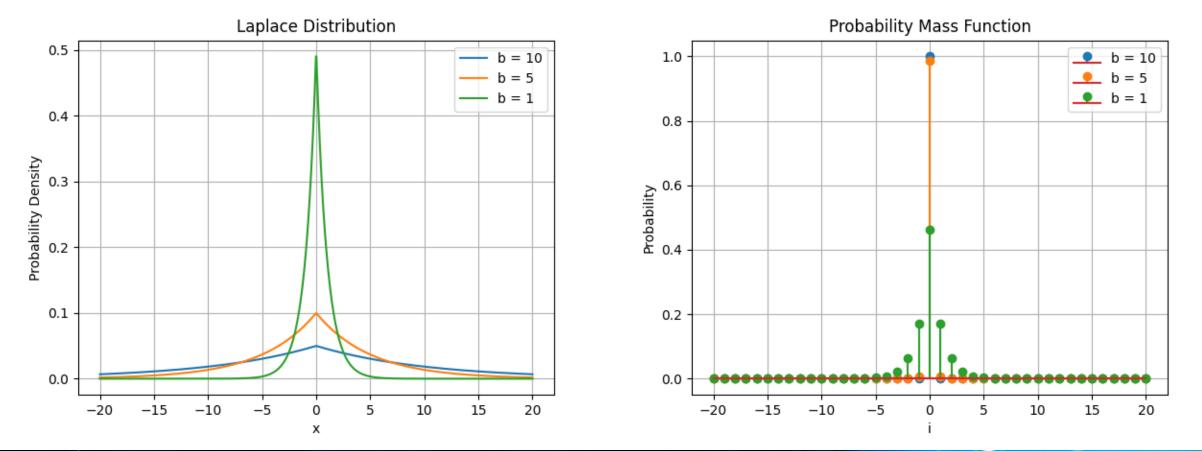
• Lemma: Given a function $f: G \to R$ with sensitivity Δ_f , let $M(G) = f(G) + Lap\left(\frac{\Delta_f}{\varepsilon}\right)$, then $P\left(|M(G) - f(G)| \le \frac{\Delta_f}{\varepsilon} \log\left(\frac{1}{\delta}\right)\right) \ge 1 - \delta$

Laplace Mechanism Accuracy

- Lemma: Given a function $f: G \to R$ with sensitivity Δ_f , let $M(G) = f(G) + Lap\left(\frac{\Delta_f}{\varepsilon}\right)$, then $P\left(|M(G) f(G)| \le \frac{\Delta_f}{\varepsilon} \log\left(\frac{1}{\delta}\right)\right) \ge 1 \delta$
- <u>Proof</u>: We can simplify $P\left(|M(G) f(G)| \le \frac{\Delta_f}{\varepsilon} \log\left(\frac{1}{\delta}\right)\right) = P\left(Lap\left(\frac{\Delta_f}{\varepsilon}\right) \le \frac{\Delta_f}{\varepsilon} \log\left(\frac{1}{\delta}\right)\right) = 1 \exp\left(-\ln\left(\frac{1}{\delta}\right)\right) = 1 \delta.$

By the Laplace distribution, we have that $P(|X| \ge bt) = \exp(-t)$

• Symmetric geometric distribution PMF at $x \in Z$: $\frac{e^{b}-1}{e^{b}+1} \cdot e^{-|i| \cdot b}$



- Geometric mechanism allows:
 - Integer values

- Geometric mechanism allows:
 - Integer values
 - Easier analysis for theoretical computer scientists; discrete vs. continuous

- Geometric mechanism allows:
 - Integer values
 - Easier analysis for theoretical computer scientists; discrete vs. continuous
 - Geometric mechanism is utility-maximizing [Ghosh-Roughgarden-Sundararajan '12]

- Geometric mechanism allows:
 - Integer values
 - Easier analysis for theoretical computer scientists; discrete vs. continuous
 - Geometric mechanism is utility-maximizing [Ghosh-Roughgarden-Sundararajan '12]
 - Statistical database and count queries
 - For each fixed count query, there exists a geometric mechanism *M*^{*} such that **each** user derives as much utility as a mechanism optimally tailored to that user

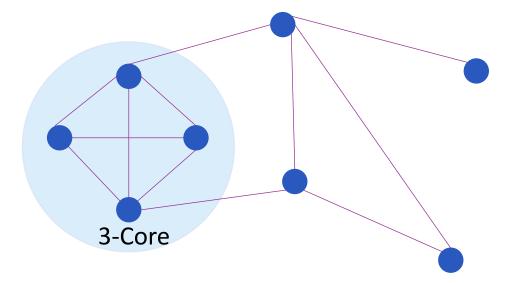
- Geometric mechanism allows:
 - Integer values

Implementable on finite-bit computers! [Balcer and Vadhan 2018]

- Easier analysis for theoretical computer scientists; discrete vs. continuous
- Geometric mechanism is utility-maximizing [Ghosh-Roughgarden-Sundararajan '12]
 - Statistical database and count queries
 - For each fixed count query, there exists a geometric mechanism *M*^{*} such that **each** user derives as much utility as a mechanism optimally tailored to that user

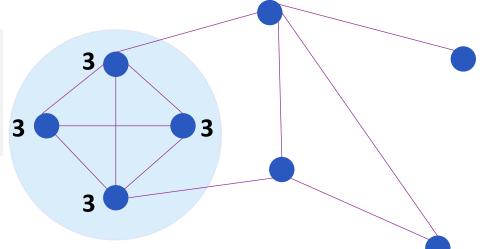
Next: Example of Geometric Mechanism that also gets **local privacy**

