Parallel Batch-Dynamic Algorithms for k-Core
Decomposition and Related Problems

Quanquan C. Liu
Northwestern University

Jessica Shi Shangdi Yu Laxman Dhulipala Julian Shun
MIT MIT University of Maryland MIT

SPAA 2022

k-Core

3-Core

SPAA 2022

k-Core Decomposition

Coreness or Core Number
of Node v:
Maximum Core Value of a
Core Containing v

3

SPAA 2022

k-Core Decomposition

2 1-Core

Coreness or Core Number
of Node v:
Maximum Core Value of a
Core Containing v

2-Core

SPAA 2022

Approximate k-Core Decomposition

Approx. Core
Number : 2

c-Approx. Core Number:
Value lower bounded by
core(v)/c and upper
bounded by ¢ * core(v)

Approx. core number of every
node: 3

SPAA 2022

Approximate k-Core Decomposition

3/2-
approx Approx. Core
Number : 2

2-approx
c-Approx. Core Number:
Value lower bounded by
core(v)/c and upper
bounded by ¢ * core(v)

Approx. core number of every
node: 3

SPAA 2022

Approximate k-Core Decomposition

approx Approx. Core approximations in
Number : 2 this paper

2-approx
c-Approx. Core Number:
Value lower bounded by
core(v)/c and upper
bounded by ¢ * core(v)

Approx. core number of every
node: 3

SPAA 2022

Applications of k-Core Decomposition

Graph clustering

wm Y
gt \ i e 3
woils3 \gmz - pions /

o

po%s
Wy P s
MO0D9S

/
i J)WUS

177
0115 Q0I5 1
012

M1
H0122

Community detection

Graph visualizations = T

0064,
@MO0I0, 4 N pnnncy \ .
@HO05 2 N

017

Protein network analysis L
Modeling of disease spread
Approximating network centrality

153 \

\
Yoongs \ P
Ywons)

liu, chen
Kaur, fasieen

radicchi, filippo wang, xianwen

@tasfodrigo _boyackikevinw. son@ning
bornep, katy dingging
schfloa, uirch yanigiia

I I l | “ 9 @ van dertbesselaar, petep
el luiggy larivierggyinégnt ¢ mutzggidiger

van eugn, hed n "y i ive ; o’ ®
visser, @artin s Y ornd YUtz
rafolsiismael
ortegaffesé I Sinsfordan a
s oresilus @ &
aksnessdagw. meyermartin ®

Much interest in the machine = 1 -

gl egghe leo Shotar abbasigglireza
youtlg, i

@mocden®? rousseau, ronald® e f@dy.

learning, database, graph TRl S

delgado lopaa-cozar, emilio

fdezvalliv, | ®
debackergkoenigad .
. g darsi@cinzia schube@nias ke huang,wrhsua:
bonaccofs, andrea cots.indor|)\ A ™
chenidar-zer

b) hassan,gseed-ul Dragiuan © MBI partieyjames

cicerogndaro schiebalpedgar chang ke-chiun ho, yuh-shan

> chen, yurshan chuang, kun-yang

Wangols, lare

abrame, giovanni
e besagni, dominique

&, vosviewer
di costay flavia

SPAA 2022

Applications of k-Core Decomposition

° Graph Clllefnrlnn %
. Commu Static, Sequentlal Settmg O(n) t|me -
 Graph visualizations - e Al : =
* Protein netwol Billions or Even Trillions of Edges
« Modeling of di
* Approximating Too Much Time to Process Statically and

measures)

_ Sequentially

e Much interest i1 uic 1iacinic

learning, database, graph
analytics, and other communities

chen, yirshan
,,,,,,,,,,,,,

besagni, dominique

eeeeeeeee

SPAA 2022

Large Graphs

~ 92.5 million edges

~ 1.8 billion edges

Crawl

GQ gle ~ 6 trillion edges

~ 2 billion edges

~ 128 billion edges

SPAA 2022

Large Graphs

~ 1.8 billion edges

Crawl

~ 92.5 million edges

~ 2 billion edges

~ 128 billion edges

GO gle ~ 6 trillion edges

SPAA 2022

Graphs are rapidly changing:

3M emails/sec

486K WhatApp messages/sec
500M tweets/day

547K new websites/day

Work-Depth Model

* Work:
 Total number of operations executed by algorithm

« Work-efficient. work asymptotically the same as best-known
sequential algorithm

* Depth:
» Longest chain of sequential dependencies in algorithm
* Other Characteristics:

* Arbitrary forking
« Concurrent read, concurrent write to the same shared memory

SPAA 2022

Batch-Dynamic Model Definition

G; Gitq
D -
1-Core O-O--OO - - /| 1-Core

OO I\
Oo—o0
=0 '
3-Core 7-Core O_O 2-Core
Initial k-Core Decomposition B Edge Insertions/Deletions New k-Core Decomposition

- |nsertion
= == Deletion

SPAA 2022

Batch-Dynamic Graph Algorithms

 Triangle counting [Ediger et al. ‘10, Makkar et al. 17, Dhulipala et al. ‘20]
« Euler Tour Trees [Tseng et al. “19]

