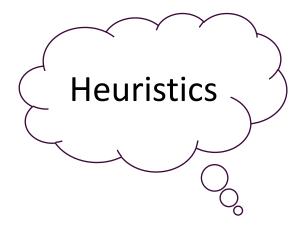
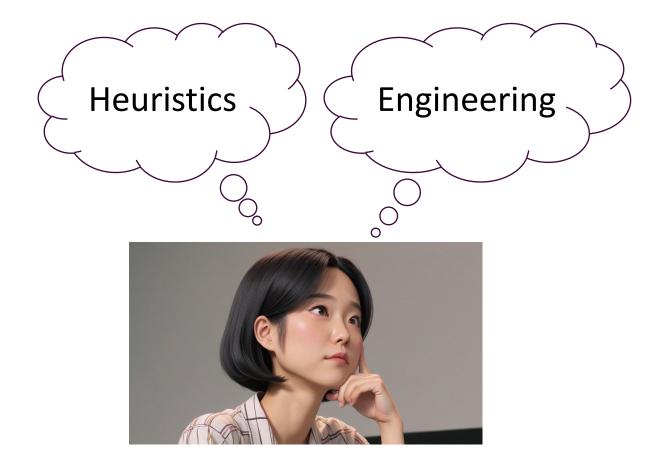
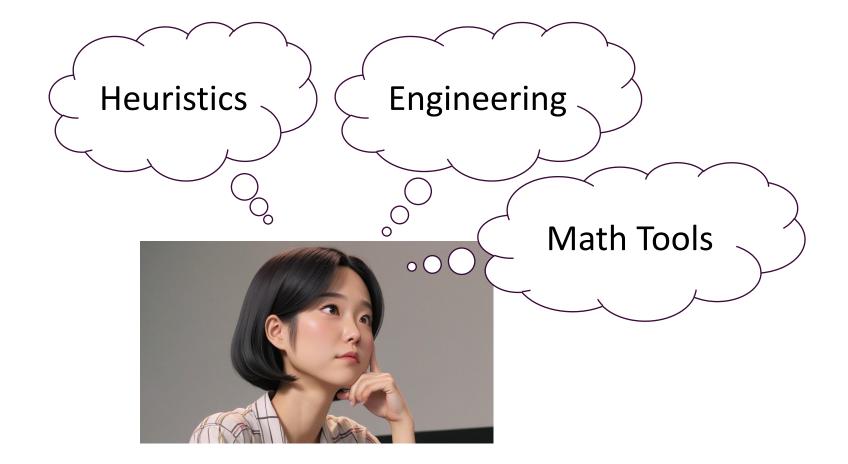
CPSC 768: Scalable and Private Graph Algorithms