k-Core

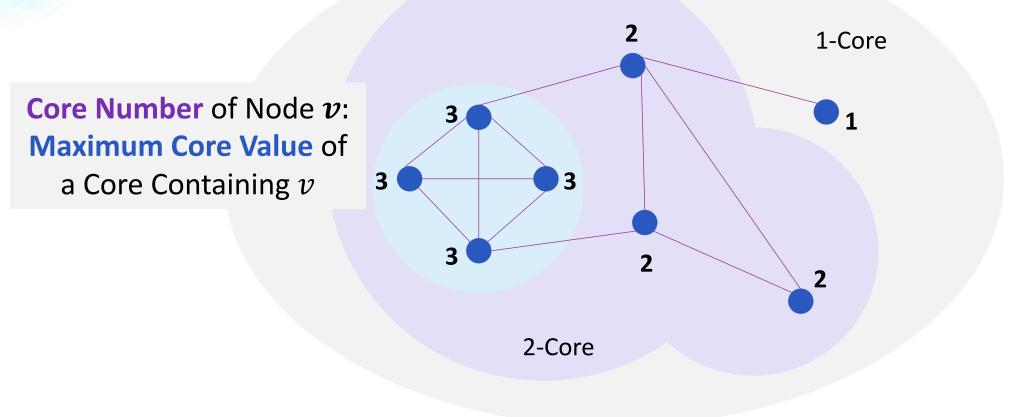


k-Core Decomposition

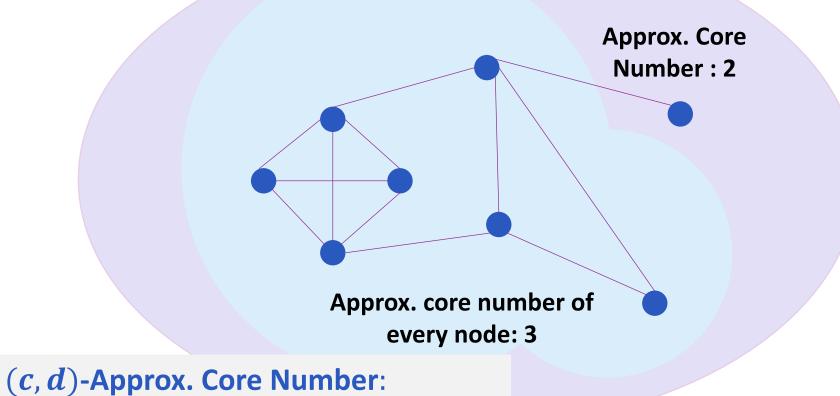
Core Number of Node v: Maximum Core Value of a Core Containing v



k-Core Decomposition



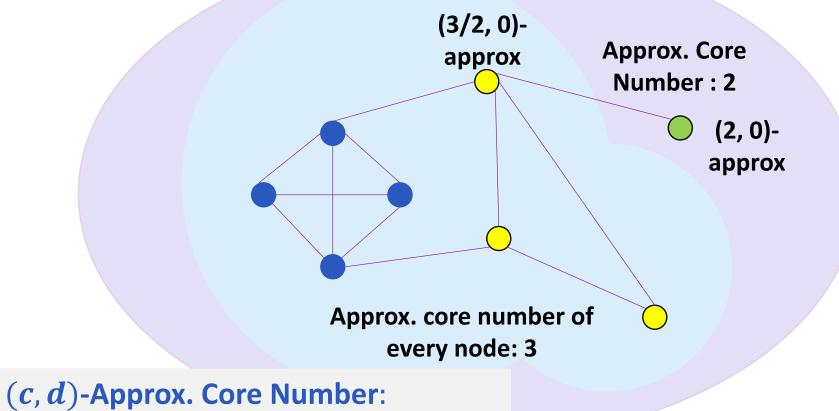
Approximate k-Core Decomposition



CPSC 768

 $\operatorname{core}(v) - d \le \widehat{\operatorname{core}}(v) \le c \cdot \operatorname{core}(v) + d$

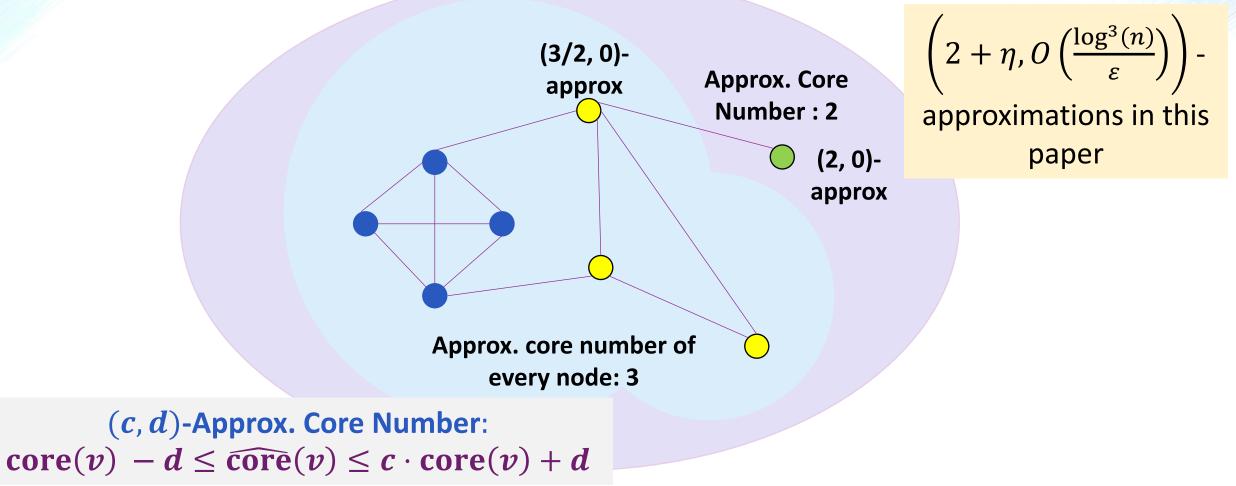
Approximate k-Core Decomposition



CPSC 768

 $\operatorname{core}(v) - d \leq \widehat{\operatorname{core}}(v) \leq c \cdot \operatorname{core}(v) + d$

