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Approximate Bipartite Matching Problems

• Let 𝑀∗ be the optimum matching solution
• A 𝟏 − 𝜺 -approximate solution '𝑀 has value at least:

!𝑀 ≥ 1 − 𝜀 ⋅ 𝑀∗
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Zheng and Henzinger ‘23 
extends MWM to sequential 

and dynamic models 
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Our Results
Model Previous Results Our Results

Blackboard
Distributed

MWM Ω(n logn) (trivial) [DNO14] O
(

n log3(n)
ε8

)
Theorem 3.9

MCbM Ω(nb logn) trivial O
(

nb log2 n
ε2

)
Theorem 4.8

Streaming
MWM

O
(

log(1/ε)
ε2

)
pass

O
(

n logn
ε2

)
space [AG11]

O
(

1
ε8

)
pass

O (n · logn · log(1/ε)) space Theorem 3.11

MCbM

O(log n/ε3) pass

Õ
(∑

i∈L∪R bi
ε3

)
space [AG18]

O
(

1
ε2

)
pass

O
((∑

i∈L bi + |R|
)
log(1/ε)

)
space Theorem 4.10

MPC MWM

Oε(log logn) rounds
Oε(n poly(log n))

space p.m.
[GKMS19]
(general)

O
(

log logn
ε7

)
rounds

O(n · log(1/ε)(n)) space p.m. Theorem 3.15

Parallel
MWM

O (m · poly (1/ε, logn))
work*

O (poly (1/ε, logn))
depth*

[HS22]
(general)

O
(

m log(n)
ε7

)
work

O
(

log3 n
ε7

)
depth Theorem 3.13

MCbM N/A N/A

O
(

m logn
ε2

)
work

O
(

log3 n
ε2

)
depth Theorem 4.11

Table 1: We assume the ratio between the largest weight edge and smallest weight edge in the graph is
poly(n). Results for general graphs are labeled with (general); results that are specifically for bipartite
graphs do not have a label. Upper bounds are given in terms of O(·) and lower bounds are given in terms of
Ω(·). “Space p.m.” stands for space per machine. The complexity measures for the “blackboard distributed”
setting is the total communication (over all rounds and players) in bits. poly(logn, ε) for the specified results
indicated by * hides large constant factors in the exponents, specifically constants c > 20. Our results often
exhibit a tradeoff of one complexity measure with another in our various models.

a semi-streaming algorithm in optimal O(n) space and O (logn log(1/ε)/ε) passes. They also provide a
MWM algorithm that also runs in O(n) space but requires Ω̃(n/ε) passes. Please refer to these papers and
references therein for older results in this area. Ahn and Guha [AG18] also considered the general weighted
non-bipartite maximum matching problem in the semi-streaming model and utilize linear programming ap-
proaches for computing a (2/3−ε)-approximation and (1−ε)-approximation that uses O(log(1/ε)/ε2) passes,

O
(
n ·
(

log(1/ε)
ε2 + logn/ε

ε

))
space, and O

(
logn
ε4

)
passes, O

(
n logn

ε4

)
space, respectively.

Bipartite Matching Ahn and Guha [AG18] also extended their results to the bipartite MWM and b-
Matching settings with small changes. Specifically, in the MWM setting, they give a O(log(1/ε)/ε2) pass,
O(n · ((log(1/ε))/ε2 + (log n/ε)/ε)) space algorithm. For maximum cardinality b-matching, they give a

O(log n/ε3) pass and Õ
(∑

i∈L∪R bi
ε3

)
space algorithm. For exact bipartite MWM in the semi-streaming

model, Liu et al. [LSZ20] gave the first streaming algorithm to break the n-pass barrier in the exact setting;
it uses Õ(n) space and Õ(

√
m) passes using interior point methods, SDD system solvers, and various other

techniques to output the optimum matching with high probability. Work on bipartite MWM prior to [LSZ20]
either required Ω(n logn) passes [JLS19] or only found approximate solutions [AG11, AG18, Kap13].