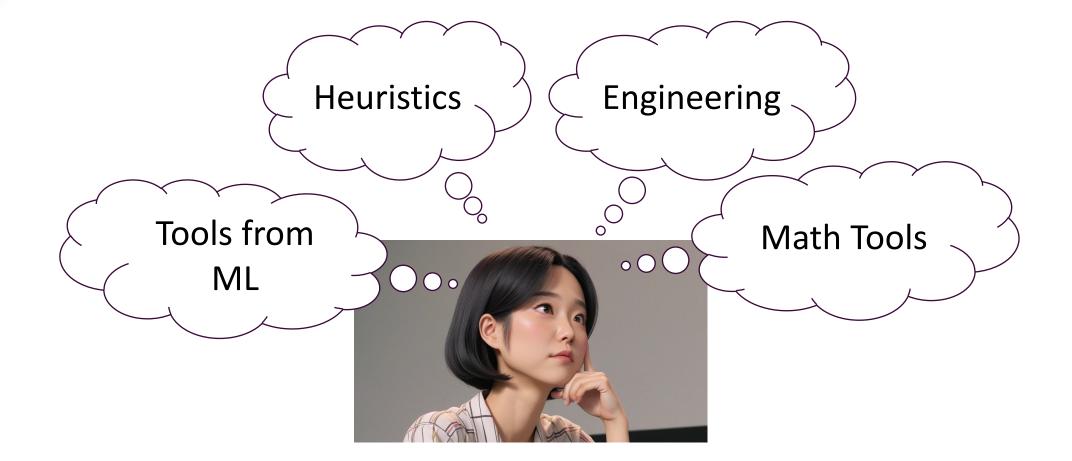
Lecture 1: Intro

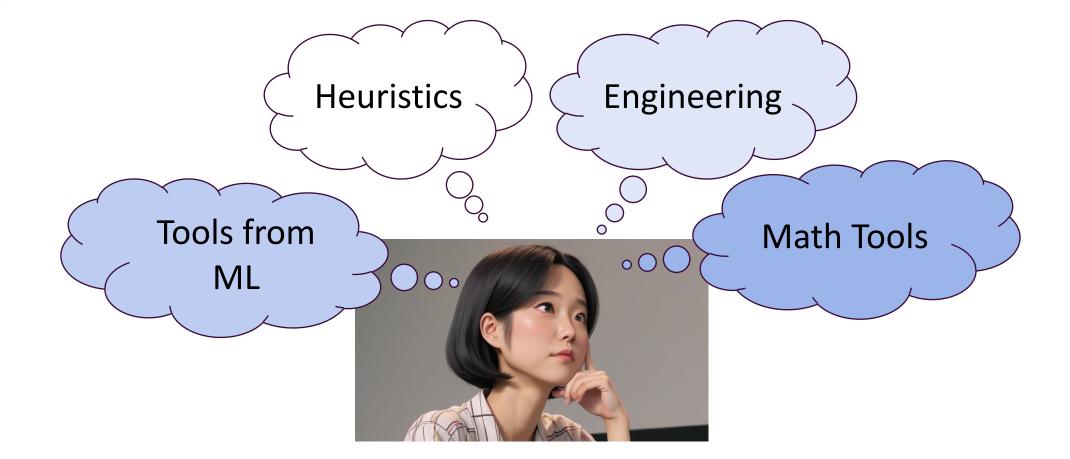
Quanquan C. Liu quanquan.liu@yale.edu











Provably efficient algorithms

CPSC 768

Models that consider modern challenges and computing environments

Ц.

Data structures with best theoretical guarantees Implementable in practice

Key Modern Challenge: Massive Datasets

MASSIVE graph data sets

~ 27 billion comments

Web Data Commons Hyperlink Graph

~ 128 billion hyperlinks

ClueWeb

~ 10 billion edges

CPSC 768

Google

~ 6 trillion edges

~ 300 million neurons

Main Takeaway of the Class

- This class is focused on **research**
 - Use the **techniques you learn** outside of this class
 - Start conducting research in these topics and more
 - Exposure to practice problems and **open problems**
 - Complete a final project

Logistics

- Course website: https://quanquancliu.com/cpsc768
 - Everything important!
 - Syllabus
 - Recommended topics
 - Class schedule
 - Links to a bunch of papers
 - Class notes (posted as a batch for the week on Sunday)
- Open problem session scheduling + survey: https://forms.gle/CsKnH5DvuVu5XKXQA

Format and Workload

- Two class presentations on subjects of their choice related to the topics of the course. 50% of grade.
 - Finalize dates and topics for presentations before April 1: due Feb. 5.
 - Finalize dates and topics for presentations on and after April 1: due Feb. 26.
- One final project (individual or with partner). 50% of grade.

Format and Workload

- One final project (individual or with partner). 50% of grade.
 - Project proposal (1 page): due Feb. 26.
 - Progress report (2-3 pages): due March 27.
 - In-class presentation: last two weeks of class.
 - Final report (at least 8 pages, less than 20): April 24

Final Project Details (in the context of SODA/SOSA/ALENEX)

• Reading project (e.g. SOSA paper):

- Read 2-3 papers on the same project and survey on key ideas
- Service to the community for hard to read papers!

Final Project Details (in the context of SODA/SOSA/ALENEX)

• Reading project (e.g. SOSA paper):

- Read 2-3 papers on the same project and survey on key ideas
- Service to the community for hard to read papers!

• Theory project (e.g. SODA paper):

- Make an improvement over previous result
- Solve an open problem

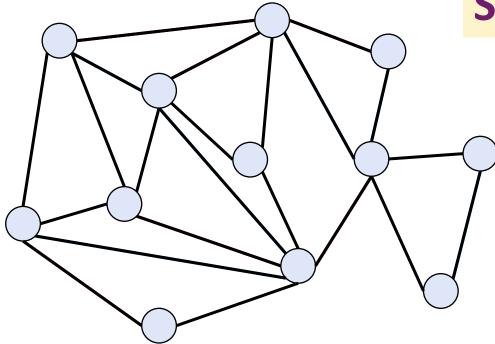
Final Project Details (in the context of SODA/SOSA/ALENEX)

• Reading project (e.g. SOSA paper):

- Read 2-3 papers on the same project and survey on key ideas
- Service to the community for hard to read papers!
- Theory project (e.g. SODA paper):
 - Make an improvement over previous result
 - Solve an open problem
- Implementation project (e.g. ALENEX paper):
 - Algorithm engineering implementation of an algorithm
 - Give a *more implementable* solution with same or better theory guarantees
- More details given in the syllabus

A Brief Overview of Some Models Covered in This Class

A Key Focus on Graphs



Static or Dynamic

How to represent graph:

- On one machine
- Distributed across many machines

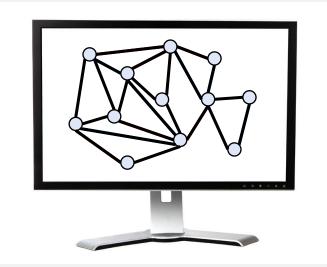
How to represent graph:	What resources to process:
On one machine	 Multiple cores
 Distributed across many 	 Communication network
machines	over machines

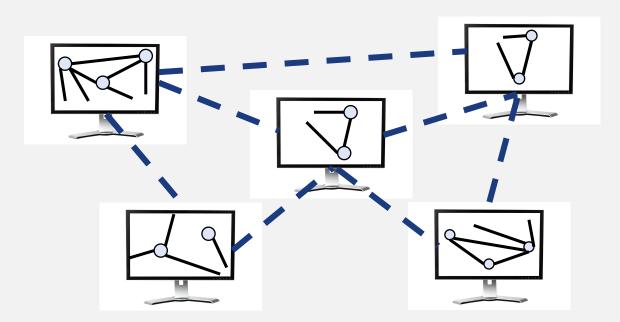
How to represent graph:	What resources to process:
On one machine	Multiple cores
 Distributed across many 	 Communication network
machines	over machines
How updates are given:	
In batches of multiple	
updates	
As a stream of updates	