Approximate k-Core Decomposition

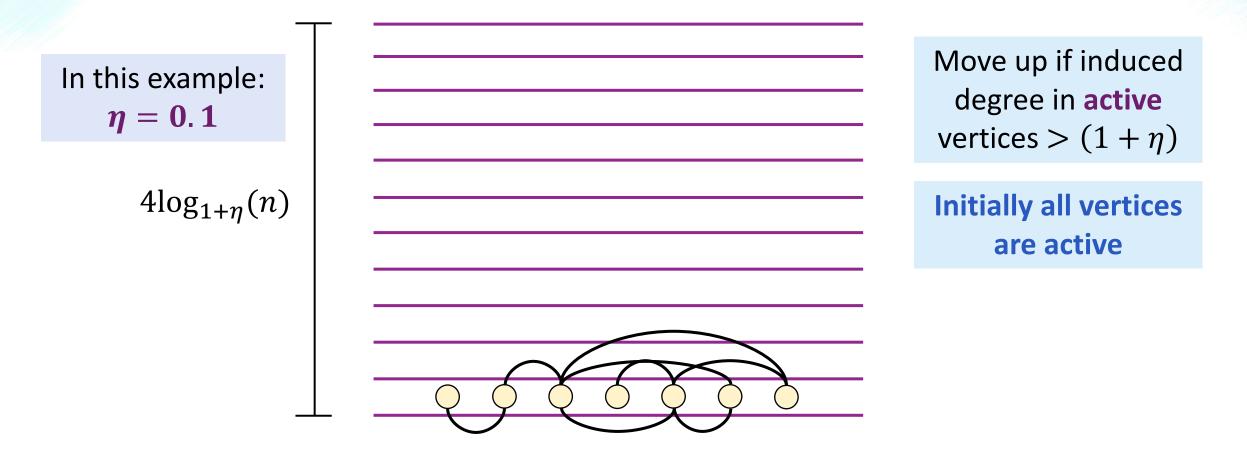


Level Data Structure and Core Numbers

Non-private sequential and parallel level data structures for dynamic problem:

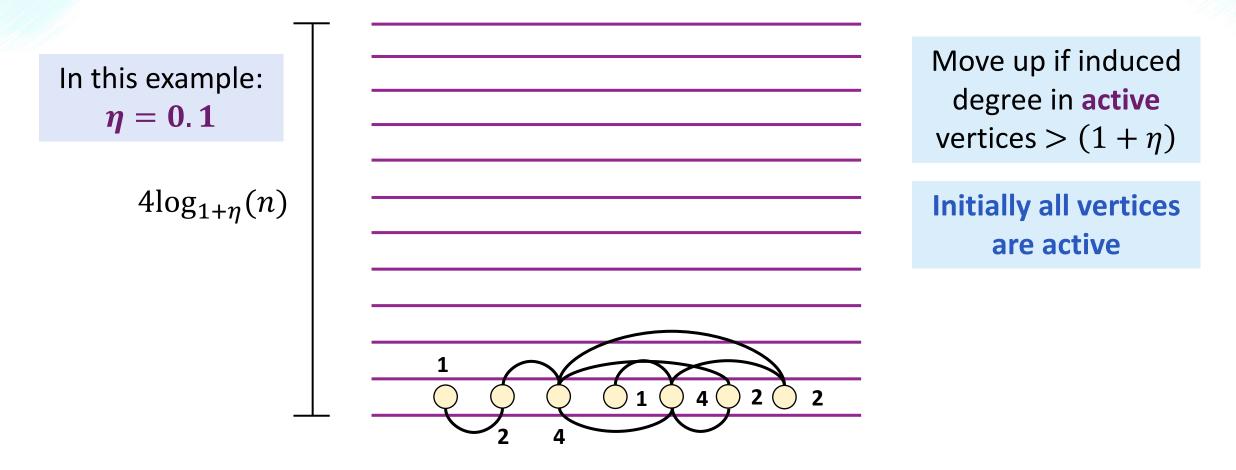
[Bhattacharya-Henzinger-Nanongkai-Tsourakakis '15; Henzinger-Neumann-Wiese '20; Liu-Shi-Yu-Dhulipala-Shun '22]

Level Data Structure and Core Numbers

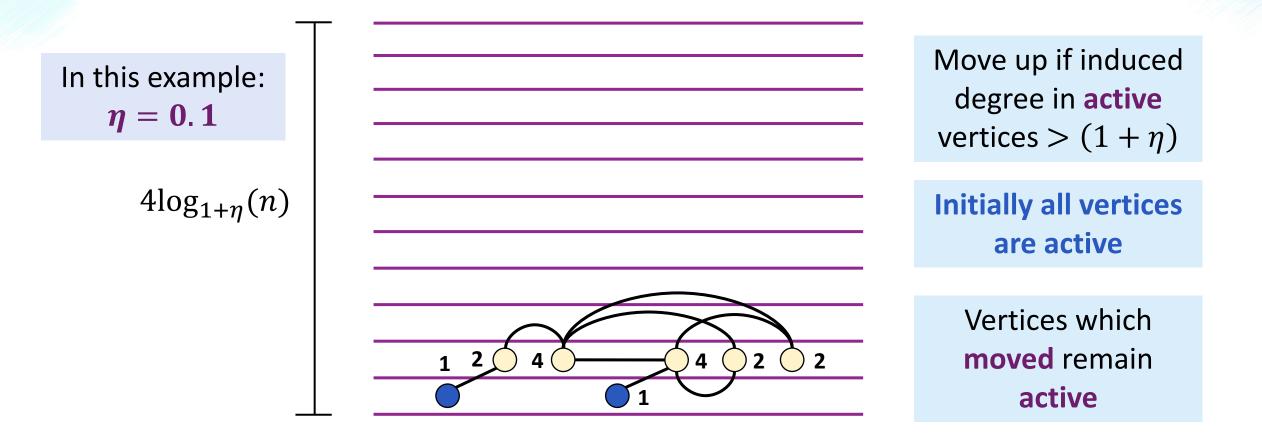


[Bhattacharya-Henzinger-Nanongkai-Tsourakakis '15, Henzinger-Neumann-Wiese '20, Liu-Shi-Yu-Dhulipala-Shun '22]

