Scalable Auction Algorithms for
Bipartite Maximum Matching Problems

Quanquan C. Liu

Joint work with

Northwestern Yiduo Ke Samir Khuller S IMONS

Computer Science II\hTSThTETCUpTEg

.APPROX/RAN DOM 2023

Bipartite Matching Problems

 Maximum Matching: return matching of maximum size

e o

. APPROX/RANDOM 2023

Bipartite Matching Problems

 Maximum Matching: return matching of maximum size

. APPROX/RANDOM 2023

Bipartite Matching Problems

 Maximum Weighted Matching: return matching of maximum
weight

. APPROX/RANDOM 2023

Bipartite Matching Problems

 Maximum Weighted Matching: return matching of maximum
weight

. APPROX/RANDOM 2023

Bipartite Matching Problems

 Maximum b-Matching: return matching of maximum size when
each node v can be matched to at most b, nodes

1 2

2

. APPROX/RANDOM 2023

Bipartite Matching Problems

 Maximum b-Matching: return matching of maximum size when
each node v can be matched to at most b, nodes

1 2

2

.APPROX/RAN DOM 2023

Approximate Bipartite Matching Problems

* Let M* be the optimum matching solution
A (1 — £)-approximate solution M has value at least:

M>(1-¢)- M

. APPROX/RANDOM 2023

Auction-Based Maximum Matching

* Introduced by Demange, Gale, and Sotomayor ‘86 and
Bertsekas ‘81 for exact (weighted) matching

« Same runtime as Hungarian method and maxflow

. APPROX/RANDOM 2023

Auction-Based Maximum Matching

* Introduced by Demange, Gale, and Sotomayor ‘86 and
Bertsekas ‘81 for exact (weighted) matching

« Same runtime as Hungarian method and maxflow

* Dobzinski, Nisan, and Oren ‘14 extend to approximation and
blackboard distributed setting

. APPROX/RANDOM 2023

Auction-Based Maximum Matching

* Introduced by Demange, Gale, and Sotomayor ‘86 and
Bertsekas ‘81 for exact (weighted) matching

« Same runtime as Hungarian method and maxflow

* Dobzinski, Nisan, and Oren ‘14 extend to approximation and
blackboard distributed setting

logn
g2

* (1 — g&)-approximation in 0() rounds

. APPROX/RANDOM 2023

Auction-Based Maximum Matching

* Introduced by Demange, Gale, and Sotomayor ‘86 and
Bertsekas ‘81 for exact (weighted) matching

« Same runtime as Hungarian method and maxflow

* Dobzinski, Nisan, and Oren ‘14 extend to approximation and
blackboard distributed setting

logn
g2

* (1 — g&)-approximation in 0() rounds

« Assadi, Liu, and Tarjan ‘21 extend to semi-streaming and MPC

. APPROX/RANDOM 2023

Auction-Based Maximum Matching

* Introduced by Demange, Gale, and Sotomayor ‘86 and
Bertsekas ‘81 for exact (weighted) matching

« Same runtime as Hungarian method and maxflow

* Dobzinski, Nisan, and Oren ‘14 extend to approximation and
blackboard distributed setting

logn
g2

* (1 — &)-approximation in 0() rounds
« Assadi, Liu, and Tarjan ‘21 extend to semi-streaming and MPC

0 (eiz) passes in streaming, O (n log (%)) space
* 0 (giz -log log n)-round, 0 (n)-memory algorithm in MPC

.APPROX/RAN DOM 2023 p——

4 N
Zheng and Henzinger ‘23

Au Ct|0n-Based Maximu m | extends MWM to sequential

and dynamic models
- 4

* Introduced by Demange, Gale, and Sotomayor ‘86 and
Bertsekas ‘81 for exact (weighted) matching

« Same runtime as Hungarian method and maxflow

* Dobzinski, Nisan, and Oren ‘14 extend to approximation and
blackboard distributed setting

logn
g2

* (1 — &)-approximation in 0() rounds
« Assadi, Liu, and Tarjan ‘21 extend to semi-streaming and MPC

0 (eiz) passes in streaming, O (n log (%)) space
* 0 (giz -log log n)-round, 0 (n)-memory algorithm in MPC