How to represent graph:	What resources to process:
On one machine	 Multiple cores
 Distributed across many 	 Communication network
machines	over machines
How updates are given:	Adversarial models:
 In batches of multiple 	 Adaptive/oblivious
updates	 Privacy violating
As a stream of updates	Central/Local

How to Represent the Graph

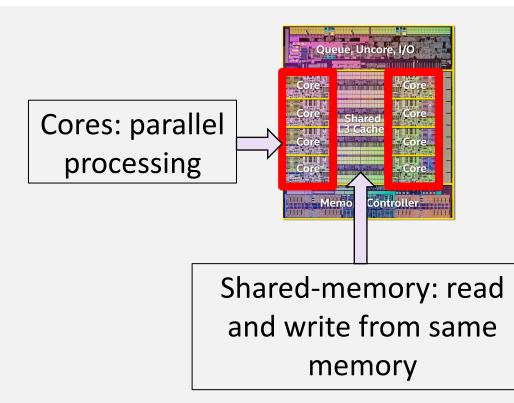
- On one machine
- Distributed across many machines





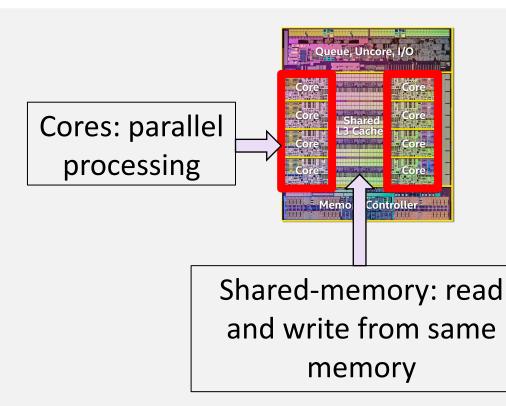
- Multiple cores and processors
- Communication network over machines

- Multiple cores and processors
- Communication network over machines



CPSC 768

- Multiple cores and processors
- Communication network over machines



Shared-memory work-depth model

- Work:
 - Total number of operations
- Depth/Span:
 - Longest chain of sequential dependencies in algorithm

- Multiple cores and processors
- Communication network over machines

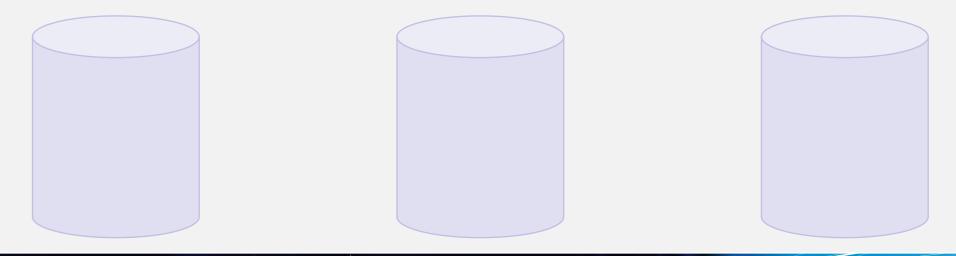
Massively Parallel Computation (MPC) Model

- *M* machines
- Synchronous rounds

- Multiple cores and processors
- Communication network over machines

Massively Parallel Computation (MPC) Model

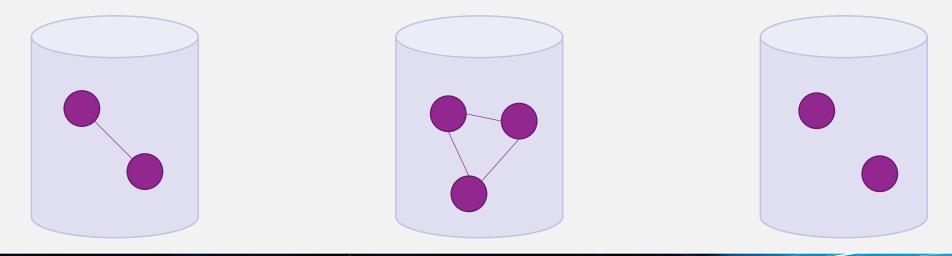
- *M* machines
- Synchronous rounds



- Multiple cores and processors
- Communication network over machines

Massively Parallel Computation (MPC) Model

- *M* machines
- Synchronous rounds



- Multiple cores and processors
- Communication network over machines

Massively Parallel Computation (MPC) Model

S space per machine

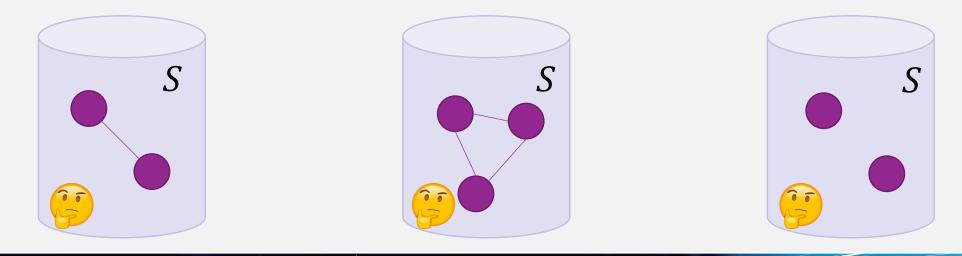
- *M* machines
 - ronous rounds
- Synchronous rounds
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S

