Scalable Auction Algorithms for
Bipartite Maximum Matching Problems

Quanquan C. Liu

Joint work with

Northwestern Yiduo Ke Samir Khuller S IMONS

Computer Science II\hTSThTETCUpTEg

.APPROX/RAN DOM 2023



Bipartite Matching Problems

 Maximum Matching: return matching of maximum size
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Bipartite Matching Problems
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Bipartite Matching Problems

 Maximum b-Matching: return matching of maximum size when
each node v can be matched to at most b, nodes
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Approximate Bipartite Matching Problems

* Let M* be the optimum matching solution
A (1 — £)-approximate solution M has value at least:

M>(1-¢)- M
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Auction-Based Maximum Matching

* Introduced by Demange, Gale, and Sotomayor ‘86 and
Bertsekas ‘81 for exact (weighted) matching

« Same runtime as Hungarian method and maxflow

. APPROX/RANDOM 2023



Auction-Based Maximum Matching

* Introduced by Demange, Gale, and Sotomayor ‘86 and
Bertsekas ‘81 for exact (weighted) matching

« Same runtime as Hungarian method and maxflow

* Dobzinski, Nisan, and Oren ‘14 extend to approximation and
blackboard distributed setting

. APPROX/RANDOM 2023



Auction-Based Maximum Matching

* Introduced by Demange, Gale, and Sotomayor ‘86 and
Bertsekas ‘81 for exact (weighted) matching

« Same runtime as Hungarian method and maxflow

* Dobzinski, Nisan, and Oren ‘14 extend to approximation and
blackboard distributed setting

logn
g2

* (1 — g&)-approximation in 0( ) rounds

. APPROX/RANDOM 2023



Auction-Based Maximum Matching

* Introduced by Demange, Gale, and Sotomayor ‘86 and
Bertsekas ‘81 for exact (weighted) matching

« Same runtime as Hungarian method and maxflow

* Dobzinski, Nisan, and Oren ‘14 extend to approximation and
blackboard distributed setting

logn
g2

* (1 — g&)-approximation in 0( ) rounds

« Assadi, Liu, and Tarjan ‘21 extend to semi-streaming and MPC

. APPROX/RANDOM 2023



Auction-Based Maximum Matching

* Introduced by Demange, Gale, and Sotomayor ‘86 and
Bertsekas ‘81 for exact (weighted) matching

« Same runtime as Hungarian method and maxflow

* Dobzinski, Nisan, and Oren ‘14 extend to approximation and
blackboard distributed setting

logn
g2

* (1 — &)-approximation in 0( ) rounds
« Assadi, Liu, and Tarjan ‘21 extend to semi-streaming and MPC

0 (eiz) passes in streaming, O (n log (%)) space
* 0 (giz -log log n)-round, 0 (n)-memory algorithm in MPC

.APPROX/RAN DOM 2023 p——



4 N
Zheng and Henzinger ‘23

Au Ct|0n-Based Maximu m | extends MWM to sequential

and dynamic models
- 4
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MWM = Maximum Weighted Matching

O u r ReS u ItS MCBM = Maximum Cardinality b-Matching

Model Previous Results Our Results
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Blackboard g €
Distributed 2
MCsBM Q(nblogn) trivial O (”blg#) Theorem 4.8
/ . \ @) (%) pass
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solution MWM O (”1;#) space [AG11] O (n-logn -log(1/e)) space Theorem 3.11
Streamin
across many " O(logn/e”) pass O (%) pass
: MCBM 9) L?,URZ)’ space AG18 @) . b, 4+ |R|)log(1/¢)) space | Theorem 4.10
different = i€L
scalable O (loglogn) rounds log log
° O ==2£ d
models! O:(npoly(logn)) [GRMS19)] ( - ) T
_ ’ y MPC MWM space p.m. (general) O(n -log(y /¢y (n)) space p.m. Theorem 3.15
O (m - poly (1/¢,logn))
work™ 0] (—m 1°§(")) work
O (poly (1/e,logn)) [HS22] 83
MWM depth* (general) 0 <1g—”) depth Theorem 3.13
Parallel
0 (P vork
MCBM N/A N/A O <1°§#) depth Theorem 4.11
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Outline

 Auction Algorithm of [ALT21] for maximum cardinality matching

 Our auction algorithm for maximum weighted matching
* Algorithm description
* Minimizing dependence on log (W)

 Our auction algorithm for maximum b-matching
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Auction Algorithm of [ALT21]

‘

Left and Right Side
of Bipartite Graph
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Auction Algorithm of [ALT21]