« Connected Components [Ferragina and Lucio ‘94, McColl et al. ‘13; Acar
et al. 19, Nowicki and Onak 21]

« Rake-Compress Trees [Acar et al. ‘20]
* Incremental Minimum Spanning Trees [Anderson et al. ‘20]

* Minimum Spanning Forest/Graph Clustering [Nowiki and Onak ‘21, Tseng
et al. '22]

« Graph Connectivity [Dhulipala et al. ‘20]
« Maximal Matching [Nowicki and Onak ‘21]

SPAA 2022

Why Approximate k-Core Decomposition

 Dynamic exact k-core decomposition:

* O (n) work, 2(n) depth, parallel [Aridhi et al ‘16, Gabert et
al. ‘21, Hua et al. ‘20, Jin et al. 18, Wang ‘17]

« One update can cause 2(n) coreness changes

SPAA 2022

Why Approximate k-Core Decomposition

 Dynamic exact k-core decomposition:

* O (n) work, 2(n) depth, parallel [Aridhi et al ‘16, Gabert et
al. ‘21, Hua et al. ‘20, Jin et al. 18, Wang ‘17]

« One update can cause 2(n) coreness changes
2

2 = 2
_/
2 2
1\
_/
2 2 2

SPAA 2022

Why Approximate k-Core Decomposition

 Dynamic exact k-core decomposition:

* O (n) work, 2(n) depth, parallel [Aridhi et al ‘16, Gabert et
al. ‘21, Hua et al. ‘20, Jin et al. 18, Wang ‘17]

« One update can cause 2(n) coreness changes

2
Z/C O 2

SPAA 2022

Why Approximate k-Core Decomposition

 Dynamic exact k-core decomposition:

* O (n) work, 2(n) depth, parallel [Aridhi et al ‘16, Gabert et
al. ‘21, Hua et al. ‘20, Jin et al. 18, Wang ‘17]

« One update can cause 2(n) coreness changes

1
IG N 1

—/

1 1
)

1

¢

SPAA 2022

Why Approximate k-Core Decomposition

 Dynamic exact k-core decomposition:

* O (n) work, 2(n) depth, parallel [Aridhi et al ‘16, Gabert et
al. ‘21, Hua et al. ‘20, Jin et al. 18, Wang ‘17]

« One update can cause 2(n) coreness changes

2
Z/C O 2

SPAA 2022

Why Approximate k-Core Decomposition

 Dynamic approximate k-core decomposition:
- O(log? n) time amortized, sequential, (2 + £)-approximation
[Sun et al. *20]
« Can accumulate error, charge time to updates

* Threshold peeling procedure

SPAA 2022

Why Approximate k-Core Decomposition

 Dynamic approximate k-core decomposition:
- O(log? n) time amortized, sequential, (2 + £)-approximation
[Sun et al. *20]
« Can accumulate error, charge time to updates

* Threshold peeling procedure

Does not use parallelism
One update at a time

SPAA 2022

Why Approximate k-Core Decomposition

 Dynamic approximate k-core decomposition:
- O(log? n) time amortized, sequential, (2 + £)-approximation
[Sun et al. *20]
« Can accumulate error, charge time to updates

* Threshold peeling procedure

Caveat: amortized O (log? n) depth,
worst-case (L(n) depth

Want: worst-case poly(log n) depth

SPAA 2022 , ST

Batch Dynamic k-Core Decomposition

* (2 + €)-approximation for coreness of every vertex

SPAA 2022

Batch Dynamic k-Core Decomposition

* (2 + €)-approximation for coreness of every vertex

- 0(B log? n) amortized work and 0(log? nloglogn) depth
with high probability, size B batch

SPAA 2022

Batch Dynamic k-Core Decomposition

* (2 + €)-approximation for coreness of every vertex

- 0(B log? n) amortized work and 0(log? nloglogn) depth
with high probability, size B batch

 |s work-efficient, matches Sun et al. ‘20

SPAA 2022

Batch Dynamic k-Core Decomposition

* (2 + €)-approximation for coreness of every vertex

- 0(B log? n) amortized work and 0(log? nloglogn) depth
with high probability, size B batch

 |s work-efficient, matches Sun et al. ‘20

- Based on a parallel level data structure (PLDS)

SPAA 2022

Batch Dynamic k-Core Decomposition + Others!