- Multiple cores and processors
- Communication network over machines

Massively Parallel Computation (MPC) Model

- *M* machines
- Synchronous rounds

• S space per machine



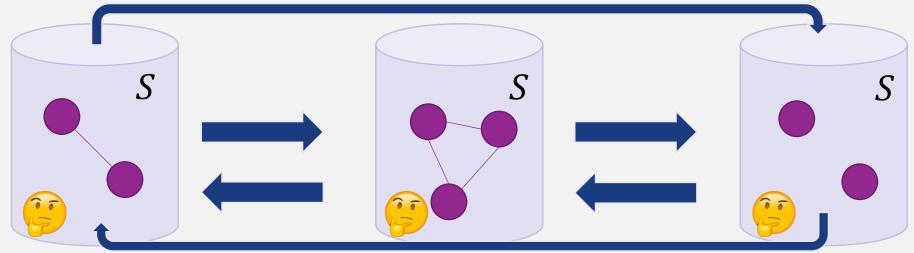
- Multiple cores and processors
- Communication network over machines

Massively Parallel Computation (MPC) Model

• *M* machines

• S space per machine

• Synchronous rounds



- Multiple cores and processors
- Communication network over machines

Massively Parallel Computation (MPC) Model

CPSC 768

- *M* machines
- Synchronous rounds

S

• *S* space per machine

Total Space: $M \cdot S$

- Multiple cores and processors
- Communication network over machines

Massively Parallel Computation (MPC) Model

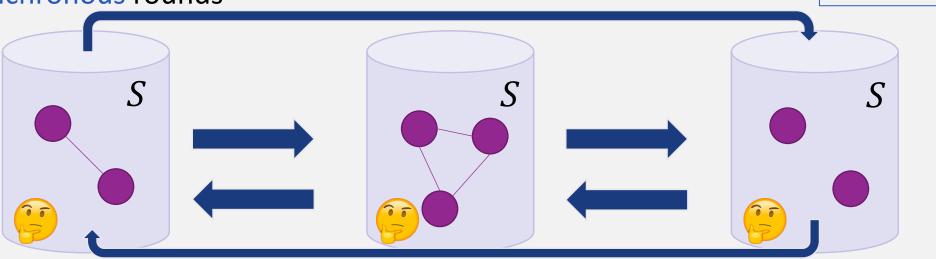
- *M* machines
- Synchronous rounds

• S space per machine

- Total Space
- Space Per Machine

Total Space: $M \cdot S$

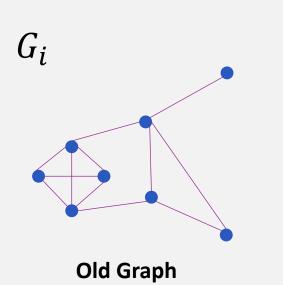
 Rounds of communication



How Updates are Given

- In batches of multiple updates
- As a stream of updates

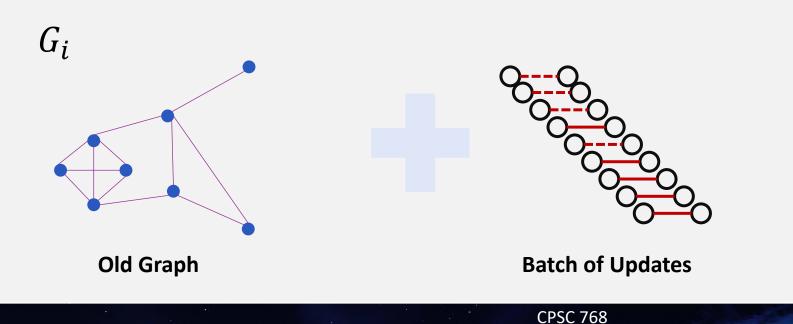
Batch-dynamic model



How Updates are Given

- In batches of multiple updates
- As a stream of updates

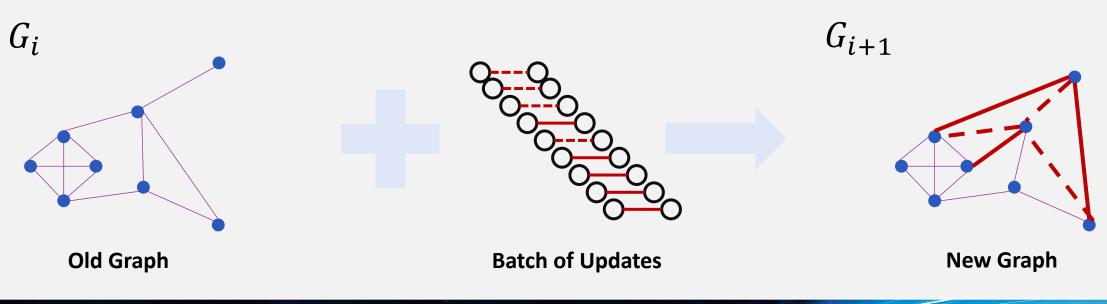
Batch-dynamic model



How Updates are Given

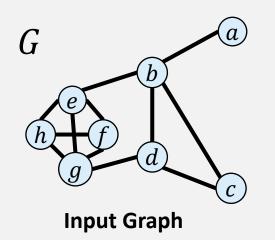
- In batches of multiple updates
- As a stream of updates