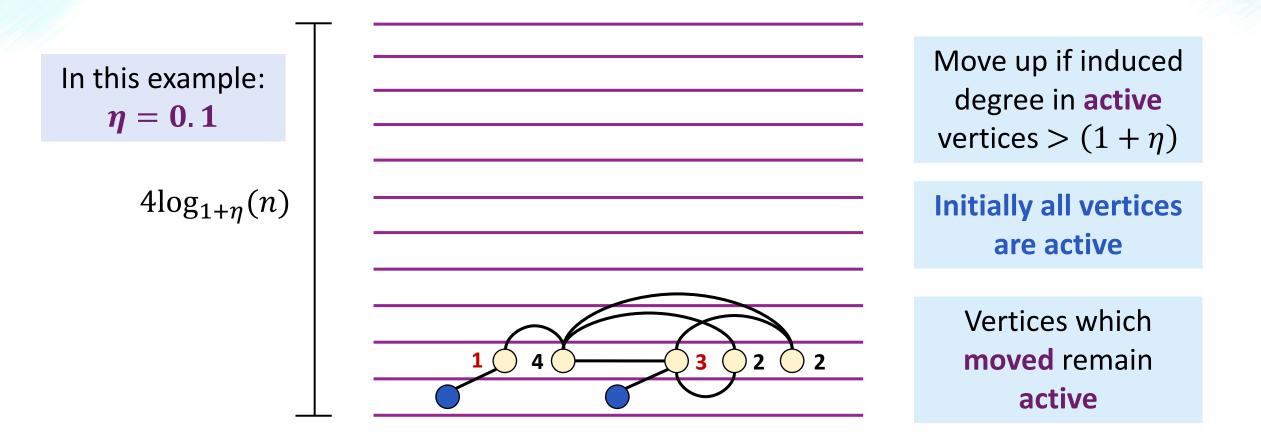
Level Data Structure and Core Numbers



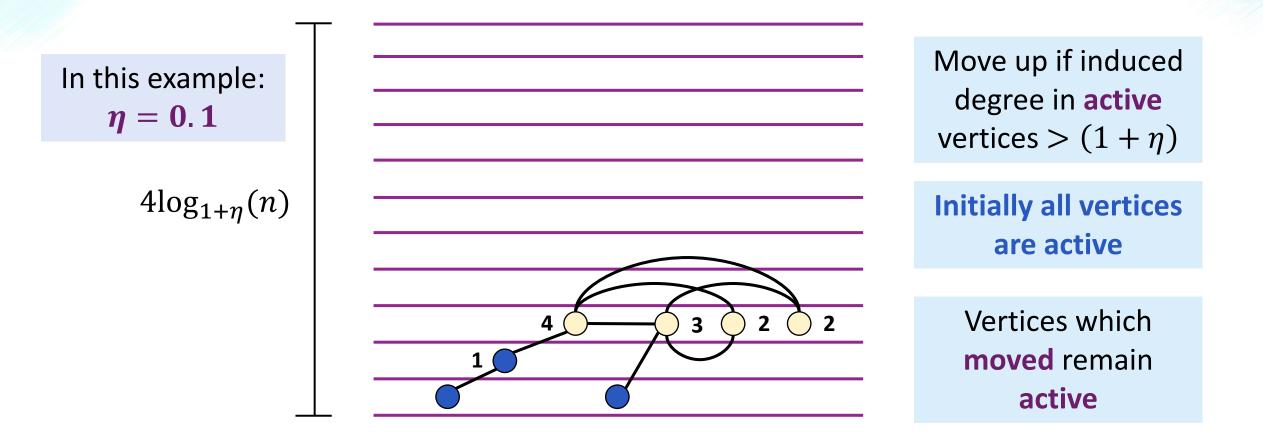
[Bhattacharya-Henzinger-Nanongkai-Tsourakakis '15, Henzinger-Neumann-Wiese '20, Liu-Shi-Yu-Dhulipala-Shun '22]



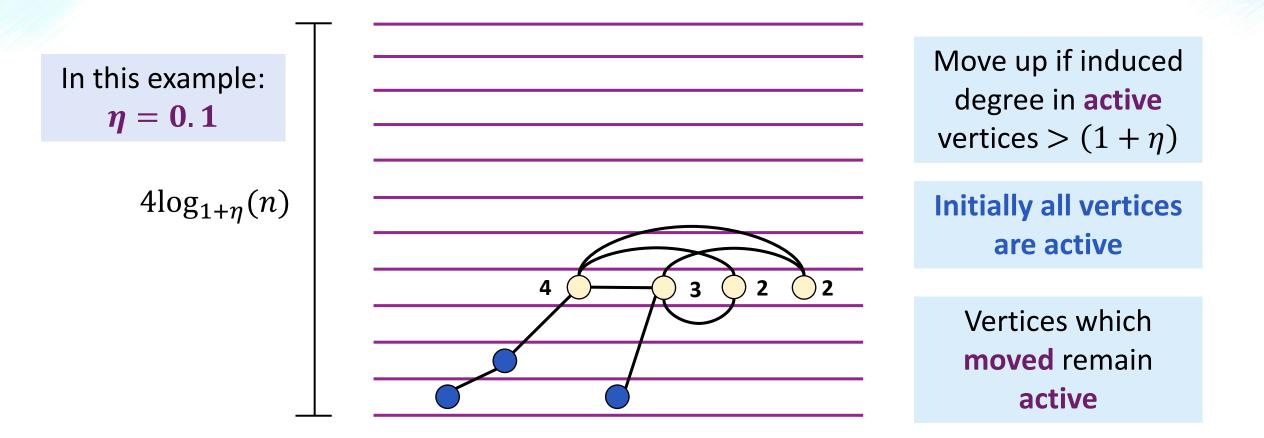
[Bhattacharya-Henzinger-Nanongkai-Tsourakakis '15, Henzinger-Neumann-Wiese '20, Liu-Shi-Yu-Dhulipala-Shun '22]



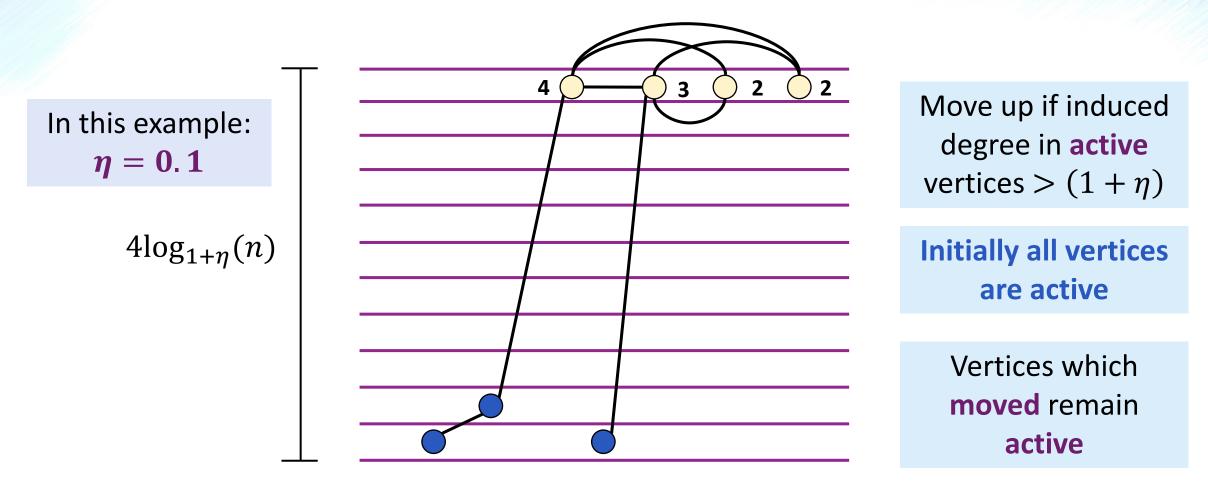
[Bhattacharya-Henzinger-Nanongkai-Tsourakakis '15, Henzinger-Neumann-Wiese '20, Liu-Shi-Yu-Dhulipala-Shun '22]