* (2 + e)-approximation for coreness
of every vertex

_ Static k-Core Decomposition
- 0(B log? n) amortized work and _ _
0(log? nloglogn deﬁth with high Low Out-Degree Orientation
probability, size B batc i i
Maximal Matching

- Is work-efficient, matches Sun et Clique Counting

al. '20 .
/ Vertex Coloring
« Based on a Earallel level data

structure (PLDS)

SPAA 2022

Sequential Level Data Structures for
Dynamic Problems

« Maximal Matching [Baswana-Gupta-Sen 18, Solomon “16]

* (A + 1)-Coloring [Bhattacharya-Chakrabarty-Henzinger-Nanongkai ‘18,
Bhattacharya-Grandoni-Kulkarni-L-Solomon ‘19]

 Clustering [Wulff-Nilsen ‘12]

* Low out-degree orientation [Solomon-Wein 20, Henzinger-Neumann-
Weiss 20]

* Densest subgraph [Bhattacharya-Henzinger-Nanongkai-Tsourakakis ‘15]

SPAA 2022 , //

Sequential Level Data Structure (LDS)

(:

7 9

0(log?n) | s (H el

5 ~_ 7 |

4 S 9

| 5 3 [
Vertices partitioned | , Ry
into levels 1 ‘%_/‘

\ 4

Bhattacharya-Henzinger-Nanongkai-Tsourakakis STOC 2015
Henzinger-Neumann-Weiss 2020

SPAA 2022

Sequential Level Data Structure (LDS)

A A
8 Group of O(log n) levels
7 9
2
O(logn) | s Q_] M
> \ / I Group of O(log n) levels
4 @ 9
Verti titi d) // /7/ X
ertices partitione 2
into levels ; ‘//?,/‘ Group of O(log n) levels
v ° v

Bhattacharya-Henzinger-Nanongkai-Tsourakakis STOC 2015
Henzinger-Neumann-Weiss 2020

SPAA 2022

Sequential Level Data Structure (LDS)

A A
8 Group of O(log n) levels
7 _———9 -
2 Cut-off: (1 + €)}
0(logn) | s « I B Tt
Z \;/ /‘I Group of O(log n) levels
Cut-off: (1 + €)1
Verti titi d) // /7/ X
ertices partitione 2
. Group of O(log n) levels
into levels ! ‘//?"/‘ Cut-off: (1 + €)'72
v O v ses

Bhattacharya-Henzinger-Nanongkai-Tsourakakis STOC 2015
Henzinger-Neumann-Weiss 2020

SPAA 2022

Sequential Level Data Structure (LDS)

0(log? n)

Vertices partitioned
into levels

A A
)| Used for Vertex Coloring ||
s and Densest Subgraphs |4
4 » 9
2 / Z/

Not used for k-core
decomposition prior to our work

v

— v

Group of O(log n) levels
Cut-off: (1 + €)*

Group of O(log n) levels
Cut-off: (1 + €)' 1

Group of O(log n) levels
Cut-off: (1 + ¢)i~2

Bhattacharya-Henzinger-Nanongkai-Tsourakakis STOC 2015

Henzinger-Neumann-Weiss 2020

SPAA 2022

Sequential Level Data Structure (LDS)

>

0(log® n)

|
é ’ # neighbors: > 2.1(1 + ¢€)*

=
= edge insertion

Vertices partitioned
into levels

O L N W B U1 OONd
RN

<€

Bhattacharya-Henzinger-Nanongkai-Tsourakakis STOC 2015 and Henzinger-Neumann-Weiss 2020

SPAA 2022

Sequential Level Data Structure (LDS)

A
8
O(log®n) |/
> # neighbors: > 2.1(1 + ¢€)*
4
Vertices partitioned | 3
into levels 2 -
1 = edge insertion
Vv 0

Bhattacharya-Henzinger-Nanongkai-Tsourakakis STOC 2015 and Henzinger-Neumann-Weiss 2020

SPAA 2022

Sequential Level Data Structure (LDS)

>

0(log® n)

l — = = = =egdge deletion

7 . -
Vertices partitioned [y: # neighbors: < (1 + €)'

into levels

O R, N WD U ®
\
N
N

<€

Bhattacharya-Henzinger-Nanongkai-Tsourakakis STOC 2015 and Henzinger-Neumann-Weiss 2020

SPAA 2022

Sequential Level Data Structure (LDS)

>

0(log® n)

l — = = = =egdge deletion

/ / # neighbors: < (1 + €)t

Vertices partitioned
into levels

O r N W b~ U1 O N
I~

<€

Bhattacharya-Henzinger-Nanongkai-Tsourakakis STOC 2015 and Henzinger-Neumann-Weiss 2020

SPAA 2022

Difficulties with Parallelization

Large sequential Large depth
dependencies L

SPAA 2022

Difficulties with Parallelization

Large sequential Large depth
dependencies L

SPAA 2022

Difficulties with Parallelization

Large sequential Large depth
dependencies L

SPAA 2022

Difficulties with Parallelization

Large sequential Large depth

dependencies L
-

AN

SPAA 2022

Difficulties with Parallelization

Large sequential Large depth
dependencies L
i3
/
04

SPAA 2022

Difficulties with Parallelization

Large sequential Large depth
dependencies L
h /
/ \/
/ O
[

SPAA 2022

Difficulties with Parallelization

Large sequential Large depth
dependencies

SPAA 2022

Difficulties with Parallelization

Large sequential Large depth
dependencies L N
\

SPAA 2022

Difficulties with Parallelization

Large sequential Large depth
dependencies

SPAA 2022

Our Parallel Batch-Dynamic Level Data Structure (PLDS)

Deletions

|

©
\
\

|
O = edge deletion

L N W b~ U1 O N
N
) §
\
\

SPAA 2022

Our Parallel Batch-Dynamic Level Data Structure (PLDS)

Deletions

[N
[N

|

. |
ES____Q EEEERE =Edge dEIEtion

Only lower bound
cutoff, (1 + €)%, ever
violated.