Batch-dynamic model



- In batches of multiple updates
- As a stream of updates

Streaming Model



- In batches of multiple updates
- As a stream of updates

Streaming Model

е

a

b

CPSC 768

b

d

d

c

h

 \widehat{f}

Input Stream

(h)

e

g

(f)

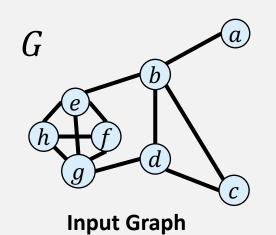
e

b

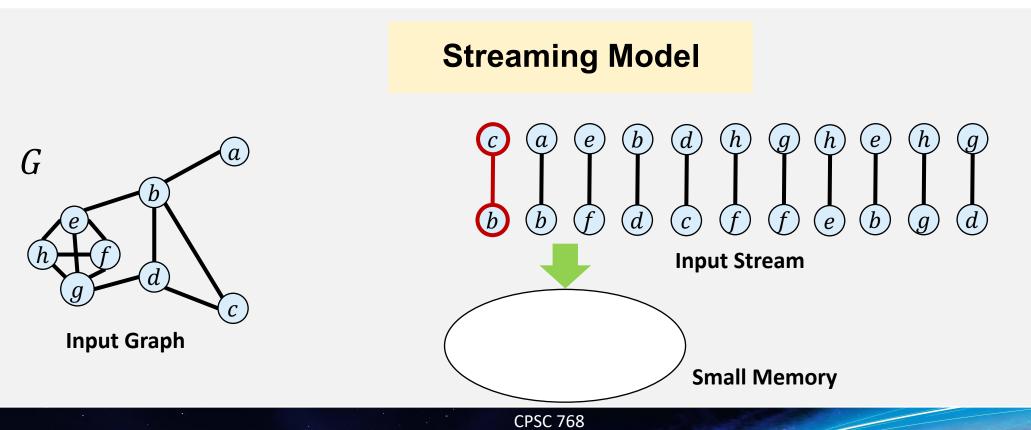
h

 $\left(g\right)$

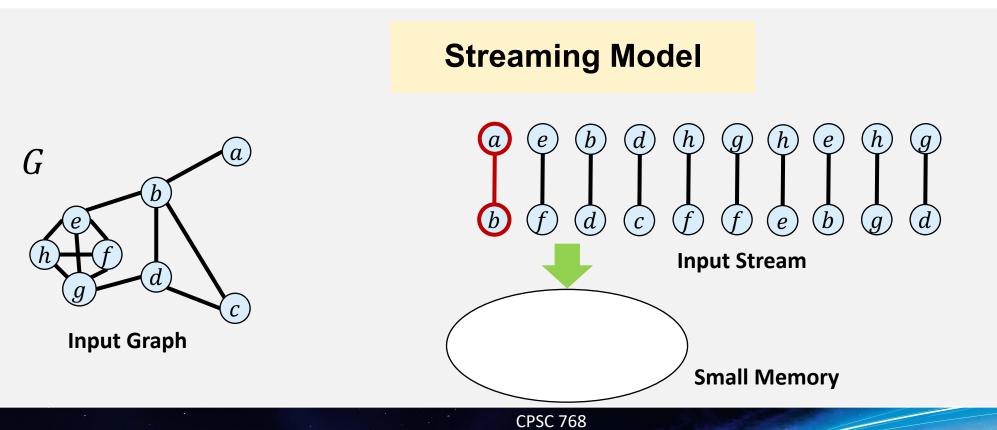
g



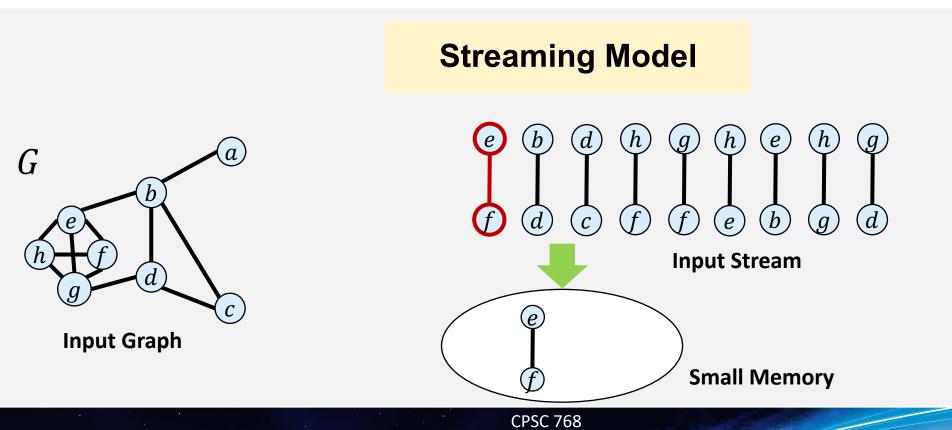
- In batches of multiple updates
- As a stream of updates