Lower Bounds Several papers have looked at matching problems from the lower bound side. Konrad et
al. [KRZ21] considered the communication complexity of graph problems in a blackboard model of compu-
tation (for which the simultaneous message passing model of Dobzinski et al. [DNO14] is a special variant).
Specifically, they show that any non-trivial graph problem on n vertices require Ω(n) bits [KRZ21] in com-
munication complexity. In a similar model called the demand query model, Nisan [Nis21] showed that any

4

MWM = Maximum Weighted Matching
MCBM = Maximum Cardinality b-Matching 

“Universal” 
solution 

across many 
different 
scalable 
models!
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Model Previous Results Our Results

Blackboard
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MWM Ω(n logn) (trivial) [DNO14] O
(

n log3(n)
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)
Theorem 3.9

MCbM Ω(nb logn) trivial O
(
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Theorem 4.8
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log(1/ε)

)
space Theorem 4.10

MPC MWM
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[GKMS19]
(general)

O
(
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)
rounds

O(n · log(1/ε)(n)) space p.m. Theorem 3.15
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MWM

O (m · poly (1/ε, logn))
work*
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(general)

O
(
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work
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depth Theorem 3.13

MCbM N/A N/A

O
(

m logn
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)
work

O
(

log3 n
ε2

)
depth Theorem 4.11

Table 1: We assume the ratio between the largest weight edge and smallest weight edge in the graph is
poly(n). Results for general graphs are labeled with (general); results that are specifically for bipartite
graphs do not have a label. Upper bounds are given in terms of O(·) and lower bounds are given in terms of
Ω(·). “Space p.m.” stands for space per machine. The complexity measures for the “blackboard distributed”
setting is the total communication (over all rounds and players) in bits. poly(logn, ε) for the specified results
indicated by * hides large constant factors in the exponents, specifically constants c > 20. Our results often
exhibit a tradeoff of one complexity measure with another in our various models.

a semi-streaming algorithm in optimal O(n) space and O (logn log(1/ε)/ε) passes. They also provide a
MWM algorithm that also runs in O(n) space but requires Ω̃(n/ε) passes. Please refer to these papers and
references therein for older results in this area. Ahn and Guha [AG18] also considered the general weighted
non-bipartite maximum matching problem in the semi-streaming model and utilize linear programming ap-
proaches for computing a (2/3−ε)-approximation and (1−ε)-approximation that uses O(log(1/ε)/ε2) passes,

O
(
n ·
(

log(1/ε)
ε2 + logn/ε

ε

))
space, and O

(
logn
ε4

)
passes, O

(
n logn

ε4

)
space, respectively.

Bipartite Matching Ahn and Guha [AG18] also extended their results to the bipartite MWM and b-
Matching settings with small changes. Specifically, in the MWM setting, they give a O(log(1/ε)/ε2) pass,
O(n · ((log(1/ε))/ε2 + (log n/ε)/ε)) space algorithm. For maximum cardinality b-matching, they give a

O(log n/ε3) pass and Õ
(∑

i∈L∪R bi
ε3

)
space algorithm. For exact bipartite MWM in the semi-streaming

model, Liu et al. [LSZ20] gave the first streaming algorithm to break the n-pass barrier in the exact setting;
it uses Õ(n) space and Õ(

√
m) passes using interior point methods, SDD system solvers, and various other

techniques to output the optimum matching with high probability. Work on bipartite MWM prior to [LSZ20]
either required Ω(n logn) passes [JLS19] or only found approximate solutions [AG11, AG18, Kap13].

Lower Bounds Several papers have looked at matching problems from the lower bound side. Konrad et
al. [KRZ21] considered the communication complexity of graph problems in a blackboard model of compu-
tation (for which the simultaneous message passing model of Dobzinski et al. [DNO14] is a special variant).
Specifically, they show that any non-trivial graph problem on n vertices require Ω(n) bits [KRZ21] in com-
munication complexity. In a similar model called the demand query model, Nisan [Nis21] showed that any
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Model Previous Results Our Results
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Table 1: We assume the ratio between the largest weight edge and smallest weight edge in the graph is
poly(n). Results for general graphs are labeled with (general); results that are specifically for bipartite
graphs do not have a label. Upper bounds are given in terms of O(·) and lower bounds are given in terms of
Ω(·). “Space p.m.” stands for space per machine. The complexity measures for the “blackboard distributed”
setting is the total communication (over all rounds and players) in bits. poly(logn, ε) for the specified results
indicated by * hides large constant factors in the exponents, specifically constants c > 20. Our results often
exhibit a tradeoff of one complexity measure with another in our various models.

a semi-streaming algorithm in optimal O(n) space and O (logn log(1/ε)/ε) passes. They also provide a
MWM algorithm that also runs in O(n) space but requires Ω̃(n/ε) passes. Please refer to these papers and
references therein for older results in this area. Ahn and Guha [AG18] also considered the general weighted
non-bipartite maximum matching problem in the semi-streaming model and utilize linear programming ap-
proaches for computing a (2/3−ε)-approximation and (1−ε)-approximation that uses O(log(1/ε)/ε2) passes,

O
(
n ·
(

log(1/ε)
ε2 + logn/ε

ε

))
space, and O

(
logn
ε4

)
passes, O

(
n logn

ε4

)
space, respectively.