[Bhattacharya-Henzinger-Nanongkai-Tsourakakis '15, Henzinger-Neumann-Wiese '20, Liu-Shi-Yu-Dhulipala-Shun '22]



[Bhattacharya-Henzinger-Nanongkai-Tsourakakis '15, Henzinger-Neumann-Wiese '20, Liu-Shi-Yu-Dhulipala-Shun '22]



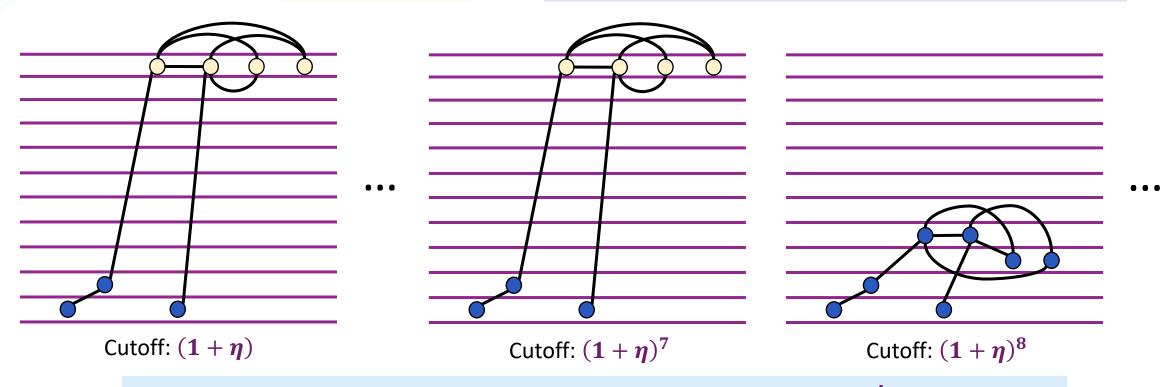
[Bhattacharya-Henzinger-Nanongkai-Tsourakakis '15, Henzinger-Neumann-Wiese '20, Liu-Shi-Yu-Dhulipala-Shun '22]

$\eta = 0.1$ Set cutoffs $(1 + \eta)^i$ for all $i \in [\log_{1+\eta}(n)]$

[Bhattacharya-Henzinger-Nanongkai-Tsourakakis '15, Henzinger-Neumann-Wiese '20, Liu-Shi-Yu-Dhulipala-Shun '22]

 $oldsymbol{\eta}=0.1$

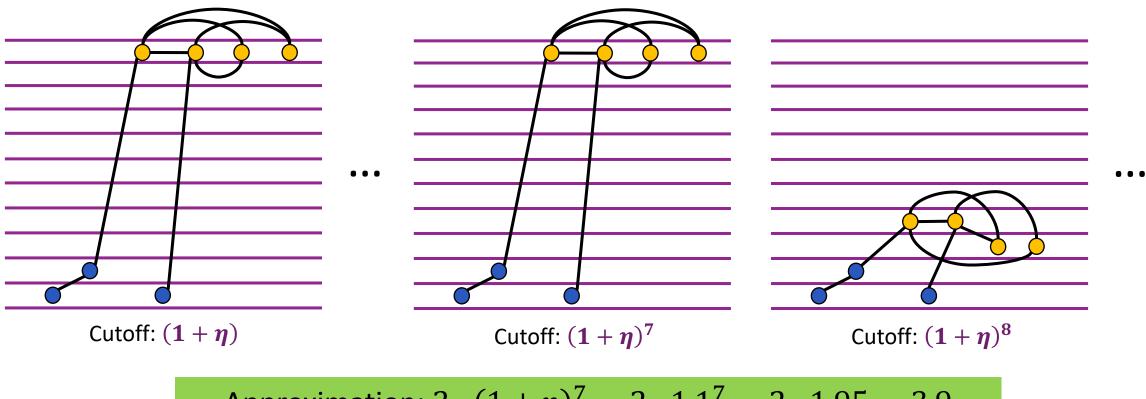
Set cutoffs $(1 + \eta)^i$ for all $i \in [\log_{1+\eta}(n)]$



Give approx core number $2 \cdot (1 + \eta)^i$ using **largest cutoff** where node is on the **topmost level**

 $\eta = 0.1$

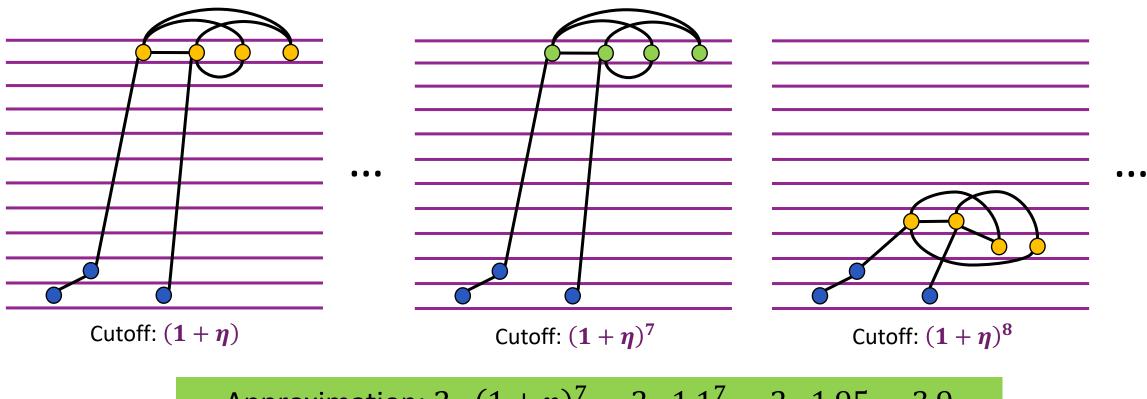
Set cutoffs $(1 + \eta)^i$ for all $i \in [\log_{1+\eta}(n)]$