APPROX/RANDOM 2023 —

MWM = Maximum Weighted Matching

O u r ReS u ItS MCBM = Maximum Cardinality b-Matching

Model Previous Results Our Results
MWM || Q(nlogn) (trivial DNO14 O (nlog Theorem 3.9
Blackboard g €
Distributed 2
MCsBM Q(nblogn) trivial O (”blg#) Theorem 4.8
/ . \ @) (%) pass
“Universal” c O (&) pass
solution MWM O (”1;#) space [AG11] O (n-logn -log(1/e)) space Theorem 3.11
Streamin
across many " O(logn/e”) pass O (%) pass
: MCBM 9) L?,URZ)’ space AG18 @) . b, 4+ |R|)log(1/¢)) space | Theorem 4.10
different = i€L
scalable O (loglogn) rounds log log
° O ==2£ d
models! O:(npoly(logn)) [GRMS19)] (-) T
_ ’ y MPC MWM space p.m. (general) O(n -log(y /¢y (n)) space p.m. Theorem 3.15
O (m - poly (1/¢,logn))
work™ 0] (—m 1°§(")) work
O (poly (1/e,logn)) [HS22] 83
MWM depth* (general) 0 <1g—”) depth Theorem 3.13
Parallel
0 (P vork
MCBM N/A N/A O <1°§#) depth Theorem 4.11

. APPROX/RANDOM 2023

Our Results

First results in

blackboard
distributed

MWM = Maximum Weighted Matching

MCBM = Maximum Cardinality b-Matching

Model Previous Results Our Results
n 10, E n
Blackboard | MWM || Q(nlogn) (trivial) | [DNO14] o) (lg—U) Theorem 3.9
Distributed
MCsBM Q(nblogn) trivial O ("b 1§§ ”) Theorem 4.8
O (logg/a))
€ pass @, (6%) pass
MWM O (”1;’#) space [AG11] O (n-logn -log(1/e)) space Theorem 3.11
St i
reatime O(log n/e”) pass @ (E%) pass
MCsBM 0] (%) space [AG18] O ((X;er bi + |R|) log(1/¢)) space | Theorem 4.10
O:(loglogn) rounds log log n
O (=535~ d
O-(npoly(logn)) | [GKMSL) () mom:
MPC MWM space p.m. (general) O(n -log(y /¢y (n)) space p.m. Theorem 3.15
O (m - poly (1/¢,logn))
work™ 0] (—m 1°§(")) work
O (poly (1/e,logn)) [HS22] 83
MWM depth* (general) 9 <1g—“) depth Theorem 3.13
Parallel 1
0 (I work
MCBM N/A N/A O <1°§#) depth Theorem 4.11

. APPROX/RANDOM 2023

Our Results

Eliminate
polynomial
dependence in

G) in space

MWM = Maximum Weighted Matching

MCBM = Maximum Cardinality b-Matching

Model Previous Results Our Results
n 10, 3 n
Blackboard | MWM || Q(nlogn) (trivial) | [DNO14] O ((nleg () Theorem 3.9
Distributed
MCsBM Q(nblogn) trivial O (”b 1§§ ”) Theorem 4.8
O <log<;/a>)
€ S @, (6%) pass
MWM O ("{f#) space [AG11] O (n-logn -log(1/e)) space Theorem 3.11
St i
FEATHRS O(log n/e”) pass O (E%) pass
MCBM 0) (%) space [AG18] O ((X;er bi + |R|) log(1/¢)) space | Theorem 4.10
O:(loglogn) rounds log log n
O (&) d
Oc(npoly(logn)) | [GKMS1Y))
MPC MWM space p.m. (general) O(n -log(y /¢y (n)) space p.m. Theorem 3.15
O (m - poly (1/¢,logn))
work™ 0] (—m 1°§(")) work
O (poly (1/e,logn)) [HS22] 83
MWM depth* (general) 9 <1g—“) depth Theorem 3.13
Parallel 1
0 (B2 work
MCBM N/A N/A O <1°§#) depth Theorem 4.11