Bipartite Matching Ahn and Guha [AG18] also extended their results to the bipartite MWM and b-
Matching settings with small changes. Specifically, in the MWM setting, they give a O(log(1/ε)/ε2) pass,
O(n · ((log(1/ε))/ε2 + (log n/ε)/ε)) space algorithm. For maximum cardinality b-matching, they give a

O(log n/ε3) pass and Õ
(∑

i∈L∪R bi
ε3

)
space algorithm. For exact bipartite MWM in the semi-streaming

model, Liu et al. [LSZ20] gave the first streaming algorithm to break the n-pass barrier in the exact setting;
it uses Õ(n) space and Õ(

√
m) passes using interior point methods, SDD system solvers, and various other

techniques to output the optimum matching with high probability. Work on bipartite MWM prior to [LSZ20]
either required Ω(n logn) passes [JLS19] or only found approximate solutions [AG11, AG18, Kap13].

Lower Bounds Several papers have looked at matching problems from the lower bound side. Konrad et
al. [KRZ21] considered the communication complexity of graph problems in a blackboard model of compu-
tation (for which the simultaneous message passing model of Dobzinski et al. [DNO14] is a special variant).
Specifically, they show that any non-trivial graph problem on n vertices require Ω(n) bits [KRZ21] in com-
munication complexity. In a similar model called the demand query model, Nisan [Nis21] showed that any
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Model Previous Results Our Results
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Theorem 3.9
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space [AG18]
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1
ε2
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pass

O
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)
log(1/ε)

)
space Theorem 4.10
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Oε(log logn) rounds
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[GKMS19]
(general)

O
(

log logn
ε7

)
rounds

O(n · log(1/ε)(n)) space p.m. Theorem 3.15

Parallel
MWM

O (m · poly (1/ε, logn))
work*

O (poly (1/ε, logn))
depth*

[HS22]
(general)

O
(

m log(n)
ε7

)
work

O
(

log3 n
ε7

)
depth Theorem 3.13

MCbM N/A N/A

O
(

m logn
ε2

)
work

O
(

log3 n
ε2

)
depth Theorem 4.11

Table 1: We assume the ratio between the largest weight edge and smallest weight edge in the graph is
poly(n). Results for general graphs are labeled with (general); results that are specifically for bipartite
graphs do not have a label. Upper bounds are given in terms of O(·) and lower bounds are given in terms of
Ω(·). “Space p.m.” stands for space per machine. The complexity measures for the “blackboard distributed”
setting is the total communication (over all rounds and players) in bits. poly(logn, ε) for the specified results
indicated by * hides large constant factors in the exponents, specifically constants c > 20. Our results often
exhibit a tradeoff of one complexity measure with another in our various models.

a semi-streaming algorithm in optimal O(n) space and O (logn log(1/ε)/ε) passes. They also provide a
MWM algorithm that also runs in O(n) space but requires Ω̃(n/ε) passes. Please refer to these papers and
references therein for older results in this area. Ahn and Guha [AG18] also considered the general weighted
non-bipartite maximum matching problem in the semi-streaming model and utilize linear programming ap-
proaches for computing a (2/3−ε)-approximation and (1−ε)-approximation that uses O(log(1/ε)/ε2) passes,

O
(
n ·
(

log(1/ε)
ε2 + logn/ε

ε

))
space, and O

(
logn
ε4

)
passes, O

(
n logn

ε4

)
space, respectively.

Bipartite Matching Ahn and Guha [AG18] also extended their results to the bipartite MWM and b-
Matching settings with small changes. Specifically, in the MWM setting, they give a O(log(1/ε)/ε2) pass,
O(n · ((log(1/ε))/ε2 + (log n/ε)/ε)) space algorithm. For maximum cardinality b-matching, they give a

O(log n/ε3) pass and Õ
(∑

i∈L∪R bi
ε3

)
space algorithm. For exact bipartite MWM in the semi-streaming

model, Liu et al. [LSZ20] gave the first streaming algorithm to break the n-pass barrier in the exact setting;
it uses Õ(n) space and Õ(

√
m) passes using interior point methods, SDD system solvers, and various other

techniques to output the optimum matching with high probability. Work on bipartite MWM prior to [LSZ20]
either required Ω(n logn) passes [JLS19] or only found approximate solutions [AG11, AG18, Kap13].