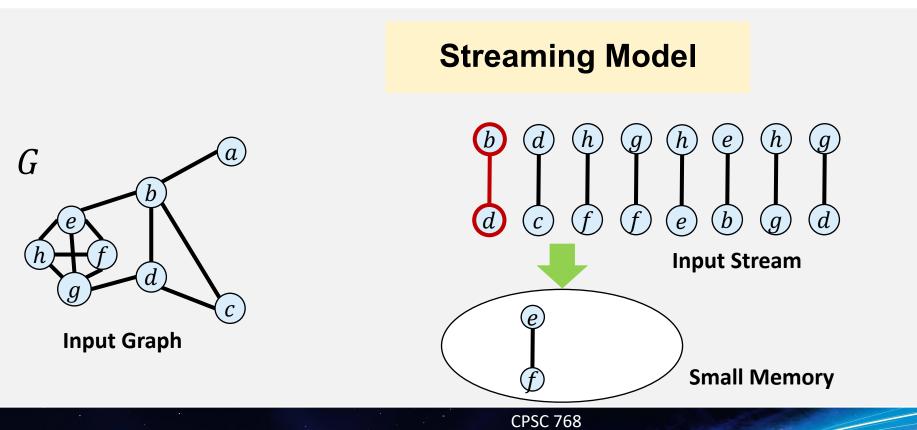
- In batches of multiple updates
- As a stream of updates



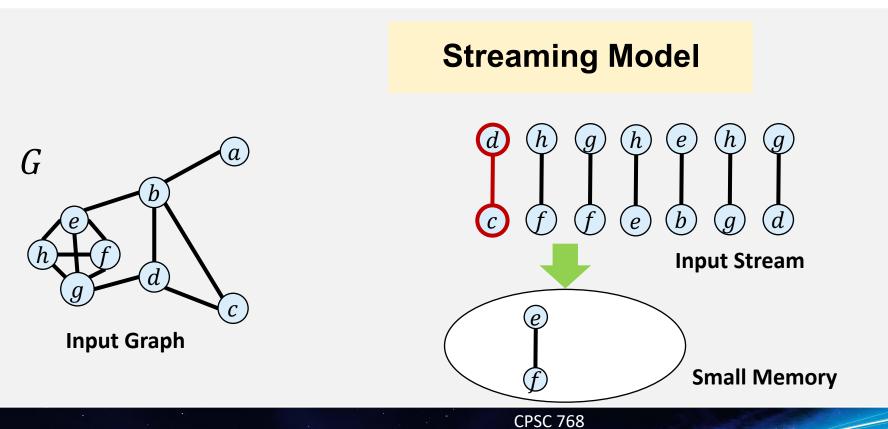
- In batches of multiple updates
- As a stream of updates



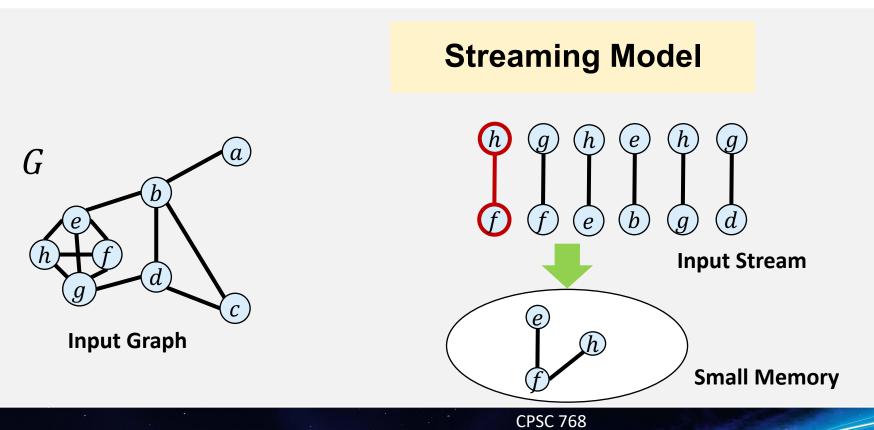
- In batches of multiple updates
- As a stream of updates



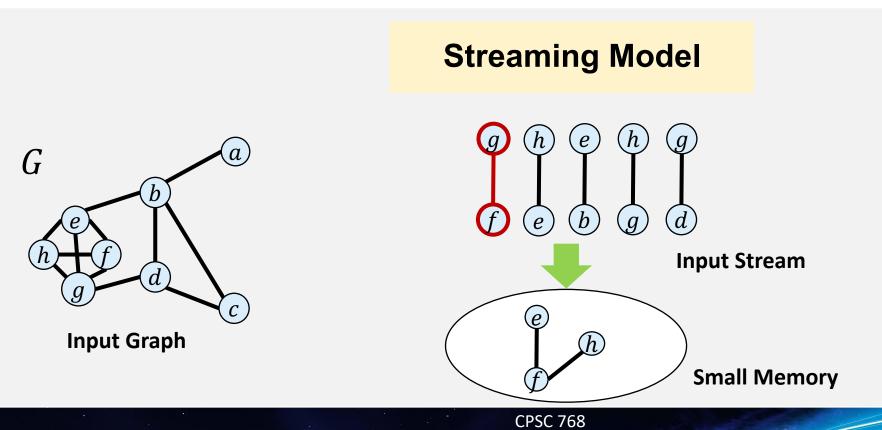
- In batches of multiple updates
- As a stream of updates