. APPROX/RANDOM 2023

MWM = Maximum Weighted Matching

O u r ReS u ItS MCBM = Maximum Cardinality b-Matching

Model Previous Results Our Results
.. nlog®(n
Blackboard | MWM || Q(nlogn) (trivial) | [DNO14] O ((nleg () Theorem 3.9
Distributed 2
MCsBM Q(nblogn) trivial O (”bf#) Theorem 4.8
log(1/€)>

0 (e? Dass O (sis) pass
_ MWM O (”1;’#) space [AG11] O (n-logn -log(1/e)) space Theorem 3.11

Streaming O(log n/e”) pass @ (E%) pass
MCsBM 0] (%) space [AG18] O ((X;er bi + |R|) log(1/¢)) space | Theorem 4.10

Ellmmatfe O (loglog n) rounds GKMS19 O (—log;‘ig ”) rounds
exponential Oc(n poly(logn))
MPC MWM space p.m. (general) O(n - log(y ¢y (n)) space p.m. Theorem 3.15
dependence on .49 - - | - -/] . ole - o |
1 O (m - poly (1/¢,logn))
(;) work™* @) (M) work
O (poly (1/e,logn)) [HS22] 83
MWM depth* (general) 0 <1g—“) depth Theorem 3.13
Parallel 1
0 (I work

MCBM N/A N/A O <1°§#) depth Theorem 4.11

'APPROX/RAN DOM 2023 :

MWM = Maximum Weighted Matching

O u r ReS u ItS MCBM = Maximum Cardinality b-Matching

Model Previous Results Our Results
3
Blackboard | MWM || Q(nlogn) (trivial) | [DNO14] O ((nleg () Theorem 3.9
Distributed 2
MCsBM Q(nblogn) trivial O (”bf#) Theorem 4.8
O (logg/a))
€ pass @, (6%) pass
MWM O (”1;’#) space [AG11] O (n-logn -log(1/e)) space Theorem 3.11
St i
reatime O(log n/e”) pass @ (E%) pass
MCsBM 0] (%) space [AG18] O ((X;er bi + |R|) log(1/¢)) space | Theorem 4.10
O:(loglogn) rounds log log n
O (=535~ d
O-(npoly(logn)) | [GKMSL) () mom:
MPC MWM space p.m. (general) O(n -log(y /¢y (n)) space p.m. Theorem 3.15
O (m - poly (1/¢,logn))
work™ 0] (—m 1°§(")) work
- O (poly (1/e,logn)) [HS22] y
Eliminate large ’
g MWM depth* (general) 9 <1g—“) depth Theorem 3.13
dependence on Parallel
1 0 (P work
(—) and log n ,
€ | MCBM N/A N/A O <1°§—2”) depth Theorem 4.11

. APPROX/RANDOM 2023

Outline

 Auction Algorithm of [ALT21] for maximum cardinality matching

 Our auction algorithm for maximum weighted matching
* Algorithm description
* Minimizing dependence on log (W)

 Our auction algorithm for maximum b-matching

. APPROX/RANDOM 2023

Outline

e Auction Algorithm of [ALT21] for maximum cardinality matching

. APPROX/RANDOM 2023

Auction Algorithm of [ALT21]

‘

Left and Right Side
of Bipartite Graph

® o

. APPROX/RANDOM 2023

Auction Algorithm of [ALT21]

Left Side has
Bidders and Right
Side has Items

Left and Right Side
of Bipartite Graph

.APPROX/RAN DOM 2023

Auction Algorithm of [ALT21]

L 4
<

=

All items start
with price 0

©c O O O O

Auction Algorithm of [ALT21]

Iteratively, bidders bid
on all lowest price
adjacent items

All items start
with price 0

Auction Algorithm of [ALT21]

Iteratively, bidders bid
on all lowest price
adjacent items

All items start
with price 0

.APPROX/RAN DOM 2023

Auction Algorithm of [ALT21]

Find maximal matching
among induced
subgraph of bid items

Iteratively, bidders bid
on all lowest price
adjacent items

©c O O O O

.APPROX/RAN DOM 2023

Auction Algorithm of [ALT21]

= -

L
:
Increase price of items °

0

in matching by € and i ; 0
maintain current $ =

matching ‘i £

Auction Algorithm of [ALT21]