Left Side has
Bidders and Right
Side has Items

Left and Right Side
of Bipartite Graph
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Auction Algorithm of [ALT21]
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Auction Algorithm of [ALT21]

Find maximal matching
among induced
subgraph of bid items

Iteratively, bidders bid
on all lowest price
adjacent items

©c O O O O
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Auction Algorithm of [ALT21]
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Auction Algorithm of [ALT21]

<
I|.1crease Prlce of items Can bid on item as
in ma.tchl.ng by € and 0 long as price < 1
maintain current
matching €
0
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Auction Algorithm of [ALT21]

B -

/ ' Can bid on item as

Iterate for
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Auction Algorithm of [ALT21]
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Auction Algorithm of [ALT21]
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Auction Algorithm of [ALT21]
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Auction Algorithm of [ALT21]

2&

Iterate for Can bid on item as
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Auction Algorithm of [ALT21]
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Outline

 Our auction algorithm for maximum weighted matching
* Algorithm description
* Minimizing dependence on log (W)
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Our Maximum Weight Auction Algorithm

* Bucket the edges using buckets based on the weights of the
edges

* Rescale weights to (0, 1]
« Edge with weight w € (0, 1] is in bucket b if

eb—1 <y < gh—2
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Our Simplified Maximum Weight Auction Algorithm

All items start
with price 0
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Our Simplified Maximum Weight Auction Algorithm

Iteratively, bidders bid

on all All items start
highest (value — price) with price 0
items
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Our Simplified Maximum Weight Auction Algorithm

0
Iteratively, bidders bid 0
on all 0 All items start
highest (value — price) with price 0
items 0
0
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Our Simplified Maximum Weight Auction Algorithm

t—o M

Iteratively, bidders bid . / 0.1 ﬁ 0 Find maximal matching

on all é 0.3 among induced
highest (value — price) d @ 0 subgraph of bid items
from highest bucket
down

items

Reason: items under
contention should be
won by edges with

larger weights L R
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Our Simplified Maximum Weight Auction Algorithm

Increase price of items
in matching by € - w
and maintain current
matching
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Our Simplified Maximum Weight Auction Algorithm

£—05 /- 0.7¢

1\

- - T ] O Reason: higher weight
Increase price of items / 0.1 ' g g

in matching by £ - w é\ 0.3 | edges will contribute
and maintain current & : O more to the matching
matching v <03z 0 35¢
¥ 0.7
: 0
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Our Simplified Maximum Weight Auction Algorithm

| 0.7¢

Increase price of items
in matching by € - w
and maintain current
matching

Can bid on item as long
0 as weight - price >0

.APPROX/RAN DOM 2023



Our Simplified Maximum Weight Auction Algorithm

Iterate for
[log2 (n)

7| iterations
&€
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Our Simplified Maximum Weight Auction Algorithm
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Our Simplified Maximum Weight Auction Algorithm
£—05 —- 1.2¢

iterations é

Iterate for
[log2 (n)
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Our Simplified Maximum Weight Auction Algorithm

£—05 —- 1.2¢

+T] O
| 2I(te)rate for b 01 '
og“(n)] . ) :
[ —— | iterations @ 0

- 0.35¢
0.35 . -
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Our Simplified Maximum Weight Auction Algorithm

t—o I
<o 8

Final Matching é
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Minimizing Dependence on log (W)

* Modified Gupta-Peng ‘13 transformation
 Partition edges into levels based on edge weight
» Each level contains multiple buckets
* Omit certain buckets to prevent too large ratio in weights

1
 Ratio of weights in each level is bounded by 8_0(2)

. APPROX/RANDOM 2023
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* Modified Gupta-Peng ‘13 transformation
 Partition edges into levels based on edge weight
» Each level contains multiple buckets
* Omit certain buckets to prevent too large ratio in weights

1
 Ratio of weights in each level is bounded by 8_0(2)

Iterate for Iterate for
[lo g%(n) ‘ [108(")

- | iterations iterations
)
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Outline

 Our auction algorithm for maximum b-matching
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Very Simplified Maximum b-Matching Algorithm

Create a copy for each
bidder and item equal 2
to their b value
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Very Simplified Maximum b-Matching Algorithm

Create a biclique
between copies
representing bidder
and item
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Very Simplified Maximum b-Matching Algorithm

Make sure match only

o one copy!
Create a biclique ?

between copies 2
representing bidder
and item
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Very Simplified Maximum b-Matching Algorithm

Make sure match only

o one copy!
Create a biclique ?
OETHEEN GOPIEE 2 1 Solution: each time
representing bidder -
_ price increases,
and item 1 :
1 increase the lowest

possible bidding price

for each unmatched
bidder
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