= N W B~ U1 O N 00 o
N
) §
\
\
\\
N

SPAA 2022

Our Parallel Batch-Dynamic Level Data Structure (PLDS)

Deletions

[N
[N

[ERY
o
=
0o

I

Calculate desire-level:
closest level that
satisfies cutoffs

e
d'=5\5----© dl: 5 xsu= = edge deletion

Only lower bound
cutoff, (1 + €)%, ever
violated.

= N W B~ U1 O N 00 o
N
) §
\
\

SPAA 2022

Our Parallel Batch-Dynamic Level Data Structure (PLDS)

Deletions

[N
[N

—) d:8

[ERY
o

Iterate from bottommost
level to top level and move

ll
dl: 5 D Q di:s vertices to desire-level
/

/

7 Only lower bqund
‘/‘/. cutoff, (1 + €)*, ever

violated.

Calculate desire-level:
closest level that
satisfies cutoffs

R N W b U1 OO d 0

SPAA 2022

Our Parallel Batch-Dynamic Level Data Structure (PLDS)

Calculate desire-level:
closest level that
satisfies cutoffs

=
o

R N W b U1 OO d 0

Deletions

_—) d:8

l
d:s (O CI) d:5
/

Iterate from bottommost
level to top level and move
vertices to desire-level

/ /

SPAA 2022

Only lower bound
cutoff, (1 + €)%, ever
violated.

Our Parallel Batch-Dynamic Level Data Structure (PLDS)

Calculate desire-level:
closest level that
satisfies cutoffs

=
o

R N W b U1 OO d 0

Deletions

_—) d:8

l
d:s (O CI) d:5
/

Iterate from bottommost
level to top level and move
vertices to desire-level

/ /

SPAA 2022

Only lower bound
cutoff, (1 + €)%, ever
violated.

Our Parallel Batch-Dynamic Level Data Structure (PLDS)

Calculate desire-level:
closest level that
satisfies cutoffs

=
o

R N W b U1 OO d 0

Deletions

_—) d:8

Q |
N

Iterate from bottommost
level to top level and move
vertices to desire-level

SPAA 2022

Only lower bound
cutoff, (1 + €)%, ever
violated.

Our Parallel Batch-Dynamic Level Data Structure (PLDS)

Calculate desire-level:
closest level that
satisfies cutoffs

=
o

R N W b U1 OO d 0

Deletions

dl: 6

_—Q) di6

Q_ |
N

N /

Iterate from bottommost
level to top level and move
vertices to desire-level

N |

SPAA 2022

Only lower bound
cutoff, (1 + €)%, ever
violated.

Our Parallel Batch-Dynamic Level Data Structure (PLDS)

Calculate desire-level:
closest level that
satisfies cutoffs

=
o

R N W b U1 OO d 0

Deletions

S— (T/C[? dl: 6

Iterate from bottommost

level to top level and move

vertices to desire-level

Only lower bound

cutoff, (1 + €)%, ever

violated.

SPAA 2022

Our Parallel Batch-Dynamic Level Data Structure (PLDS)

Deletions

[N
[N

[ERY
o

Iterate from bottommost
level to top level and move
vertices to desire-level

7 Only lower bqund
cutoff, (1 + €)%, ever

violated.

Calculate desire-level:
closest level that
satisfies cutoffs

R N W b U1 OO d 0

SPAA 2022

Our Parallel Batch-Dynamic Level Data Structure (PLDS)

Deletions
Vertices need to move at
most ONCE, unlike 11
sequential LDS! 10

Iterate from bottommost
level to top level and move
vertices to desire-level

Calculate desire-level:
closest level that
satisfies cutoffs

P Only lower bound
cutoff, (1 + €)%, ever
violated.

R N W b U1 OO d 0

SPAA 2022

Our Parallel Batch-Dynamic Level Data Structure (PLDS)

Deletions 0(log?n log log n)
depth w.h.p

Vertices need to move at
most ONCE, unlike
sequential LDS! 10

11

Iterate from bottommost
level to top level and move
vertices to desire-level

7 Only lower bqund
cutoff, (1 + €)%, ever

violated.