Approximation: $2 \cdot (1 + \eta)^7 = 2 \cdot 1.1^7 = 2 \cdot 1.95 = 3.9$

 $oldsymbol{\eta}=0.1$

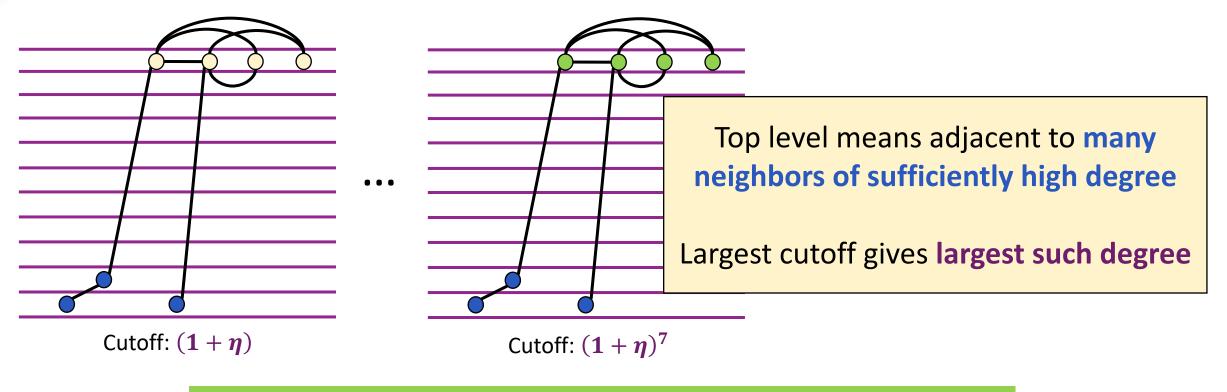
Set cutoffs $(1 + \eta)^i$ for all $i \in [\log_{1+\eta}(n)]$



Approximation: $2 \cdot (1 + \eta)^7 = 2 \cdot 1.1^7 = 2 \cdot 1.95 = 3.9$

 $\eta = 0.1$

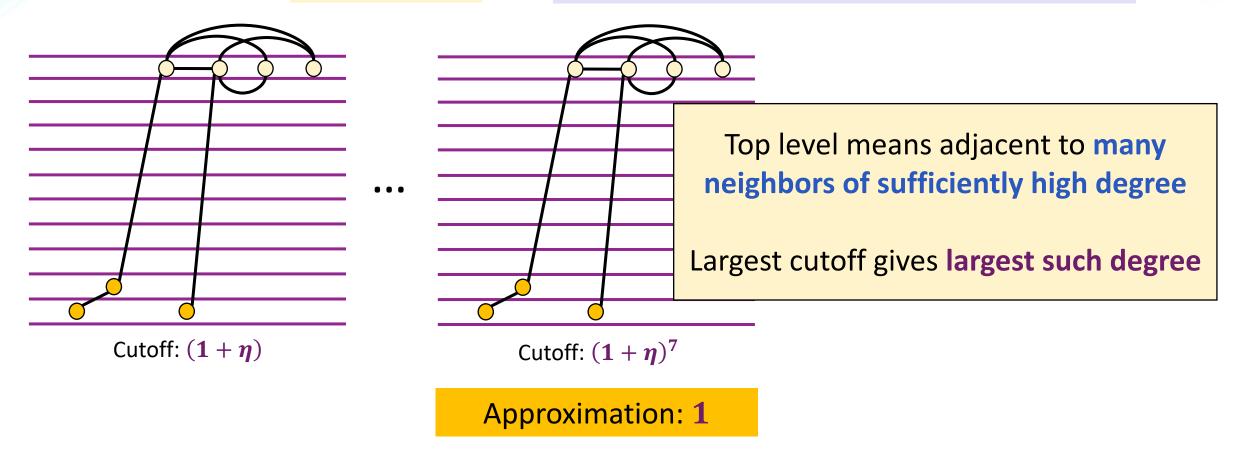
Set cutoffs $(1 + \eta)^i$ for all $i \in [\log_{1+\eta}(n)]$



Approximation: $2 \cdot (1 + \eta)^7 = 2 \cdot 1.1^7 = 2 \cdot 1.95 = 3.9$

 $oldsymbol{\eta}=0.\,1$

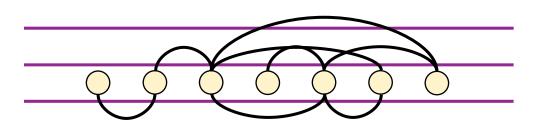
Set cutoffs $(1 + \eta)^i$ for all $i \in [\log_{1+\eta}(n)]$



Each active vertex draws i.i.d. noise from symmetric geometric distribution

> Distribution Geom(b)PMF: $\frac{e^{b}-1}{e^{b}+1} \cdot e^{-|X| \cdot b}$

_____ Re _____ ur _____ ir

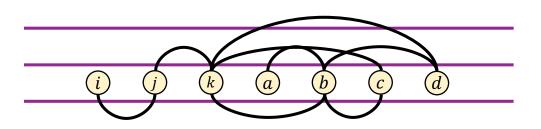


Release and move up degree <u>+ noise</u> in active vertices $> (1 + \eta)$

Each active vertex draws i.i.d. noise from symmetric geometric distribution

> Distribution Geom(b)PMF: $\frac{e^{b}-1}{e^{b}+1} \cdot e^{-|X| \cdot b}$

Release and move up degree <u>+ noise</u> in active vertices $> (1 + \eta)$

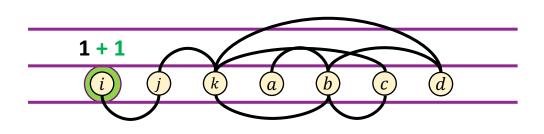


Each active vertex draws i.i.d. noise from symmetric geometric distribution

> Distribution Geom(b)PMF: $\frac{e^{b}-1}{e^{b}+1} \cdot e^{-|X| \cdot b}$

If $deg(i) + N_i > (1 + \eta)$, move up

Where
$$N_i \sim Geom\left(\frac{\varepsilon}{8\log_{1+\eta}^2(n)}\right)$$



Release and move up degree <u>+ noise</u> in active vertices $> (1 + \eta)$

In this example: $\eta = 0.1$

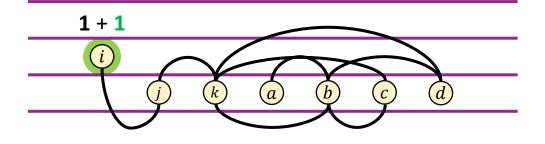
Each active vertex draws i.i.d. noise from symmetric geometric distribution