Lower Bounds Several papers have looked at matching problems from the lower bound side. Konrad et
al. [KRZ21] considered the communication complexity of graph problems in a blackboard model of compu-
tation (for which the simultaneous message passing model of Dobzinski et al. [DNO14] is a special variant).
Specifically, they show that any non-trivial graph problem on n vertices require Ω(n) bits [KRZ21] in com-
munication complexity. In a similar model called the demand query model, Nisan [Nis21] showed that any
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Model Previous Results Our Results
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MWM Ω(n logn) (trivial) [DNO14] O
(

n log3(n)
ε8

)
Theorem 3.9

MCbM Ω(nb logn) trivial O
(

nb log2 n
ε2

)
Theorem 4.8

Streaming
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O
(

log(1/ε)
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)
pass
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1
ε8

)
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O (n · logn · log(1/ε)) space Theorem 3.11
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O(log n/ε3) pass
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(∑
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ε3

)
space [AG18]

O
(

1
ε2

)
pass

O
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i∈L bi + |R|
)
log(1/ε)

)
space Theorem 4.10

MPC MWM

Oε(log logn) rounds
Oε(n poly(log n))

space p.m.
[GKMS19]
(general)

O
(

log logn
ε7

)
rounds

O(n · log(1/ε)(n)) space p.m. Theorem 3.15

Parallel
MWM

O (m · poly (1/ε, logn))
work*

O (poly (1/ε, logn))
depth*

[HS22]
(general)

O
(

m log(n)
ε7

)
work

O
(

log3 n
ε7

)
depth Theorem 3.13

MCbM N/A N/A

O
(

m logn
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)
work

O
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)
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Table 1: We assume the ratio between the largest weight edge and smallest weight edge in the graph is
poly(n). Results for general graphs are labeled with (general); results that are specifically for bipartite
graphs do not have a label. Upper bounds are given in terms of O(·) and lower bounds are given in terms of
Ω(·). “Space p.m.” stands for space per machine. The complexity measures for the “blackboard distributed”
setting is the total communication (over all rounds and players) in bits. poly(logn, ε) for the specified results
indicated by * hides large constant factors in the exponents, specifically constants c > 20. Our results often
exhibit a tradeoff of one complexity measure with another in our various models.

a semi-streaming algorithm in optimal O(n) space and O (logn log(1/ε)/ε) passes. They also provide a
MWM algorithm that also runs in O(n) space but requires Ω̃(n/ε) passes. Please refer to these papers and
references therein for older results in this area. Ahn and Guha [AG18] also considered the general weighted
non-bipartite maximum matching problem in the semi-streaming model and utilize linear programming ap-
proaches for computing a (2/3−ε)-approximation and (1−ε)-approximation that uses O(log(1/ε)/ε2) passes,

O
(
n ·
(

log(1/ε)
ε2 + logn/ε

ε

))
space, and O

(
logn
ε4

)
passes, O

(
n logn

ε4

)
space, respectively.

Bipartite Matching Ahn and Guha [AG18] also extended their results to the bipartite MWM and b-
Matching settings with small changes. Specifically, in the MWM setting, they give a O(log(1/ε)/ε2) pass,
O(n · ((log(1/ε))/ε2 + (log n/ε)/ε)) space algorithm. For maximum cardinality b-matching, they give a

O(log n/ε3) pass and Õ
(∑

i∈L∪R bi
ε3

)
space algorithm. For exact bipartite MWM in the semi-streaming

model, Liu et al. [LSZ20] gave the first streaming algorithm to break the n-pass barrier in the exact setting;
it uses Õ(n) space and Õ(

√
m) passes using interior point methods, SDD system solvers, and various other

techniques to output the optimum matching with high probability. Work on bipartite MWM prior to [LSZ20]
either required Ω(n logn) passes [JLS19] or only found approximate solutions [AG11, AG18, Kap13].