<
I|.1crease Prlce of items Can bid on item as
in ma.tchl.ng by € and 0 long as price < 1
maintain current
matching €
0

.APPROX/RAN DOM 2023

Auction Algorithm of [ALT21]

-

c
| / 0
therate for v Can bid on item as
[—2} iterations é % % 0 long as price <1
€ =/
! ~
b!, ')

Auction Algorithm of [ALT21]

-

c
| / 0
therate for v Can bid on item as
[—2} iterations é % % 0 long as price <1
€ =/
! ~
b!, ')

Auction Algorithm of [ALT21]

B -

/ ' Can bid on item as

Iterate for

21. . <
L_J LEE RO 0 long as price < 1
Each unmatched ‘i, H\' £
bidder bids

.APPROX/RAN DOM 2023

Auction Algorithm of [ALT21]

B -
Iterate for v /

o’ L Can bid on item as
2] . : é
L—J iterations

0
@ 0 long as price < 1

Each unmatched ‘i
bidder bids

Auction Algorithm of [ALT21]

Iterate for Can bid on item as

long as price< 1

2 1. o
[—2} Iterations
£

Item goes to new
bidder!

Auction Algorithm of [ALT21]

2E&
0
therate for Can bid on item as
L—J iterations 0 long as price <1
<
0

.APPROX/RAN DOM 2023

Auction Algorithm of [ALT21]

2&

Iterate for Can bid on item as

21. :
L—J Iterations c long as price < 1

Auction Algorithm of [ALT21]

v
- =

=

Final Matching ‘i @j
v _

Outline

 Our auction algorithm for maximum weighted matching
* Algorithm description
* Minimizing dependence on log (W)

. APPROX/RANDOM 2023

Our Maximum Weight Auction Algorithm

* Bucket the edges using buckets based on the weights of the
edges

* Rescale weights to (0, 1]
« Edge with weight w € (0, 1] is in bucket b if

eb—1 <y < gh—2

. APPROX/RANDOM 2023

Our Simplified Maximum Weight Auction Algorithm

All items start
with price 0

©c O O O O

.APPROX/RAN DOM 2023

Our Simplified Maximum Weight Auction Algorithm

Iteratively, bidders bid

on all All items start
highest (value — price) with price 0
items

.APPROX/RAN DOM 2023

Our Simplified Maximum Weight Auction Algorithm

0
Iteratively, bidders bid 0
on all 0 All items start
highest (value — price) with price 0
items 0
0

.APPROX/RAN DOM 2023

Our Simplified Maximum Weight Auction Algorithm

t—o M

Iteratively, bidders bid . / 0.1 ﬁ 0 Find maximal matching

on all é 0.3 among induced
highest (value — price) d @ 0 subgraph of bid items
from highest bucket
down

items

Reason: items under
contention should be
won by edges with

larger weights L R

.APPROX/RAN DOM 2023

Our Simplified Maximum Weight Auction Algorithm

°
o Il o

Iteratively, bidders bid . / 0.1 7 ' 0 Find maximal matching

on all é 0.3 among induced
highest (value — price) d @j 0 subgraph of bid items

from highest bucket
down

items

.APPROX/RAN DOM 2023

Our Simplified Maximum Weight Auction Algorithm

°
o Il o

Iteratively, bidders bid . / 0.1 7 ' 0 Find maximal matching

on all é 0.3 among induced
highest (value — price) d @j 0 subgraph of bid items

from highest bucket
down

items

.APPROX/RAN DOM 2023

Our Simplified Maximum Weight Auction Algorithm

Increase price of items
in matching by € - w
and maintain current
matching

.APPROX/RAN DOM 2023

Our Simplified Maximum Weight Auction Algorithm

£—05 /- 0.7¢

1\

- - T] O Reason: higher weight
Increase price of items / 0.1 ' g g

in matching by £ - w é\ 0.3 | edges will contribute
and maintain current & : O more to the matching
matching v <03z 0 35¢
¥ 0.7
: 0

.APPROX/RAN DOM 2023

Our Simplified Maximum Weight Auction Algorithm

| 0.7¢

Increase price of items
in matching by € - w
and maintain current
matching

Can bid on item as long
0 as weight - price >0

.APPROX/RAN DOM 2023

Our Simplified Maximum Weight Auction Algorithm

Iterate for
[log2 (n)

7| iterations
&€

.APPROX/RAN DOM 2023

Our Simplified Maximum Weight Auction Algorithm

Iterate for
[log2 (n)

7| iterations
&€

Each unmatched
bidder bids

.APPROX/RAN DOM 2023

Our Simplified Maximum Weight Auction Algorithm

Iterate for
[log2 (n)

7| iterations
&€

Item goes to new
bidder!