Calculate desire-level:
closest level that
satisfies cutoffs

R N W b U1 OO d 0

SPAA 2022

Obtaining the Coreness Estimate

A 3 A
7 9 Group 2
: « s T
5 \ / I A
O(IOgZ n) ;l /b /7‘ ! Group 1
2 /[/) 1
1 ‘//?_/‘ Group 0
v ° \ 4

» Set the coreness estimate: (1 + §)max(l(evelw)+1)/ (4 [log 145 1))]-1,0)
» Each group has 4 [log,, s n| levels

SPAA 2022

Obtaining the Coreness Estimate

A 3 A
7 9 Group 2
: « s T
5 \ / I A
O(IOgZ n) ;l /b /7‘ ! Group 1
2 /[/) 0
1 ‘//?_/‘ Group 0
v ° v

» Set the coreness estimate: (1 + §)max(l(evelw)+1)/ (4 [log 145 1))]-1,0)
» Each group has 4 [log,, s n| levels

* Intuitively, exponent is group number of highest group where node
above topmost level

SPAA 2022

Obtaining the Coreness Estimate

A 3 A
7 9 Group 2
: « s T
5 \ / I A
O(IOgZ n) ;l /b /7‘ ! Group 1
2 / /) 0
1 ‘//?_/‘ Group 0
v ° \ 4

» Set the coreness estimate: (1 + §)max(l(evelw)+1)/ (4 [log 145 1))]-1,0)
» Each group has 4 [log,, s n| levels

* Intuitively, exponent is group number of highest group where node
above topmost level

SPAA 2022

Obtaining the Coreness Estimate

A 3 A
! 4/, Group 2
. (N] Vo
° = Core Estimate:\ / I 1
O(IOgZ n) : - (1+8)°=1 /b /7‘ | Group 1
2 //// / 0
! ; V/‘ ! Group O

» Set the coreness estimate: (1 + §)max(l(evelw)+1)/ (4 [log 145 1))]-1,0)
» Each group has 4 [log,, s n| levels

* Intuitively, exponent is group number of highest group where node
above topmost level

SPAA 2022

Obtaining the Coreness Estimate

A A
8
! /’ Group 2
6 Q_] ¥
5 S~ / I A
O(IOgZ n) 4 C(cl)riE;;I"miti ,‘ Group 1
§ i —
Inductive proof that only Z Requires number of levels

uses cutoffs of levels per group (logn)

» Set the coreness estimate: (1 + §)max(l(evelw)+1)/ (4 [log 145 1))]-1,0)
» Each group has 4 [log,, s n| levels

* Intuitively, exponent is group number of highest group where node
above topmost level

SPAA 2022

Proof of Our Approximation Factor: Upper Bound

Coreness Estimate:
(1+¢e)t

A

SPAA 2022

Invariant: < 2.1(1 + ¢€)t

Proof of Our Approximation Factor: Upper Bound

Coreness Estimate:
(1+¢e)t

A

—]

SPAA 2022

Invariant: < 2.1(1 + ¢€)t

Proof of Our Approximation Factor: Upper Bound

Estimate: (1 + €)!

A

«——

core(v) < 2.1(1 + €)*

SPAA 2022

Invariant: < 2.1(1 + ¢€)t

Proof of Our Approximation Factor: Upper Bound

Estimate: (1 + €)!

A

7 Invariant: < 2.1(1 + €)'

core(v) < 2.1(1 + €)*

Key Proof: Lower bound proof only requires
lower bound invariant and definition of k-core.

SPAA 2022

Complexity Analysis

* 0(log?n) levels

SPAA 2022

Complexity Analysis

* 0(log?n) levels
* O(log log n) depth per level to calculate desire-levels using
doubling search

SPAA 2022

Complexity Analysis

* 0(log?n) levels
* O(log log n) depth per level to calculate desire-levels using
doubling search

* O(log*n) depth with high probability for hash table
operations

SPAA 2022

Complexity Analysis

* 0(log?n) levels
* O(log log n) depth per level to calculate desire-levels using
doubling search

* O(log*n) depth with high probability for hash table
operations

- Total depth: 0(logZn loglogn)

SPAA 2022

Complexity Analysis

* 0(log?n) levels
* O(log log n) depth per level to calculate desire-levels using
doubling search

* O(log*n) depth with high probability for hash table
operations

- Total depth: 0(logZn loglogn)

- 0(B log*n) amortized work is based on potential argument
* Vertices and edges store potential based on their levels

SPAA 2022

Experimental Implementation Details

* Designed an optimized multicore implementation

SPAA 2022

Experimental Implementation Details

* Designed an optimized multicore implementation

» Used parallel primitives and data structures from the Graph
Based Benchmark Suite [Dhulipala et al. ‘20]

SPAA 2022

Experimental Implementation Details

* Designed an optimized multicore implementation

» Used parallel primitives and data structures from the Graph
Based Benchmark Suite [Dhulipala et al. ‘20]
* Maintain concurrent hash tables for each vertex v
* One for storing neighbors on levels = level(v)
* One for storing neighbors on every level i in [0, level(v)-1]

SPAA 2022

Experimental Implementation Details

* Designed an optimized multicore implementation

» Used parallel primitives and data structures from the Graph
Based Benchmark Suite [Dhulipala et al. ‘20]
* Maintain concurrent hash tables for each vertex v
* One for storing neighbors on levels = level(v)
* One for storing neighbors on every level i in [0, level(v)-1]

* Moving vertices around in the PLDS requires carefully updating
these hash tables for work-efficiency