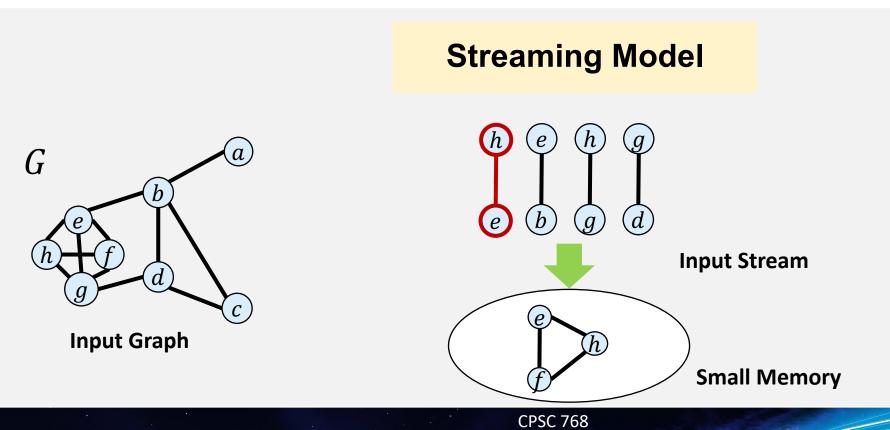
- In batches of multiple updates
- As a stream of updates



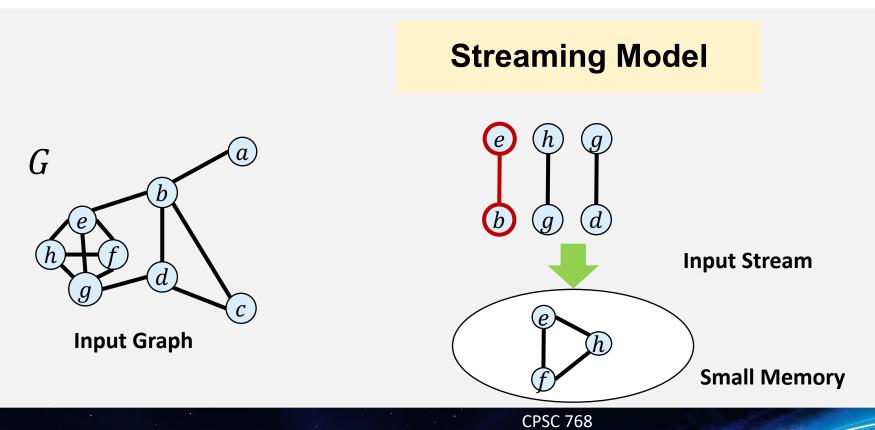
- In batches of multiple updates
- As a stream of updates



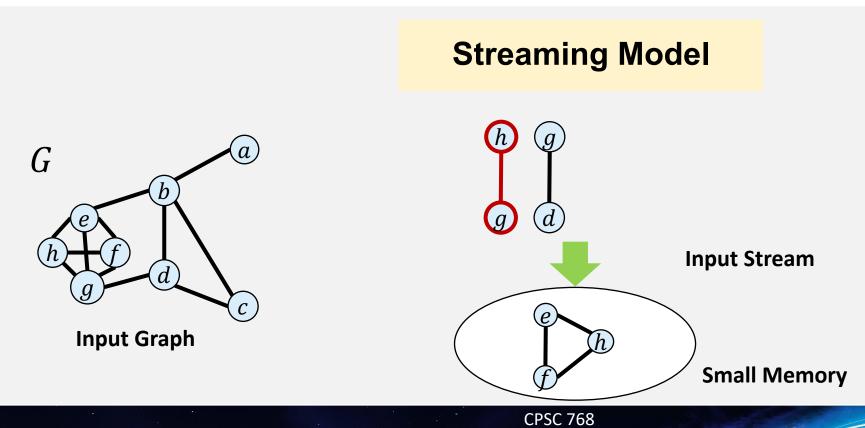
- In batches of multiple updates
- As a stream of updates



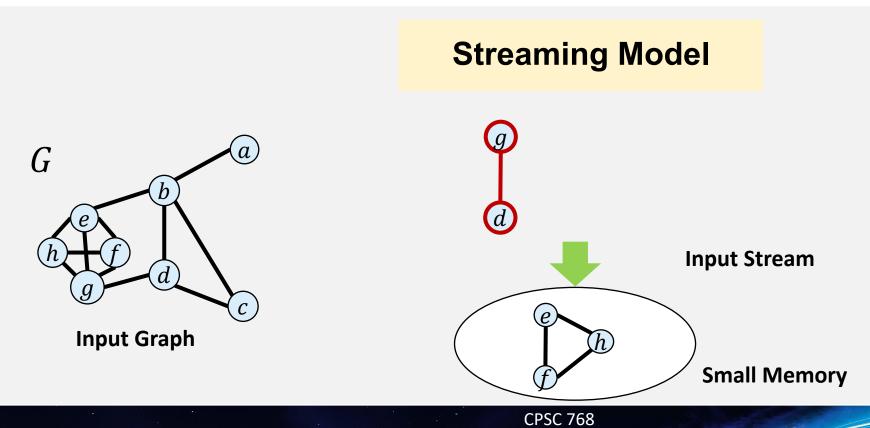
- In batches of multiple updates
- As a stream of updates