.APPROX/RAN DOM 2023

Our Simplified Maximum Weight Auction Algorithm
£—05 —- 1.2¢

iterations é

Iterate for
[log2 (n)

4

.APPROX/RAN DOM 2023

Our Simplified Maximum Weight Auction Algorithm

£—05 —- 1.2¢

+T] O
| 2I(te)rate for b 01 '
og“(n)] .) :
[—— | iterations @ 0

- 0.35¢
0.35 . -

0.7¢

L R

.APPROX/RAN DOM 2023

Our Simplified Maximum Weight Auction Algorithm

t—o I
<o 8

Final Matching é

.APPROX/RAN DOM 2023

Minimizing Dependence on log (W)

* Modified Gupta-Peng ‘13 transformation
 Partition edges into levels based on edge weight
» Each level contains multiple buckets
* Omit certain buckets to prevent too large ratio in weights

1
 Ratio of weights in each level is bounded by 8_0(2)

. APPROX/RANDOM 2023

Minimizing Dependence on log (W)

* Modified Gupta-Peng ‘13 transformation
 Partition edges into levels based on edge weight
» Each level contains multiple buckets
* Omit certain buckets to prevent too large ratio in weights

1
 Ratio of weights in each level is bounded by 8_0(2)

Iterate for Iterate for
[lo g%(n) ‘ [108(")

- | iterations iterations
)

e’

. APPROX/RANDOM 2023

Outline

 Our auction algorithm for maximum b-matching

. APPROX/RANDOM 2023

Very brief!

Very Simplified Maximum b-Matching Algorithm

Create a copy for each
bidder and item equal 2
to their b value

.APPROX/RAN DOM 2023

Very Simplified Maximum b-Matching Algorithm

Create a biclique
between copies
representing bidder
and item

.APPROX/RAN DOM 2023

Very Simplified Maximum b-Matching Algorithm

Make sure match only

o one copy!
Create a biclique ?

between copies 2
representing bidder
and item

.APPROX/RAN DOM 2023

Very Simplified Maximum b-Matching Algorithm

Make sure match only

o one copy!
Create a biclique ?
OETHEEN GOPIEE 2 1 Solution: each time
representing bidder -
_ price increases,
and item 1 :
1 increase the lowest

possible bidding price

for each unmatched
bidder

.APPROX/RAN DOM 2023

MWM = Maximum Weighted Matching

O u r ReS u ItS MCBM = Maximum Cardinality b-Matching

Model Previous Results Our Results
MWM || Q(nlogn) (trivial DNO14 O (nlog Theorem 3.9
Blackboard g €
Distributed 2
MCsBM Q(nblogn) trivial O (”blg#) Theorem 4.8
/ . \ @) (%) pass
“Universal” c O (&) pass
solution MWM O (”1;#) space [AG11] O (n-logn -log(1/e)) space Theorem 3.11
Streamin
across many " O(logn/e”) pass O (%) pass
: MCBM 9) L?,URZ)’ space AG18 @) . b, 4+ |R|)log(1/¢)) space | Theorem 4.10
different = i€L
scalable O (loglogn) rounds log log
° O ==2£ d
models! O:(npoly(logn)) [GRMS19)] (-) T
_ ’ y MPC MWM space p.m. (general) O(n -log(y /¢y (n)) space p.m. Theorem 3.15
O (m - poly (1/¢,logn))
work™ 0] (—m 1°§(")) work
O (poly (1/e,logn)) [HS22] 83
MWM depth* (general) 0 <1g—”) depth Theorem 3.13
Parallel
0 (P vork
MCBM N/A N/A O <1°§#) depth Theorem 4.11

. APPROX/RANDOM 2023