SPAA 2022

TeSted G r'a p h S Graphs from Stanford SNAP database, DIMACS Shortest Paths
challenge, and Network Repository—including some temporal

dblp 425,957 2,099,732 101
brain-network 784,262 267,844,669 1200
wikipedia 1,140,149 2,787,967 124
youtube 1,138,499 5,980,886 51
stackoverflow 2,601,977 28,183,518 163
livejournal 4,847,571 85,702,474 329
orkut 3,072,627 234,370,166 253
usa-central 14,081,816 16,933,413 2
usa-road 23,072,627 28,854,312 3
twitter 41,652,231 1,202,513,046 2484

friendster 65,608,366 1,806,067,135 304

SPAA 2022

TeSted G r'a p h S Graphs from Stanford SNAP database, DIMACS Shortest Paths
challenge, and Network Repository—including some temporal

dblp 425,957 2,099,732 101
brain-network 784,262 267,844,669 1200
wikipedia 1,140,149 2,787,967 124
youtube 1,138,499 5,980,886 51
stackoverflow 2,601,977 28,183,518 163
livejournal 4,847,571 85,702,474 329
orkut 3,072,627 234,370,166 253
usa-central 14,081,816 16,933,413 2
usa-road 23,072,627 28,854,312 3
twitter 41,652,231 1,202,513,046 2484

friendster 65,608,366 1,806,067,135 304

SPAA 2022

Experiments

 c2-standard-60 Google Cloud instances
30 cores with two-way hyper-threading
« 236 GB memory

* m1-megamem-96 Google Cloud instances
* 48 cores with two-way hyperthreading
* 1433.6 GB memory

* Timeout: 3 hours
« 3 different types of batches:

SPAA 2022

Experiments

 c2-standard-60 Google Cloud instances
30 cores with two-way hyper-threading
« 236 GB memory

* m1-megamem-96 Google Cloud instances
* 48 cores with two-way hyperthreading
* 1433.6 GB memory

 Timeout: 3 hours

« 3 different types of batches:
 All Batched Insertions
* All Batched Deletions
 Mixed Batches of Both Insertions and Deletions

SPAA 2022 ——

Experiments

 c2-standard-60 Google Cloud instances
30 cores with two-way hyper-threading
« 236 GB memory

* m1-megamem-96 Google Cloud instances
* 48 cores with two-way hyperthreading
* 1433.6 GB memory

 Timeout: 3 hours

- 3 different types of batches: all experiments!
 All Batched Insertions
* All Batched Deletions

* Mixed Batches of Both Insertions and Deletions

SPAA 2022 | p—

Improvements across

Runtimes/Accuracy Against State-of-the-Art
Algorithms

Benchmarks Versions of PLDS
« Sun et al. TKDD: sequential,
approx., dynamic algorithm

- LDS: sequential, approx.,
dynamic LDS of Henzinger et al.

« Zhang and Yu SIGMOD:
sequential, exact, dynamic
algorithm

* Hua et al. TPDS: parallel, exact,
dynamic algorithm

- PLDS: exact theoretical algorithm
 PLDSOpt: code-optimized PLDS

SPAA 2022

Runtimes/Accuracy Against State-of-the-Art
Algorithms

Benchmarks Versions of PLDS

« Sun et al. TKDD: sequential,
approx., dynamic algorithm

- LDS: sequential, approx.,
dynamic LDS of Henzinger et al.

» Zhang and Yu SIGMOD: L .
sequential, exact, dynamic Key Optimization Feature:

algorithm Reduce number of levels per group

* Hua et al. TPDS: parallel, exact,
dynamic algorithm

- PLDS: exact theoretical algorithm
 PLDSOpt: code-optimized PLDS

SPAA 2022

Runtimes/Accuracy Against State-of-the-Art

Algorithms (¢p1p50,imPLDSASune LDS = Zhang — Hua

) 1 [| | ~ “ | |
g M 5 10%) 3
<) - ‘ : ‘A‘ ¢ R D)
g 10° ¥ a ':"‘ A |- g 10t £ A
= i N L X2 § - -
8 - $.-I-M; : 8
S 0 LR S w0 .
B k- :
oD i O 1 -
> 102} ‘Q‘ ® ® . :?;O 10-11 |
<: = \ \ 5 \ . | <: B | |
10° 10% 10 1096 109 1095
DBLP Avg. Error (ratio) LJ Avg. Error (ratio)

DBLP: 425K vertices, 2.1M edges LJ (LiveJournal): 4.8M vertices, 85.7M edges

SPAA 2022

Runtimes/Accuracy Against State-of-the-Art

Algorithms (¢p1p50,imPLDSASune LDS = Zhang — Hua

o 10 | |] T
\q—cb)/]_O ‘ 7S A“ : é 102 ; ‘ ‘]
b i 0 : ‘A‘ Q : TD/
g 100 - ¥ A ': A |- g 101 . A
- : e 4 = ' i" 'Y - -
Q - S _Buotae_ Q
T 11 [] ‘ » | P
E 10 E 2 100 - |
a0 e _ o | [
> 10_2 8 | | o® ° B go 10_1 - E
< 2 1 < — |
100 10°2 10%* 100 100 1005
DBLP Avg. Error (ratio) LJ Avg. Error (ratio)
PLDSOpt: 19.04-544.22x L) (Live) PLDSOpt: 2.49-24.41x ,qgqg

speedup over Sun speedup over Hua

SPAA 2022

Faster than all other

Number of Hyper-Threads algorithms at 4 cores!