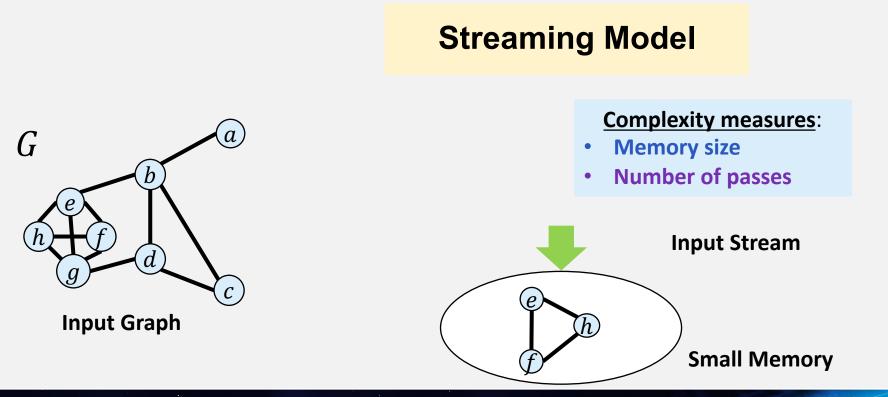
- In batches of multiple updates
- As a stream of updates



- In batches of multiple updates
- As a stream of updates



- In batches of multiple updates
- As a stream of updates



- Adaptive/oblivious
- Privacy violating

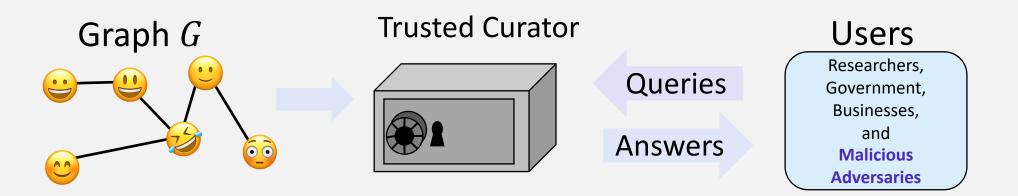
- Adaptive/oblivious
- Privacy violating

Oblivious: no knowledge on algorithm outputs **Adaptive:** can see previous algorithm outputs (sometimes internal random bits)

- Adaptive/oblivious
- Privacy violating

Oblivious: no knowledge on algorithm outputs **Adaptive:** can see previous algorithm outputs (sometimes internal random bits)

Differential Privacy: Central Model (DP)



- Adaptive/oblivious
- Privacy violating

Oblivious: no knowledge on algorithm outputs **Adaptive:** can see previous algorithm outputs (sometimes internal random bits)

Differential Privacy: Central Model (DP)

Differential Privacy

An algorithm \mathcal{A} is ε -differentially private if for all pairs of neighbors Gand G' and all sets of possible outputs S: $\Pr[\mathcal{A}(G) \in S] \leq e^{\varepsilon} \cdot \Pr[\mathcal{A}(G') \in S].$

Neighboring inputs differ in some information we'd like to hide

- Adaptive/oblivious
- Privacy violating

Oblivious: no knowledge on algorithm outputs **Adaptive:** can see previous algorithm outputs (sometimes internal random bits)

Neighboring Inputs

Edge-neighboring graphs: differ in one edge

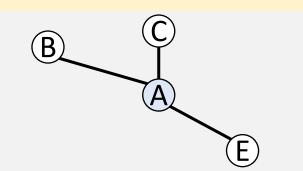
- Adaptive/oblivious
- Privacy violating

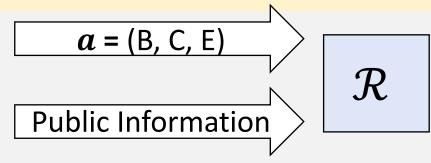
Oblivious: no knowledge on algorithm outputs **Adaptive:** can see previous algorithm outputs (sometimes internal random bits)

Differential Privacy: Local Model (LDP)

Local Randomizer

An ε -local randomizer \mathcal{R} is an ε -differentially private algorithm that takes as input an adjacency list a and public information.





Batch-Dynamic + {Shared-memory work-depth, MPC}

Batch-Dynamic + {Shared-memory work-depth, MPC}

Dynamic + Differential Privacy = Continual Release

Batch-Dynamic + {Shared-memory work-depth, MPC}

Dynamic + Differential Privacy = Continual Release

Distributed + Differential Privacy = Local Model

Batch-Dynamic + {Shared-memory work-depth, MPC}

Dynamic + Differential Privacy = Continual Release

Distributed + Differential Privacy = Local Model

Incremental/Fully Dynamic + Streaming

Batch-Dynamic + {Shared-memory work-depth, MPC}

Dynamic + Differential Privacy = Continual Release

Distributed + Differential Privacy = Local Model

Incremental/Fully Dynamic + Streaming

And many more...

Each model is great for a different real-world system! But there are many!

Batch-Dynamic + {Shared-memory work-depth, MPC}

Dynamic + Differential Privacy = Continual Release

Distributed + Differential Privacy = Local Model

Incremental/Fully Dynamic + Streaming

And many more...

Each model is great for a different real-world system! But there are many!

Batch-Dynamic + {Shared-memory work-depth, MPC}

Dynamic + Differential Privacy = Continual Release

Distributed + Differential Privacy = Local Model

Incremental/Fully Dynamic + Streaming

What problems can we study where solutions can be implemented in many models without many changes?