Lower Bounds Several papers have looked at matching problems from the lower bound side. Konrad et
al. [KRZ21] considered the communication complexity of graph problems in a blackboard model of compu-
tation (for which the simultaneous message passing model of Dobzinski et al. [DNO14] is a special variant).
Specifically, they show that any non-trivial graph problem on n vertices require Ω(n) bits [KRZ21] in com-
munication complexity. In a similar model called the demand query model, Nisan [Nis21] showed that any
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Our Results
Model Previous Results Our Results

Blackboard
Distributed

MWM Ω(n logn) (trivial) [DNO14] O
(

n log3(n)
ε8

)
Theorem 3.9

MCbM Ω(nb logn) trivial O
(

nb log2 n
ε2

)
Theorem 4.8

Streaming
MWM

O
(

log(1/ε)
ε2

)
pass

O
(

n logn
ε2

)
space [AG11]

O
(

1
ε8

)
pass

O (n · logn · log(1/ε)) space Theorem 3.11

MCbM

O(log n/ε3) pass

Õ
(∑

i∈L∪R bi
ε3

)
space [AG18]

O
(

1
ε2

)
pass

O
((∑

i∈L bi + |R|
)
log(1/ε)

)
space Theorem 4.10

MPC MWM

Oε(log logn) rounds
Oε(n poly(log n))

space p.m.
[GKMS19]
(general)

O
(

log logn
ε7

)
rounds

O(n · log(1/ε)(n)) space p.m. Theorem 3.15

Parallel
MWM

O (m · poly (1/ε, logn))
work*

O (poly (1/ε, logn))
depth*

[HS22]
(general)

O
(

m log(n)
ε7

)
work

O
(

log3 n
ε7

)
depth Theorem 3.13

MCbM N/A N/A

O
(

m logn
ε2

)
work

O
(

log3 n
ε2

)
depth Theorem 4.11

Table 1: We assume the ratio between the largest weight edge and smallest weight edge in the graph is
poly(n). Results for general graphs are labeled with (general); results that are specifically for bipartite
graphs do not have a label. Upper bounds are given in terms of O(·) and lower bounds are given in terms of
Ω(·). “Space p.m.” stands for space per machine. The complexity measures for the “blackboard distributed”
setting is the total communication (over all rounds and players) in bits. poly(logn, ε) for the specified results
indicated by * hides large constant factors in the exponents, specifically constants c > 20. Our results often
exhibit a tradeoff of one complexity measure with another in our various models.

a semi-streaming algorithm in optimal O(n) space and O (logn log(1/ε)/ε) passes. They also provide a
MWM algorithm that also runs in O(n) space but requires Ω̃(n/ε) passes. Please refer to these papers and
references therein for older results in this area. Ahn and Guha [AG18] also considered the general weighted
non-bipartite maximum matching problem in the semi-streaming model and utilize linear programming ap-
proaches for computing a (2/3−ε)-approximation and (1−ε)-approximation that uses O(log(1/ε)/ε2) passes,

O
(
n ·
(

log(1/ε)
ε2 + logn/ε

ε

))
space, and O

(
logn
ε4

)
passes, O

(
n logn

ε4

)
space, respectively.

Bipartite Matching Ahn and Guha [AG18] also extended their results to the bipartite MWM and b-
Matching settings with small changes. Specifically, in the MWM setting, they give a O(log(1/ε)/ε2) pass,
O(n · ((log(1/ε))/ε2 + (log n/ε)/ε)) space algorithm. For maximum cardinality b-matching, they give a

O(log n/ε3) pass and Õ
(∑

i∈L∪R bi
ε3

)
space algorithm. For exact bipartite MWM in the semi-streaming

model, Liu et al. [LSZ20] gave the first streaming algorithm to break the n-pass barrier in the exact setting;
it uses Õ(n) space and Õ(

√
m) passes using interior point methods, SDD system solvers, and various other

techniques to output the optimum matching with high probability. Work on bipartite MWM prior to [LSZ20]
either required Ω(n logn) passes [JLS19] or only found approximate solutions [AG11, AG18, Kap13].

Lower Bounds Several papers have looked at matching problems from the lower bound side. Konrad et
al. [KRZ21] considered the communication complexity of graph problems in a blackboard model of compu-
tation (for which the simultaneous message passing model of Dobzinski et al. [DNO14] is a special variant).
Specifically, they show that any non-trivial graph problem on n vertices require Ω(n) bits [KRZ21] in com-
munication complexity. In a similar model called the demand query model, Nisan [Nis21] showed that any
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