€ PLDSOpt # PLDS — Sun — LDS —Zhang =+ Hua

B <
3 L i
= | PO
£ £ 10} |
- — i -+ -+
§ L § : *
E 1 E 100 ; .
oD : z;b i
E 10_1 & | | | ‘. E <: \ \ \ “\
0 20 40 60 0 20 40 60
DBLP Number of Hyper-threads LJ Number of Hyper-threads
PLDSOpt: 33.02x PLDS: 26.46x Hua: 3.6x

self-relative speedup self-relative speedup self-relative speedup

SPAA 2022

Speedups On a Variety of Graphs

« Speedups against dynamic benchmarks: Hua, Zhang, and Sun

| | |
I ’ BESpeedups over HuaBBSpeedups over Zhang Il Speedups over Sun ‘

—_
)
[SV)
T T

Speedups over Other
Dynamic Algorithms

—_
S
—

Ab\P

AL

o
59

WK

B
o
o

\\ x m “rker
VeYﬂOW ourndt oyku Hrak LITe oD

Stacko Yive)
Batch size = 10° Graphs ordered by size (left to right)
Speedups on all graphs Speedups up to: 91.95x for Hua, 35.59x for Sun,

against all benchmarks 723.72x for Zhang

SPAA 2022

Speedups On a Variety of Graphs

« Speedups against dynamic benchmarks: Hua, Zhang, and Sun

T.0. T.0.

I ’ BESpeedups over HuaBBSpeedups over Zhang Il Speedups over Sun ‘

a1

Speedups compared to PLDS:
18x against PLDS, but PLDS performs
1.12x better on road networks

Speedups over Other
Dynamic Algorithms

Batch size = 10° Graphs ordered by size (left to right)

Speedups on all graphs Speedups up to: 91.95x for Hua, 35.59x for Sun,
against all benchmarks 723.72x for Zhang

SPAA 2022

Speedups Against Parallel Static
Algorithms

 Parallel exact k-core decomposition [Dhulipala et al. "18]
» Parallel (2 + €)-approximate k-core decomposition

|
’ll Speedups over Exact BB Speedups over Approx ‘

LnI|J|||||||J|||

6‘0\9 \Nl‘oe ‘N‘\o mc\@veﬁ\\ epmwﬂa\ O"-\g\)fﬁ \Omm t\mmei i “dgget

—_
(e}
[N]

Algorithms

—_
[a=)
O

Speedups over Static

Batch size = 10° Graphs ordered by size (left to right)

SPAA 2022

Speedups Against Parallel Static
Algorithms

 Parallel exact k-core decomposition [Dhulipala et al. "18]
» Parallel (2 + €)-approximate k-core decomposition

| |
’ll Speedups over Exact BB Speedups over Approx ‘

LnI|J|||||||J|||

W gabe @ pad ot D aptet

—_
(e}
[N]

Algorithms

—_
[a=)
C>

Speedups over Static

Astet

mc\@]e&\ oo friet

Batch size = 10° Graphs ordered by size (left to right)

We achieve speedups for all but the smallest graphs
Speedups of up to 122x for Twitter (1.2B edges) and Friendster (1.8B edges)

SPAA 2022

Other Results

I I

Static k-Core 2+¢ O(m + n) 0(log? n)
Low Out-Degree 4 + ¢ O(|B| log?n) 0(log3 n)
Maximal Matching Maximal O0(|B| (k + log?n)) O(log A log? n)
Clique Counting Exact O(|B| (k€2 + log?n)) 0(log? n)
Explicit Coloring 0(k log n) 0(|B| log®n) 0(log? n)

Implicit Coloring 0(2%) 0(|B] log3n) 0(log? n)

SPAA 2022

PLDS to Other Results

Levels

k-Core Decomposition
O(a) Out-Degree
Orientation

O(a log n)-Coloring
Maximal Matching

k-Clique Counting
Implicit O (2%)-Coloring

SPAA 2022

Other Results + Future Work Implementations!