> Distribution Geom(b)PMF: $\frac{e^{b}-1}{e^{b}+1} \cdot e^{-|X| \cdot b}$

Release and move up degree <u>+ noise</u> in active vertices $> (1 + \eta)$

If $deg(i) + N_i > (1 + \eta)$, move up

Where
$$N_i \sim Geom\left(\frac{\varepsilon}{8\log_{1+\eta}^2(n)}\right)$$

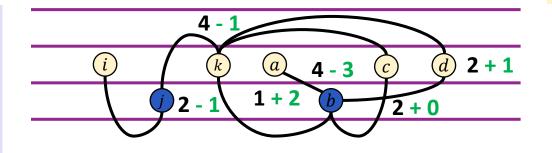


Each active vertex draws i.i.d. noise from symmetric geometric distribution

> Distribution Geom(b)PMF: $\frac{e^{b}-1}{e^{b}+1} \cdot e^{-|X| \cdot b}$

If
$$deg(i) + N_i > (1 + \eta)$$
,
move up

Where
$$N_i \sim Geom\left(\frac{\varepsilon}{8\log_{1+\eta}^2(n)}\right)$$



Release and move up degree <u>+ noise</u> in active vertices $> (1 + \eta)$

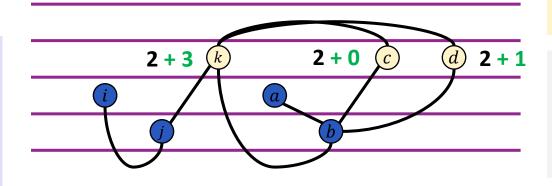
Redraw new noise each time vertex remains active

Each active vertex draws i.i.d. noise from symmetric geometric distribution

> Distribution Geom(b)PMF: $\frac{e^{b}-1}{e^{b}+1} \cdot e^{-|X| \cdot b}$

If
$$deg(i) + N_i > (1 + \eta)$$
,
move up

Where
$$N_i \sim Geom\left(\frac{\varepsilon}{8\log_{1+\eta}^2(n)}\right)$$



Release and move up degree <u>+ noise</u> in active vertices $> (1 + \eta)$

Redraw new noise each time vertex remains active

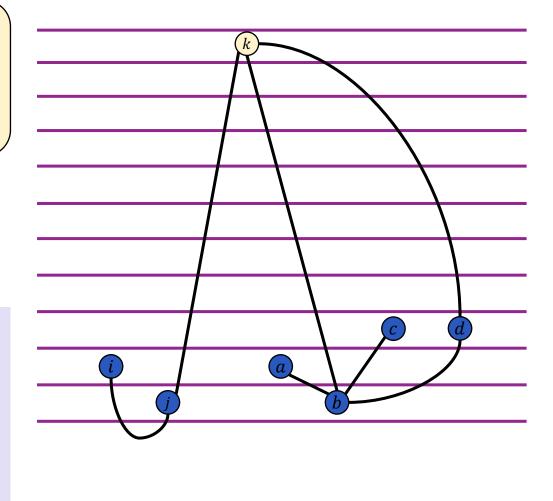
Approx. as before $2(1 + \eta)^i$ using topmost level

Each active vertex draws i.i.d. noise from symmetric geometric distribution

> Distribution Geom(b)PMF: $\frac{e^{b}-1}{e^{b}+1} \cdot e^{-|X| \cdot b}$

 $\begin{aligned} & \text{If } \deg(k) + N_k > (1+\eta), \\ & \text{move up} \end{aligned}$

Where
$$N_k \sim Geom\left(\frac{\varepsilon}{8\log_{1+\eta}^2(n)}\right)$$



Release and move up degree <u>+ noise</u> in active vertices $> (1 + \eta)$

Redraw new noise each time vertex remains active

Approx. as before $2(1 + \eta)^i$ using topmost level

Each active vertex draws i.i.d. noise from symmetric geometric distribution

Distribution Geom Privacy and Approximation?

$$\mathsf{PMF}: \frac{e^b - 1}{e^b + 1} \cdot e^{-|X| \cdot b}$$

If
$$deg(k) + N_k > (1 + \eta)$$

move up

Where
$$N_k \sim Geom\left(\frac{\varepsilon}{8\log_{1+\eta}(n)}\right)$$

CPSC 768

Move up if induced degree <u>+ noise</u> in active vertices $> (1 + \eta)$

Redraw new noise each time vertex remains active and determines whether move up

Approx. as before $2(1 + \eta)^i$ where *i* largest that vertex is on the topmost level

• Can be implemented via local randomizers R

- Can be implemented via local randomizers R
- *R* takes as input *a* (adjacency list) and public set of active vertices *A*

- Can be implemented via local randomizers R
- *R* takes as input *a* (adjacency list) and public set of active vertices *A*
 - *R* computes size of intersection $|a \cap A|$

- Can be implemented via local randomizers R
- *R* takes as input *a* (adjacency list) and public set of active vertices *A*
 - *R* computes size of intersection $|a \cap A|$
 - Then, add symmetric geometric noise $X \sim Geom\left(\frac{\varepsilon}{8\log_{1+n}^2(n)}\right)$

- Can be implemented via local randomizers R
- *R* takes as input *a* (adjacency list) and public set of active vertices *A*
 - *R* computes size of intersection $|a \cap A|$ Sensitivity of 1
 - Then, add symmetric geometric noise $X \sim Geom\left(\frac{\varepsilon}{8\log_{1+n}^2(n)}\right)$

Global Sensitivity:

 $\Delta_f = \max_{edge-neighbors \ G \ and \ G'} |f(G) - f(G')|$

$$f(\boldsymbol{a},A) = |\boldsymbol{a} \cap A|$$

- Can be implemented via local randomizers R
- *R* takes as input *a* (adjacency list) and public set of active vertices *A*
 - *R* computes size of intersection $|a \cap A|$ Sensitivity of 1
 - Then, add symmetric geometric noise $X \sim Geom\left(\frac{\varepsilon}{8\log_{1+n}^2(n)}\right)$

Geometric Mechanism: [Chan-Shi-Song '11; Balcer-Vadhan '18] $M(a, A) = f(a, A) + Geom\left(\frac{\varepsilon}{\Delta_f}\right)$ *M* is ε -DP