I L I

Static k-Core 2+¢ O(m + n) 0(log? n)
Low Out-Degree 4 + ¢ O(|B| log?n) 0(log3 n)
Maximal Matching Maximal O(|B]| (k + log?n)) O(log Alog? n)
Cligue Counting Exact O(|B| (k2 + log?n)) 0(log? n)
Explicit Coloring 0(k log n) 0(|B| log®n) 0(log? n)

Implicit Coloring 0(2%) 0(|B] log3n) 0(log? n)

SPAA 2022

Conclusion

. New parallel level data structure (PLDS)

. Parallel batch-dynamic algorithms for k-core decomposition and
related problems (low out-degree orientation, maximal matching,
clique counting, graph coloring)

. Our k-core algorithm achieves significant improvements over state-
of-the-art solutions in practice

. Source code available at
https://github.com/qgliu/batch-dynamic-kcore-decomposition

SPAA 2022

https://github.com/qqliu/batch-dynamic-kcore-decomposition

Extra Slides

SPAA 2022

Proof of Our Approximation Factor: Lower Bound

Estimate: (1 + €)*

Assume for Contradiction:
(1+e)t

‘W) <3Td+o

A

+——— Lastlevel of group i

SPAA 2022

Proof of Our Approximation Factor: Lower Bound

Estimate: (1 + €)*

Assume for Contradiction:
(1+e)t

c(v) < >E

A

+——— Lastlevel of group i

SPAA 2022

Proof of Our Approximation Factor: Lower Bound

Estimate: (1 + €)!

Assume for Contradiction:
(1+e)t
2.5

c(v) <

A

— T

SPAA 2022

l
Ej ’ +—— Last level of group i

nodes at or above
level below v is: >
(1+¢e)

Proof of Our Approximation Factor: Lower Bound

A Pruning Procedure

Sl Remove all thgre
 — ds, W) <52
~__ |
O ;.

Assume for Contradiction: %%é%
i # nodes at or above
c(v) < d+e) ‘//}_‘/‘ level of vis: > (1 + €)"
2.5

SPAA 2022

Proof of Our Approximation Factor: Lower Bound

At least (1 + €)' — (1;56)

edges must be pruned

Assume for Contradiction:

(1+€)

c(v) < >E

A

SPAA 2022

Pruning Procedure

Remove all w where

(1+€)t
2.5

ds, (W) <

nodes at or above
level of vis: = (1 + €)}

Proof of Our Approximation Factor: Lower Bound

A

1 i
At least (;E)

edges must be pruned

Assume for Contradiction:
(1+e)t

c(v) < >E

SPAA 2022

Pruning Procedure

Remove all w where

(1+€)t
2.5

ds, (W) <

nodes at or above
level of vis: = (1 + €)}

Proof of Our Approximation Factor: Lower Bound

By Induction:

ixJ
At least ((126))

edges must be pruned

Assume for Contradiction:
(1+e)t

c(v) < >E

A

5;
E—
(= — |
~_ |
g S—
7
77

SPAA 2022

Pruning Procedure

Remove all w where

(1+€)t
2.5

de (w) <

nodes at or above
level of vis: = (1 + €)}

Proof of Our Approximation Factor: Lower Bound

By Induction:

ixJ
At least ((126))

edges must be pruned

(1+e)i)’
2
(1+€)t

2.5
nodes must be pruned

At least <

Assume for Contradiction:

(1+¢)t
2.5

c(v) <

A

SPAA 2022

Pruning Procedure
Remove all w where
(1+€)t

2.5

de (w) <

nodes at or above
level of vis: = (1 + €)*

Proof of Our Approximation Factor: Lower Bound

By Induction:

ixJ
At least ((126))

edges must be pruned

inJ—1
At least ((126))

nodes must be pruned

Assume for Contradiction:

(1+¢)t
2.5

c(v) <

A

5
4/,
Q_ g
~_ -~ |
O y
/ A/
/)~ /

SPAA 2022

Pruning Procedure
Remove all w where
(1+€)t

2.5

de (w) <

nodes at or above
level of vis: = (1 + €)*

Proof of Our Approximation Factor: Lower Bound

By Induction:

inJ
At least ((126))

edges must be pruned

i\J~1
((1;E)> <n

Assume for Contradiction:

(1+¢)t
2.5

c(v) <

A

5;
E—
(= — |
~_ |
g S—
7
77

SPAA 2022

Pruning Procedure

Remove all w where

(1+€)t
2.5

de (w) <

nodes at or above
level of vis: = (1 + €)}

Proof of Our Approximation Factor: Lower Bound

By Induction:

inJ
At least ((1;@)

edges must be pruned

i\J—1
<(1-|2—e)> o

J =108(14¢)i/2 (M)
Assume for Contradiction:
(1+¢€)?

2.5

c(v) <

A

\ 4

5
4/,
Q_ g
~_ -~ |
O y
/ A/
/)~ /

SPAA 2022

Pruning Procedure
Remove all w where
(1+€)t

2.5

de (w) <

nodes at or above
level of vis: = (1 + €)*

Run out of vertices before first level of the group.

Proof of Our Approximation Factor: Lower Bound

By Induction:

inJ
At least ((1;@)

edges must be pruned

i\J—1
<(1-|2—e)> o

J =108(14¢)i/2 (M)
Must be the case that:
(1+¢€)t

2.5

c(v) =

A

\ 4

5
4/,
Q_ g
~_ -~ |
O y
/ A/
/)~ /

SPAA 2022

Pruning Procedure
Remove all w where
(1+€)t

2.5

de (w) <

nodes at or above
level of vis: = (1 + €)*

Run out of vertices before first level of the group.