- Can be implemented via local randomizers R
- *R* takes as input *a* (adjacency list) and public set of active vertices *A*
 - *R* computes size of intersection $|a \cap A|$ Sensitivity of 1
 - Then, add symmetric geometric noise $X \sim Geom\left(\frac{\varepsilon}{8\log_{1+n}^2(n)}\right)$

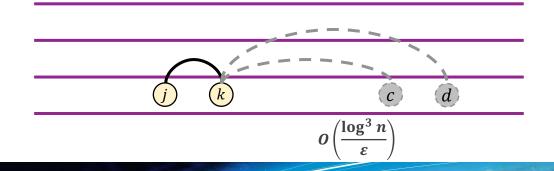
• *R* is $\frac{\varepsilon}{8\log_{1+\eta}^2(n)}$ - LR by privacy of Geometric Mechanism [Chan-Shi-Song '11; Balcer-Vadhan '18]

- Can be implemented via local randomizers R
- *R* takes as input *a* (adjacency list) and public set of active vertices *A*
 - *R* computes size of intersection $|a \cap A|$ Sensitivity of 1
 - Then, add symmetric geometric noise $X \sim Geom\left(\frac{\varepsilon}{8\log_{1+n}^2(n)}\right)$
- *R* is $\frac{\varepsilon}{8\log_{1+\eta}^2(n)}$ LR by privacy of Geometric Mechanism [Chan-Shi-Song '11; Balcer-Vadhan '18]
- Same LR called for all vertices $4\log_{1+\eta}^2(n)$ times

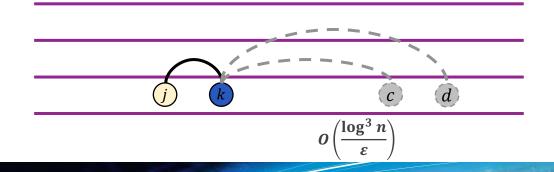
- Can be implemented via local randomizers R
- *R* takes as input *a* (adjacency list) and public set of active vertices *A*
 - *R* computes size of intersection $|a \cap A|$ Sensitivity of 1
 - Then, add symmetric geometric noise $X \sim Geom\left(\frac{\varepsilon}{8\log^2 + \pi(n)}\right)$
- *R* is $\frac{\varepsilon}{8\log_{1+\eta}^2(n)}$ LR by privacy of Geometric Mechanism [Chan-Shi-Song '11; Balcer-Vadhan '18]
- Same LR called for all vertices $4\log_{1+\eta}^2(n)$ times
- For each edge, called $8\log_{1+\eta}^2(n)$; then, $8\log_{1+\eta}^2(n) \cdot \frac{\varepsilon}{8\log_{1+\eta}^2(n)} = \varepsilon$ and so ε -LEDP

• With high probability, magnitude of each drawn noise is **upper bounded by** $O\left(\frac{\log^3 n}{\epsilon}\right)$

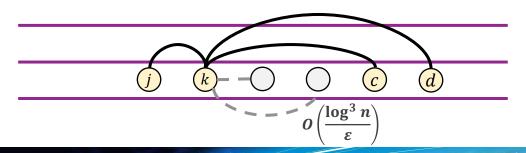
- With high probability, magnitude of each drawn noise is **upper bounded by** $O\left(\frac{\log^3 n}{\epsilon}\right)$
- **Degree Upper Bound:** If a vertex v is on level $i < 4\log_{1+\eta}(n)$ at end of algorithm, then it has at most $(1 + \eta)^i + O\left(\frac{\log^3 n}{\epsilon}\right)$ neighbors on levels $\geq i$



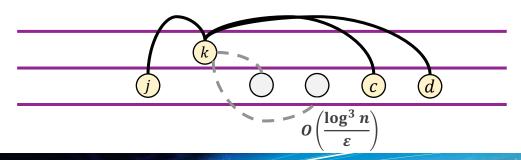
- With high probability, magnitude of each drawn noise is **upper bounded by** $O\left(\frac{\log^3 n}{\epsilon}\right)$
- **Degree Upper Bound:** If a vertex v is on level $i < 4\log_{1+\eta}(n)$ at end of algorithm, then it has at most $(1 + \eta)^i + O\left(\frac{\log^3 n}{\varepsilon}\right)$ neighbors on levels $\geq i$



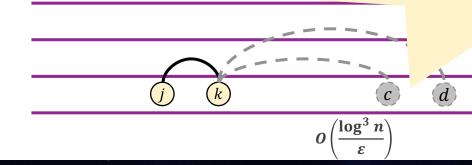
- With high probability, magnitude of each drawn noise is upper bounded by $O\left(\frac{\log^3 n}{\epsilon}\right)$
- **Degree Upper Bound:** If a vertex v is on level $i < 4\log_{1+\eta}(n)$ at end of algorithm, then it has at most $(1 + \eta)^i + O\left(\frac{\log^3 n}{\epsilon}\right)$ neighbors on levels $\geq i$
- **Degree Lower Bound:** If a vertex v is on level i > 0 at end of algorithm, then it has at least $(1 + \eta)^i O\left(\frac{\log^3 n}{\varepsilon}\right)$ neighbors on levels $\geq i 1$



- With high probability, magnitude of each drawn noise is upper bounded by $O\left(\frac{\log^3 n}{\epsilon}\right)$
- **Degree Upper Bound:** If a vertex v is on level $i < 4\log_{1+\eta}(n)$ at end of algorithm, then it has at most $(1 + \eta)^i + O\left(\frac{\log^3 n}{\epsilon}\right)$ neighbors on levels $\geq i$
- **Degree Lower Bound:** If a vertex v is on level i > 0 at end of algorithm, then it has at least $(1 + \eta)^i O\left(\frac{\log^3 n}{\varepsilon}\right)$ neighbors on levels $\geq i 1$

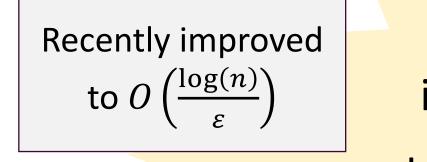


Key: Largest cutoff increases/decreases by **additive** $O\left(\frac{\log^3 n}{\epsilon}\right)$



CPSC 768

 $\log^3 n$



Key: Largest cutoff increases/decreases by **additive** $O\left(\frac{\log^3 n}{\varepsilon}\right)$

